

Simple Cartesian Mosaic Constructor

A Manufacturing Experience

Ben Falter, Josiah Rom, Daniel Shafer, Timothy Williams

ENGR 480

Professor Stirling

Class Project Summary

13 December 2018

Introduction:
 Manufacturing Class was, as it turned out, a brief exploration of many of the elements used in

modern automated manufacturing. Particularly, it focused on the technologies used to control,

manipulate, and interrogate the machines and processes used to create many of today’s marvels. In so

doing we discussed CNC control software and hardware, hardware for controlling modern machinery

and inputs, and sensors to provide feedback to those systems. Therefore, it made sense that our lab

time would be devoted to a project that would support all of those things; a project to create a machine

that would perform an assigned task repeatedly and reliably. This year that project was to build a CNC

mosaic constructor that could assemble a mosaic from tiles of four different colors, twelve tiles square.

Initially our team had bullish plans for how to accomplish the sorting and feeding aspects of our

assigned task, and we did a fair amount of work towards those lofty goals, but in the end we were

forced to settle for just a machine that could do the end task satisfactorily. In the end our machine was

able to perform somewhat reliably, though it would have been much better if we could have

implemented our sorting and feeding design so as to allow it to be more autonomous than it ended up

being.

Instructions:

Loading the machine
We did not get to build the gravity feed hopper and sorting mechanism that would have fed the

tiles in the correct orientation to the base. As such, tiles have to be fed manually into the track (Figure 4)

with the glazed side up. Once there are a few tiles on the track, then make sure that they have gone all

the way down and are fully against the end of the track near the sensors.

Starting the machine
For starting the machine all related files must be loaded onto the control laptop, 24 V power and 5 V

power must be connected, and the bed must be clear. The starting procedure is:

1. Verify E Stop is disengaged.

2. Load G-code file into Linux CNC.

3. Turn off electric E Stop (red x).

4. Activate power in Linux CNC (red power button).

5. Home x-axis, Home y-axis

6. Trigger program start in Linux CNC

Clearing jams
Depending on the cause of the jam, the procedure for clearing the jam is:

A. Picker looping through pick up procedure (without a tile)

1. Verify that the feed ramp is not over filled by referencing fill lines

2. Attempt to loosen tile in position

3. If unable to free activate E stop and clear run (physical and Electronic)

4. Refer to vacuum failure section below

B. Picker looping through pick up procedure (with a tile)

1. Verify that the feed ramp is not over filled by referencing fill lines

2. Remove tile from suction and allow to pick up a new tile

3. If unable to free activate E stop and clear run (physical and Electronic)

4. Refer to sensor failure section below

C. No tile feeding into pick up location

1. Check tile dimensions, inconsistent tiles can jam in feeder (basic presort required)

2. Clear run and reset system

Operation
Linux CNC

The system for controlling the mosaic tile building robot is Linux CNC. It reads G-Code and

interprets it into motion for cartesian motion. Our system is driven by stepper motors rotating

lead screws for determining linear motion. For this project the G-Code is created using a text file

for the colors and MATLAB looping through the same commands and moving position. The

relevant MATLAB code can be seen below.

Feeding System

For feeding the tiles a ramp was designed and it uses gravity to force the tiles into the

pick-up section. If the system is over filled the backpressure fights the vacuum pick up and causes

failure in operation. A fill line is clearly marked on the ramp for reference. Also, if the tile que falls

below the empty line the tiles will not have enough force to be feed into the pick-up location.

Again, an empty line is clearly marked on the ramp. Future work talks about our plan for keeping

the que between these two marks.

Vacuum Pick-up

The system for picking up the tiles uses compressed air forced though a venturi vacuum

system that has a soft rubber end for creating a seal with the top of the smooth tiles. Pistons are

used to lower and raise the tiles grabbed by the vacuum.

Cartesian Motion

Once the tiles are lifted out of the pick-up location they need to be place on the bed. For

this stepper motor driven slides are moved from Linux CNC. The generated G-Code gives

directions for where the stopping points for the placement of each tile should be, and the pick-up

location is dependent on the required color of tile.

Setting Up the Bed

For setting up the bed for placing the tiles a cloth mesh needs to be placed and oriented

based on where the tiles are going to be placed. For reference on the placement of the mesh look

for the bed marks that show the outside corners of a finished mosaic. About a 1/8 extra is needed

past each side to allow for holding down the mesh.

Removing the Final Mosaic

 Once a cycle has completed the final mosaic needs to be removed. For this place the

catching tray up against the bed and detach the mesh. Slide the tile covered mesh slowly onto the

tray and carry to next stage of the operation.

Maintenance
Sensor Failure:

Symptoms – tiles are not noticed to have been picked up and will just keep mashing tiles up and

down.

Fix – move a tile to the very end of the track. Move the sensor to a point where it does not

recognize the tile. Then adjust sensitivity to find the tile, and still trigger at half a tile length.

Slider Failure:

Symptoms – either the bed does not move upon completion of a row, or the vacuum does not

move to pick and place tiles.

