The Ugly

Perform the indicated operation and simplify: $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}$.
Now, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{3(2 x+3)}{3(x-\sqrt{2})}-\frac{\left(x^{2}+1\right)(x-\sqrt{2})}{3(x-\sqrt{2})}$.
Thus it is clear that, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{3(2 x+3)-\left(x^{2}+1\right)(x-\sqrt{2})}{3(x-\sqrt{2})}$.
So that, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{6 x+9-\left(x^{3}-(\sqrt{2}) x^{2}+x-\sqrt{2}\right)}{3(x-\sqrt{2})}$.
Hence, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{\left.6 x+9-x^{3}+(\sqrt{2}) x^{2}-x+\sqrt{2}\right)}{3(x-\sqrt{2})}$.
And finally, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{-x^{3}+(\sqrt{2}) x^{2}+5 x+(9+\sqrt{2})}{3(x-\sqrt{2})}$.

Comments:

- While the statements are all true, the redundancy of the material on the left side of the equal signs is distracting at best.
- Note that the equal signs do not line up.

See "The Good."

Graph $y=\frac{1}{4} x^{2}$.

While the graph is technically correct,

- The arrows on the negative ends of the axes are distracting and unnecessary.
- The arrows on the ends of the function curve are distracting and unnecessary.
- Too much labeling of the tick marks: Our eyes are drawn to them rather than the graph of the function.
- The scales on the x - and y-axes do not agree: In this case they should!
- The negative y-axis is much too long since the functional values are all positive.
See "The Good."

