The Good

Perform the indicated operation and simplify: $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}$.
Now, $\frac{2 x+3}{x-\sqrt{2}}-\frac{x^{2}+1}{3}=\frac{3(2 x+3)}{3(x-\sqrt{2})}-\frac{\left(x^{2}+1\right)(x-\sqrt{2})}{3(x-\sqrt{2})}$
$=\frac{3(2 x+3)-\left(x^{2}+1\right)(x-\sqrt{2})}{3(x-\sqrt{2})}$
$=\frac{6 x+9-\left(x^{3}-(\sqrt{2}) x^{2}+x-\sqrt{2}\right)}{3(x-\sqrt{2})}$
$=\frac{\left.6 x+9-x^{3}+(\sqrt{2}) x^{2}-x+\sqrt{2}\right)}{3(x-\sqrt{2})}$
$=\frac{-x^{3}+(\sqrt{2}) x^{2}+5 x+(9+\sqrt{2})}{3(x-\sqrt{2})}$.
Comments:

- Note that the equal signs neatly lined up and on the same level as the fraction bars of the fractions.
- Note that each step is a single simplification. Multiple simplifications carried out in the same step can easily lead to confusion and, worse, errors.
- Note how the terms in the numerator have been collected in decending degree.
- Note the parentheses around the " $\sqrt{2}$ " to emphasize that it is the coefficient of x^{2} and to make sure that the x^{2} is not accidentially placed under the radical along with the 2 .
- Note that the denomenator has been left in factored form and, furthermore, GASP!!, a radical has been left in the denominator.

Graph $y=\frac{1}{4} x^{2}$.

Comments:

- Note that the axes are labeled and arrows appear ONLY in the positive direction.
- Note that the tick marks are evenly spaced and that the scales on the two axes agree.
- Note that the tick marks have been minimally labeled.
- Note that the ends of the graph do NOT have arrows - the graph is assumed to continue indefinitely.
- Note that the graph is not tiny.
- Note that the graph is not tiny.
- Note that the graph is not tiny.