Fix – Take the slider apart by undoing the screws near the motor. Then check that the connection

between the motor and the lead screw is still solid. If the connection is solid, then you may need

to just replace the slider assuming cords have been checked to still be connected correctly. To

remount, use t-nuts to bolt into a horizontal position on the two supports at either end. Then

make sure the height is such that at either end of the pneumatic stroke can reach the tiles, and

clear of any obstacles between the bed and the track. Reattach the homing and driving wires to

their respective cables.

Track Failure:

Symptoms – the track is broken or bent into an unwanted shape

Fix – unscrew the portion that is faulty, reprint a new track part, sand down any rough edges and

screw into place.

Vacuum Failure:

Symptoms – the tile is not ever getting picked up.

Fix – check the tube providing air to the vacuum, if there is air flow present, then replace the

venturi vacuum pump. If there is no flow, check to see if there are leaks in the cable anywhere, or

possibly if the cable is cut or broken anywhere. If broken, then replace the tube.

Pneumatic Failure:

Symptoms – the vacuum is not getting moved up and down at the pick and place locations

Fix – check the air tube to see is air is flowing, and that there are not breaks in the hose. If there

are, replace the hose. If not, then the pneumatic may need to be replaced. This can be

accomplished by undoing the air tubes, unbolting the vacuum and slider, and then switching it to

a new pneumatic.

Suggestions for future improvements
In the course of this project we were initially rather bullish with regards to what we thought we

could accomplish. Indeed, the minimum requirements for the project left a lot of room for

improvement, but we were nevertheless unsuccessful in doing anything beyond the basics. However,

this was not entirely our fault, for as it happened we needed to use a large number of printed parts, and

as it turned out the printer was having issues correctly printing our parts. Several of the parts we tried to

print ended up being warped beyond reason and had to be discarded, and at other times the prints

would skew while printing, producing a mess of almost unrecognizable material. On a few occasions

(during the Thanksgiving break) we were able to print our parts with no one else around, and we got

very good results, by and large. One print warped somewhat, but it was removed before being allowed

to fully cool on the print bed. The parts that were undisturbed and left to cool fully on the bed turned

out well. Therefore it is possible that many of the warpage incidents were due to people in the lab

disturbing the prints before they were fully cooled. That said, our future improvements list contains

both the items we were trying to implement as well as some that were based on the results we

observed in our “completed” project.

One of the most significant improvements that could be made to our machine would be a tile

feeder. Hand feeding our machine was tedious, and if our machine had been much faster we would not

have been able to keep up with it. Also, hand feeding defeats much of the purpose of automating the

production process – to remove as many greedy employees from the process as possible. Increasing the

rate of work completion is not as valuable as doing so while removing the manpower requirement.

Indeed, an optimal manufacturing system would have no employees at all, especially in today’s world

with the greed of unskilled laborers wanting more pay than their work is often worth. To that end, we

had originally meant for our system to be able to operate autonomously enough that it could be filled

with un-oriented tiles via a hopper and then fed via an orienting and feeding system. As envisioned, the

feeding system was to consist of four hoppers full of tiles, a rotary removal device, and a sorting system.

The rotary device was supposed to be mounted with a fine tolerance fit into the side of the hopper so as

to acquired tiles from below and prevent jams. Then the tiles were to be sent into a single sorting device

that would meter, orient, and finally sort the tiles by color. The feeding system from the hoppers was

meant to only operate when needed, and individually by required color instead of all at once. Once

through the orienting system, the tiles were to be sent to a one way in, four way out sorting gate

consisting of a single entry point, translatable and skewable guide walls, a small linear motor, and four

exit points. From here the tiles would then go directly to the queue.

Integral to our feeding system was the orienting system, which was meant to determine if tiles

were appropriately oriented for placement. The tiles, being generally bi-stable with only two normally

stable orientations while undergoing acceleration while subject to multiple forces, need to be oriented

so that their glazed side faces upward for placement. Therefore, determining whether a tile is glazed

side up or glazed side down is the only real problem, and we noticed that the glazed side of the tiles slid

much more easily on most surfaces as compared to the unglazed side. To exploit this we designed a

system that would allow the tiles to build up kinetic energy and then be subjected to a test. The test was

to be a flat stretch of the tile’s path over which a tile with the glazed side down would slide completely

to the end with velocity to spare, but which would fully retard the velocity of a tile with the glazed side

up before reaching the end. The correctly oriented tiles, with their glazed side up, would then be pushed

off onto a side ramp leading to the sorting system. Tiles with their glazed side down would enter a

flipping track before going to the sorting system. This system, along with the rest of the feeding system

would have been able to address many of the issues we encountered with regards to picking up tiles

from the queue, and it would have allowed our system to be able to operate more autonomously.

However, this system was not implemented and only marginally tested, so it is likely that many

modifications would have had to have been made to it as well.

In the course of testing our resulting system we found an issue with sensing that would have

been best addressed via a modification to how we sensed whether a tile was picked up or not. In the

system we created we had four optical proximity sensors mounted in the ends of each tile queue path,

with the intent being that we would be able to detect if a tile had been picked up or not by whether we

detected the brief period during which the picked up tile was missing and the one behind it had not yet

slid forward to take its place. However, we encountered problems with false positives when a tile was

picked up partially but became stuck above the sight of the sensor. To address this issue we decided that

it would be most effective to simply remove all the proximity sensors an instead use a single light of

sight sensor mounted off-angle to the y-axis (the axis that the pickup vacuum moved on) that would

detect whether the section cup has a tile suspended below it or not. This sensor would be mounted to

detect tiles when the pickup system was retracted, and enough off-angle to not be in the way of

carriage during translation while at the same time not so much that would not be able to detect tiles in

all of the four possible positions.

Other improvements could be made, but feeding, orientation, and better sensing are the most

important ones at this point. Perhaps flipping the desired orientation would make much of task easier

due to the lower friction involved, but doing so would probably also introduce new problems. Thus it is

the fate of all manufacturing systems to need fine tuning and skilled engineers to maintain and improve

them. We are ever working toward making the unskilled jobless and allowing only a few skilled

individuals to take their place.

Linux CNC
Since this project requires a series of the same commands over and over for each location in the

12 x 12 grid MATLAB code was written that could loop through and write each with just the original

commands. The MATLAB code can read the color and position from a text file, store position variables,

and print the G-code to a text file. This text file is then transferred to the control laptop and Linux CNC

reads it and follows the program.

Appendix 1

Figure 1. Queue pickup point

Figure 2. Entry track

Figure 3. Rendered queue pickup point

Figure 4. Rendered entry track

Figure 4. Overall queueing assembly at completion of project requirements

Figure 5. State Diagram for operation of our machine

Wire From To

24 V Power cable 1 24 V Power Supply positive E Stop

24 V Power cable 2 24 V Power Supply positive 24 V Power Block

24 V Ground 24 V Power Supply Ground Ground Block

Relay 6 Power Supply 24 V Power Block Relay 6 Port 1

Relay 5 Power Supply 25 V Power Block Relay 5 Port 1

Relay 6 Pneumatic Control Relay 6 Port 2 Pneumatic Control Port 4

Pneumatic Control 4 Ground Pneumatic Control Port 4 Ground Block

Relay 5 Pneumatic Control Relay 5 Port 2 Pneumatic Control Port 3

Pneumatic Control 3 Ground Pneumatic Control Port 3 Ground Block

Sensor Power Supply 24 V Power Block Sensor Power Block

Sensor 4 Power Sensor Power Block Sensor 4

Sensor 3 Power Sensor Power Block Sensor 3

Sensor 2 Power Sensor Power Block Sensor 2

Sensor 1 Power Sensor Power Block Sensor 1

Sensor 4 Data Sensor 4 Relay 1 Port 4

Sensor 3 Data Sensor 3 Relay 2 Port 4

Sensor 2 Data Sensor 2 Relay 3 Port 4

Sensor 1 Data Sensor 1 Relay 4 Port 4

Relay 1 Positive Power Sensor Power Block Relay 1 Port 3

Relay 2 Positive Power Sensor Power Block Relay 2 Port 3

Relay 3 Positive Power Sensor Power Block Relay 3 Port 3

Relay 4 Positive Power Sensor Power Block Relay 4 Port 3

Relay 1 Output Relay 1 Port 1 7i92 Port 11

Relay 2 Output Relay 2 Port 1 7i92 Port 6

Relay 3 Output Relay 3 Port 1 7i92 Port 7

Relay 4 Output Relay 4 Port 1 7i92 Port 8

Relay 1 Ground Relay 1 Port 2 Ground Block

Relay 2 Ground Relay 2 Port 2 Ground Block

Relay 3 Ground Relay 3 Port 2 Ground Block

Relay 4 Ground Relay 4 Port 2 Ground Block

Y step Power 5 V Power Block Y step motor Power

X step Power 5 V Power Block X step motor Power

Y step Ground Ground Block Y step motor ground

X step Ground Ground Block X step motor ground

X step Control X Step Control 7i92 Port 4

Y Step Control Y step Control 7i92 Port 17

Relay 5 Power 5 V Power Block Relay 5 Port 3

Relay 6 Power 5 V Power Block Relay 6 Port 3

Relay 5 Input Relay 5 Port 4 7i92 Port 10

Relay 6 Input Relay 6 Port 4 7i92 Port 9

7i92 Port 18 Ground 7i92 Port 18 Ground Block

7i92 Port 19 Ground 7i92 Port 19 Ground Block

7i92 Port 20 Ground 7i92 Port 20 Ground Block

7i92 Port 21 Ground 7i92 Port 21 Ground Block

X Dir + 7i92 Port 1 X Step Driver Dir +

Y Dir + 7i92 Port 2 Y Step Driver Dir +

Y Step + 7i92 Port 15 Y Drive Step +

X Step + 7i92 Port 14 X Drive Step +

X Dir - X Dir - Ground Block

Y Dir - Y Dir - Ground Block

X Step - X Step - Ground Block

Y Step - Y Step - Ground Block

X Driver Power X Step Drive Power 24 V E Stop

Y Driver Power Y Step Drive Power 24 V E Stop

X Driver Ground X Step Drive Ground Ground Block

Y Driver Ground Y Step Drive Ground Ground Block

Sensor 1 Ground Sensor 1 Ground Ground Block

Sensor 2 Ground Sensor 2 Ground Ground Block

Sensor 3 Ground Sensor 3 Ground Ground Block

Sensor 4 Ground Sensor 4 Ground Ground Block

Figure 6. Wiring diagram and legend

Figure 7. Overall setup

Total Errors Total Tiles Placed

42 432

Error Percentage 9.72%

Issue # of Errors

Did not pick up 15

Did not pick up but continued 4

Feed Jam 13

Knocked next tile loose 1

Picked up and dropped 5

Picked up and kept trying 4

Table 1. Performance data summary

Appendix 2

MATLAB Code:

%ENGR 480 Project
%Josiah Rom, Timothy Williams, Ben Falter, Daniel Shafer
%12/12/2018
%All units mm

close all
clc

%Reads the text file with the directions for tiles.
%Places them in a 12x12 matrix
C = dlmread('ColorFile.txt');
TestData = fopen('G-Code.txt','w');

%Initial Positions to be changed based on final design.
X0 = 150.0; %X coordinates for P (1,1)
Y0 = 20.0; %Y coordinates for P (1,1)

step = 12.7; %How Far the CNC needs to move for each new tile

X1 = 2.128; %X coordinates for color 1 (red)
X2 = 18.828; %X coordinates for color 2 (black)
X3 = 35.028; %X coordinates for color 3 (blue)
X4 = 52.128; %X coordinates for color 4 (white)

%CNC program specifications
Motion = 3500; %Feed Rate for Motion of Motors
Dwell = 0.1; %Dwell for M64
SDwell = 0.05; %Dwell for M65
SenseCheck = 0.4; %Time M66 Looks for Input

%Pin Outs for Air Control
VacuumOn = 0; VacuumOff = 1; PistonFire = 2; PistonRetract = 3;

%Sensor Pins
S1 = 3; S2 = 2; S3 = 1; S4 = 0;

%Labels New Section Titles
Olabel1 = 101; Olabel2 = 100;

%Building the Matrix
Data = zeros(3,144);
count = 1;

%Counter for Data Loop
%Fills the Data Matrix
for col = 1:12

for row = 1:12
Data (1, count) = X0+(row-1) *step; %1 row - x coordinates
Data (2, count) = Y0+(col-1) *step; %2 col - y coordinates
Data (3, count) = C (col, row); %3 color for that position
count = count + 1;

end
end

%Code to Generate the G-code Segments for the Given Design
%Pre Written G-Code for Housekeeping
fprintf(TestData,'(AXIS,stop)\r\n'); %Tells Linux CNC Not to Draw
fprintf(TestData,'#5399 = 1\r\n');
for r = 1:144 %Each case looks at the color and determines where to pick it up from.

if Data(3,r) == 1
Output = X1; Sensor = S1; %Sensor 1

end
if Data(3,r) == 2

Output = X2; Sensor = S2; %Sensor 2
end
if Data(3,r) == 3

Output = X3; Sensor = S3; %Sensor 3
end
if Data(3,r) == 4

Output = X4; Sensor = S4; %Sensor 4
end

fprintf(TestData,'\r\n');
fprintf(TestData,'\r\n');
fprintf(TestData,'G1 X%f Y%f F%f \r\n',Output,Data(2,r),Motion); %Go to Pick up
fprintf(TestData,'M64 P%d \r\n',VacuumOn); %Turn on Vacuum
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',VacuumOn); %Deactivate
fprintf(TestData,'G4 P%f \r\n',SDwell); %Wait
fprintf(TestData,'\r\n');
fprintf(TestData,'#1100 = 1\r\n'); %Set Variable for If Statement
fprintf(TestData,'\r\n');
fprintf(TestData,'o%d while [#1100 EQ 1]\r\n',Olabel1); %Begin While Loop
fprintf(TestData,'M64 P%d \r\n',PistonFire); %Fire Piston
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',PistonFire); %Deactivate
fprintf(TestData,'G4 P%f \r\n',SDwell); %Wait
fprintf(TestData,'M64 P%d \r\n',PistonRetract); %Retract Piston
fprintf(TestData,'M66 P%d L1 Q%f\r\n',Sensor,SenseCheck); %Look for Sensor Input
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',PistonRetract); %Deactivate
fprintf(TestData,'\r\n'); fprintf(TestData,'o%d if [#5399 NE -1]\r\n',Olabel2); %Begin If
Check
fprintf(TestData,'#1100 = 2\r\n'); %Break from While
fprintf(TestData,'o%d end if\r\n',Olabel2); %End If Check
fprintf(TestData,'\r\n');
fprintf(TestData,'o%d end while\r\n',Olabel1); %End While Loop

fprintf(TestData,'\r\n');
fprintf(TestData,'G1 X%f Y%f F%f \r\n',Data(1,r),Data(2,r),Motion); %Go to P(x,y)
fprintf(TestData,'M64 P%d \r\n',PistonFire); %Fire Piston
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',PistonFire); %Deactivate
fprintf(TestData,'G4 P%f \r\n',SDwell); %Wait
fprintf(TestData,'M64 P%d \r\n',VacuumOff); %Turn off Vacuum
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',VacuumOff); %Deactivate
fprintf(TestData,'G4 P%f \r\n',SDwell); %Wait
fprintf(TestData,'M64 P%d \r\n',PistonRetract); %Retract Piston
fprintf(TestData,'G4 P%f \r\n',Dwell); %Wait
fprintf(TestData,'M65 P%d \r\n',PistonRetract); %Deactivate
fprintf(TestData,'G4 P%f \r\n',SDwell); %Wait
Olabel1 = Olabel1 +2; %Increase section labels
Olabel2 = Olabel1-1;

end

fprintf(TestData,'G1 X10.0 Y280.0 F1000\r\n');
fprintf(TestData,'M30\r\n'); %End Program

%Close G-Code File
fclose(TestData);

G-Code Example:

(AXIS, stop)
#5399 = 1

G1 X2.128 Y20.0F3500.0
M64 P0
G4 P0.10
M65 P0
G4 P0.050

#1100 = 1

o101 while [#1100 EQ 1]

M64 P2
G4 P0.10
M65 P2
G4 P0.050
M64 P3
M66 P3 L1 Q0.40
G4 P0.10
M65 P3

o100 if [#5399 NE -1]

#1100 = 2

o100 end if

o101 end while

G1 X150.0 Y20.0 F3500.0
M64 P2
G4 P0.10
M65 P2
G4 P0.050
M64 P1
G4 P0.10
M65 P1
G4 P0.050
M64 P3
G4 P0.10
M65 P3
G4 P0.050

Color Text File:
1 3 3 3 4 1 1 4 3 3 3 1

4 1 3 3 4 1 1 4 3 3 1 4

3 4 1 3 4 1 1 4 3 1 4 3

3 3 4 1 4 1 1 4 1 4 3 3

4 4 4 4 4 1 1 4 4 4 4 4

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

4 4 4 4 4 1 1 4 4 4 4 4

3 3 4 1 4 1 1 4 1 4 3 3

3 4 1 3 4 1 1 4 3 1 4 3

4 1 3 3 4 1 1 4 3 3 1 4

1 3 3 3 4 1 1 4 3 3 3 1

Excel Plot Example:

Program ini File:
Generated by PNCconf at Mon Nov 19 09:02:55 2018
If you make changes to this file, they will be
overwritten when you run PNCconf again

[EMC]
MACHINE = DEWEY2
DEBUG = 0

[DISPLAY]
DISPLAY = axis
POSITION_OFFSET = RELATIVE
POSITION_FEEDBACK = ACTUAL
MAX_FEED_OVERRIDE = 2.000000
MAX_SPINDLE_OVERRIDE = 1.000000
MIN_SPINDLE_OVERRIDE = 0.500000
INTRO_GRAPHIC = linuxcnc.gif
INTRO_TIME = 5
PROGRAM_PREFIX = /home/mfglab/linuxcnc/nc_files
INCREMENTS = 5mm 1mm .5mm .1mm .05mm .01mm .005mm
POSITION_FEEDBACK = ACTUAL
DEFAULT_LINEAR_VELOCITY = 6.000000
MAX_LINEAR_VELOCITY = 75.000000
MIN_LINEAR_VELOCITY = 0.500000
DEFAULT_ANGULAR_VELOCITY = 12.000000
MAX_ANGULAR_VELOCITY = 180.000000
MIN_ANGULAR_VELOCITY = 1.666667

EDITOR = gedit
GEOMETRY = xyz

[FILTER]
PROGRAM_EXTENSION = .png,.gif,.jpg Greyscale Depth Image
PROGRAM_EXTENSION = .py Python Script
png = image-to-gcode
gif = image-to-gcode
jpg = image-to-gcode
py = python

[TASK]
TASK = milltask
CYCLE_TIME = 0.010

[RS274NGC]
PARAMETER_FILE = linuxcnc.var

[EMCMOT]
EMCMOT = motmod
COMM_TIMEOUT = 1.0
COMM_WAIT = 0.010
#SERVO_PERIOD = 1000000
SERVO_PERIOD = 500000

[HOSTMOT2]
**** This is for info only ****
DRIVER0=hm2_eth
BOARD0=7i92

[HAL]
HALUI = halui
HALFILE = DEWEY2.hal
HALFILE = custom.hal
POSTGUI_HALFILE = postgui_call_list.hal
SHUTDOWN = shutdown.hal

[HALUI]

[TRAJ]
AXES = 3
COORDINATES = X Y Z
LINEAR_UNITS = mm
ANGULAR_UNITS = degree
CYCLE_TIME = 0.010
DEFAULT_VELOCITY = 2.50
MAX_LINEAR_VELOCITY = 25.00
NO_FORCE_HOMING = 1

[EMCIO]
EMCIO = io
CYCLE_TIME = 0.100
TOOL_TABLE = tool.tbl

#********************
Axis X
#********************
[AXIS_0]
TYPE = LINEAR
HOME = 0.0
FERROR = 10.0
MIN_FERROR = 1.0
MAX_VELOCITY = 75.0
MAX_ACCELERATION = 750.0
The values below should be 25% larger than MAX_VELOCITY and MAX_ACCELERATION
If using BACKLASH compensation STEPGEN_MAXACCEL should be 100% larger.
#STEPGEN_MAXVEL = 31.25
STEPGEN_MAXVEL = 60
STEPGEN_MAXACCEL = 937.50
P = 1000.0
I = 0.0
D = 0.0
FF0 = 0.0
FF1 = 1.0
FF2 = 0.0
BIAS = 0.0
DEADBAND = 0.0
MAX_OUTPUT = 0.0
these are in nanoseconds
DIRSETUP = 14000
DIRHOLD = 14000
STEPLEN = 14000
STEPSPACE = 14000
STEP_SCALE = 200.0
MIN_LIMIT = -0.01
MAX_LIMIT = 400.0
HOME_OFFSET = 0.000000
HOME_SEARCH_VEL = -10.000000
HOME_LATCH_VEL = 0.500000
HOME_FINAL_VEL = 0.000000
HOME_USE_INDEX = NO

#********************
Axis Y
#********************
[AXIS_1]

TYPE = LINEAR
HOME = 0.0
FERROR = 10.0
MIN_FERROR = 1.0
MAX_VELOCITY = 75.0
MAX_ACCELERATION = 750.0
The values below should be 25% larger than MAX_VELOCITY and MAX_ACCELERATION
If using BACKLASH compensation STEPGEN_MAXACCEL should be 100% larger.
#STEPGEN_MAXVEL = 31.25
STEPGEN_MAXVEL = 60
STEPGEN_MAXACCEL = 937.50
P = 1000.0
I = 0.0
D = 0.0
FF0 = 0.0
FF1 = 1.0
FF2 = 0.0
BIAS = 0.0
DEADBAND = 0.0
MAX_OUTPUT = 0.0
these are in nanoseconds
DIRSETUP = 14000
DIRHOLD = 14000
STEPLEN = 14000
STEPSPACE = 14000
STEP_SCALE = 200.0
MIN_LIMIT = -0.01
MAX_LIMIT = 400.0
HOME_OFFSET = 0.000000
HOME_SEARCH_VEL = -10.000000
HOME_LATCH_VEL = 0.500000
HOME_FINAL_VEL = 0.000000
HOME_USE_INDEX = NO

#********************
Axis Z
#********************
[AXIS_2]
TYPE = LINEAR
HOME = 0.0
FERROR = 10.0
MIN_FERROR = 1.0
MAX_VELOCITY = 25.0
MAX_ACCELERATION = 750.0
The values below should be 25% larger than MAX_VELOCITY and MAX_ACCELERATION
If using BACKLASH compensation STEPGEN_MAXACCEL should be 100% larger.
STEPGEN_MAXVEL = 31.25
STEPGEN_MAXACCEL = 937.50

P = 1000.0
I = 0.0
D = 0.0
FF0 = 0.0
FF1 = 1.0
FF2 = 0.0
BIAS = 0.0
DEADBAND = 0.0
MAX_OUTPUT = 0.0
these are in nanoseconds
DIRSETUP = 7000
DIRHOLD = 7000
STEPLEN = 7000
STEPSPACE = 7000
STEP_SCALE = 200.0
MIN_LIMIT = -0.01
MAX_LIMIT = 400.0
HOME_OFFSET = 0.0

#********************
Spindle
#********************
[SPINDLE_9]
P = 0
I = 0
D = 0
FF0 = 1
FF1 = 0
FF2 = 0
BIAS = 0
DEADBAND = 0
MAX_OUTPUT = 2000

Hal Configuration:
Generated by PNCconf at Mon Nov 19 09:02:55 2018
If you make changes to this file, they will be
overwritten when you run PNCconf again

loadrt trivkins
loadrt [EMCMOT]EMCMOT servo_period_nsec=[EMCMOT]SERVO_PERIOD num_joints=[TRAJ]AXES
loadrt hostmot2
loadrt hm2_eth board_ip="192.168.1.121" config=" num_encoders=0 num_pwmgens=0
num_stepgens=3 sserial_port_0=0000xx"
setp hm2_7i92.0.watchdog.timeout_ns 5000000
loadrt pid names=pid.x,pid.y,pid.z,pid.s

addf hm2_7i92.0.read servo-thread

addf motion-command-handler servo-thread
addf motion-controller servo-thread
addf pid.x.do-pid-calcs servo-thread
addf pid.y.do-pid-calcs servo-thread
addf pid.z.do-pid-calcs servo-thread
addf pid.s.do-pid-calcs servo-thread
addf hm2_7i92.0.write servo-thread
setp hm2_7i92.0.dpll.01.timer-us -50
setp hm2_7i92.0.stepgen.timer-number 1

external output signals (see custom.hal)

external input signals

--- DIN-00 ---
net din-00 <= hm2_7i92.0.gpio.014.in
net din-01 <= hm2_7i92.0.gpio.009.in
net din-02 <= hm2_7i92.0.gpio.010.in
net din-03 <= hm2_7i92.0.gpio.011.in

--- HOME-X ---
net home-x <= hm2_7i92.0.gpio.006.in_not

--- HOME-Y ---
net home-y <= hm2_7i92.0.gpio.007.in_not

#*******************
AXIS X
#*******************

setp pid.x.Pgain [AXIS_0]P
setp pid.x.Igain [AXIS_0]I
setp pid.x.Dgain [AXIS_0]D
setp pid.x.bias [AXIS_0]BIAS
setp pid.x.FF0 [AXIS_0]FF0
setp pid.x.FF1 [AXIS_0]FF1
setp pid.x.FF2 [AXIS_0]FF2
setp pid.x.deadband [AXIS_0]DEADBAND
setp pid.x.maxoutput [AXIS_0]MAX_OUTPUT
setp pid.x.error-previous-target true
setp pid.x.maxerror .0005

net x-index-enable <=> pid.x.index-enable
net x-enable => pid.x.enable
net x-pos-cmd => pid.x.command
net x-vel-cmd => pid.x.command-deriv
net x-pos-fb => pid.x.feedback

net x-output => pid.x.output

Step Gen signals/setup

setp hm2_7i92.0.stepgen.00.dirsetup [AXIS_0]DIRSETUP
setp hm2_7i92.0.stepgen.00.dirhold [AXIS_0]DIRHOLD
setp hm2_7i92.0.stepgen.00.steplen [AXIS_0]STEPLEN
setp hm2_7i92.0.stepgen.00.stepspace [AXIS_0]STEPSPACE
setp hm2_7i92.0.stepgen.00.position-scale [AXIS_0]STEP_SCALE
setp hm2_7i92.0.stepgen.00.step_type 0
setp hm2_7i92.0.stepgen.00.control-type 1
setp hm2_7i92.0.stepgen.00.maxaccel [AXIS_0]STEPGEN_MAXACCEL
setp hm2_7i92.0.stepgen.00.maxvel [AXIS_0]STEPGEN_MAXVEL

---closedloop stepper signals---

net x-pos-cmd <= axis.0.motor-pos-cmd
net x-vel-cmd <= axis.0.joint-vel-cmd
net x-output => hm2_7i92.0.stepgen.00.velocity-cmd
net x-pos-fb <= hm2_7i92.0.stepgen.00.position-fb
net x-pos-fb => axis.0.motor-pos-fb
net x-enable <= axis.0.amp-enable-out
net x-enable => hm2_7i92.0.stepgen.00.enable

---setup home / limit switch signals---

net home-x => axis.0.home-sw-in
net x-neg-limit => axis.0.neg-lim-sw-in
net x-pos-limit => axis.0.pos-lim-sw-in

#*******************
AXIS Y
#*******************

setp pid.y.Pgain [AXIS_1]P
setp pid.y.Igain [AXIS_1]I
setp pid.y.Dgain [AXIS_1]D
setp pid.y.bias [AXIS_1]BIAS
setp pid.y.FF0 [AXIS_1]FF0
setp pid.y.FF1 [AXIS_1]FF1
setp pid.y.FF2 [AXIS_1]FF2
setp pid.y.deadband [AXIS_1]DEADBAND
setp pid.y.maxoutput [AXIS_1]MAX_OUTPUT
setp pid.y.error-previous-target true
setp pid.y.maxerror .0005

net y-index-enable <=> pid.y.index-enable
net y-enable => pid.y.enable

net y-pos-cmd => pid.y.command
net y-vel-cmd => pid.y.command-deriv
net y-pos-fb => pid.y.feedback
net y-output => pid.y.output

Step Gen signals/setup

setp hm2_7i92.0.stepgen.01.dirsetup [AXIS_1]DIRSETUP
setp hm2_7i92.0.stepgen.01.dirhold [AXIS_1]DIRHOLD
setp hm2_7i92.0.stepgen.01.steplen [AXIS_1]STEPLEN
setp hm2_7i92.0.stepgen.01.stepspace [AXIS_1]STEPSPACE
setp hm2_7i92.0.stepgen.01.position-scale [AXIS_1]STEP_SCALE
setp hm2_7i92.0.stepgen.01.step_type 0
setp hm2_7i92.0.stepgen.01.control-type 1
setp hm2_7i92.0.stepgen.01.maxaccel [AXIS_1]STEPGEN_MAXACCEL
setp hm2_7i92.0.stepgen.01.maxvel [AXIS_1]STEPGEN_MAXVEL

---closedloop stepper signals---

net y-pos-cmd <= axis.1.motor-pos-cmd
net y-vel-cmd <= axis.1.joint-vel-cmd
net y-output => hm2_7i92.0.stepgen.01.velocity-cmd
net y-pos-fb <= hm2_7i92.0.stepgen.01.position-fb
net y-pos-fb => axis.1.motor-pos-fb
net y-enable <= axis.1.amp-enable-out
net y-enable => hm2_7i92.0.stepgen.01.enable

---setup home / limit switch signals---

net home-y => axis.1.home-sw-in
net y-neg-limit => axis.1.neg-lim-sw-in
net y-pos-limit => axis.1.pos-lim-sw-in

#*******************
AXIS Z
#*******************

setp pid.z.Pgain [AXIS_2]P
setp pid.z.Igain [AXIS_2]I
setp pid.z.Dgain [AXIS_2]D
setp pid.z.bias [AXIS_2]BIAS
setp pid.z.FF0 [AXIS_2]FF0
setp pid.z.FF1 [AXIS_2]FF1
setp pid.z.FF2 [AXIS_2]FF2
setp pid.z.deadband [AXIS_2]DEADBAND
setp pid.z.maxoutput [AXIS_2]MAX_OUTPUT
setp pid.z.error-previous-target true
setp pid.z.maxerror .0005

net z-index-enable <=> pid.z.index-enable
net z-enable => pid.z.enable
net z-pos-cmd => pid.z.command
net z-vel-cmd => pid.z.command-deriv
net z-pos-fb => pid.z.feedback
net z-output => pid.z.output

Step Gen signals/setup

setp hm2_7i92.0.stepgen.02.dirsetup [AXIS_2]DIRSETUP
setp hm2_7i92.0.stepgen.02.dirhold [AXIS_2]DIRHOLD
setp hm2_7i92.0.stepgen.02.steplen [AXIS_2]STEPLEN
setp hm2_7i92.0.stepgen.02.stepspace [AXIS_2]STEPSPACE
setp hm2_7i92.0.stepgen.02.position-scale [AXIS_2]STEP_SCALE
setp hm2_7i92.0.stepgen.02.step_type 0
setp hm2_7i92.0.stepgen.02.control-type 1
setp hm2_7i92.0.stepgen.02.maxaccel [AXIS_2]STEPGEN_MAXACCEL
setp hm2_7i92.0.stepgen.02.maxvel [AXIS_2]STEPGEN_MAXVEL

---closedloop stepper signals---

net z-pos-cmd <= axis.2.motor-pos-cmd
net z-vel-cmd <= axis.2.joint-vel-cmd
net z-output => hm2_7i92.0.stepgen.02.velocity-cmd
net z-pos-fb <= hm2_7i92.0.stepgen.02.position-fb
net z-pos-fb => axis.2.motor-pos-fb
net z-enable <= axis.2.amp-enable-out
net z-enable => hm2_7i92.0.stepgen.02.enable

---setup home / limit switch signals---

net z-home-sw => axis.2.home-sw-in
net z-neg-limit => axis.2.neg-lim-sw-in
net z-pos-limit => axis.2.pos-lim-sw-in

#*******************
SPINDLE S
#*******************

setp pid.s.Pgain [SPINDLE_9]P
setp pid.s.Igain [SPINDLE_9]I
setp pid.s.Dgain [SPINDLE_9]D
setp pid.s.bias [SPINDLE_9]BIAS
setp pid.s.FF0 [SPINDLE_9]FF0
setp pid.s.FF1 [SPINDLE_9]FF1
setp pid.s.FF2 [SPINDLE_9]FF2
setp pid.s.deadband [SPINDLE_9]DEADBAND

setp pid.s.maxoutput [SPINDLE_9]MAX_OUTPUT
setp pid.s.error-previous-target true

net spindle-index-enable <=> pid.s.index-enable
net spindle-enable => pid.s.enable
net spindle-vel-cmd-rpm => pid.s.command
net spindle-vel-fb-rpm => pid.s.feedback
net spindle-output <= pid.s.output

---setup spindle control signals---

net spindle-vel-cmd-rps <= motion.spindle-speed-out-rps
net spindle-vel-cmd-rps-abs <= motion.spindle-speed-out-rps-abs
net spindle-vel-cmd-rpm <= motion.spindle-speed-out
net spindle-vel-cmd-rpm-abs <= motion.spindle-speed-out-abs
net spindle-enable <= motion.spindle-on
net spindle-cw <= motion.spindle-forward
net spindle-ccw <= motion.spindle-reverse
net spindle-brake <= motion.spindle-brake
net spindle-revs => motion.spindle-revs
net spindle-at-speed => motion.spindle-at-speed
net spindle-vel-fb-rps => motion.spindle-speed-in
net spindle-index-enable <=> motion.spindle-index-enable

---Setup spindle at speed signals---

sets spindle-at-speed true

#******************************
connect miscellaneous signals
#******************************

---HALUI signals---

net joint-select-a halui.joint.0.select
net x-is-homed halui.joint.0.is-homed
net jog-x-pos halui.jog.0.plus
net jog-x-neg halui.jog.0.minus
net jog-x-analog halui.jog.0.analog
net joint-select-b halui.joint.1.select
net y-is-homed halui.joint.1.is-homed
net jog-y-pos halui.jog.1.plus
net jog-y-neg halui.jog.1.minus
net jog-y-analog halui.jog.1.analog
net joint-select-c halui.joint.2.select
net z-is-homed halui.joint.2.is-homed
net jog-z-pos halui.jog.2.plus

net jog-z-neg halui.jog.2.minus
net jog-z-analog halui.jog.2.analog
net jog-selected-pos halui.jog.selected.plus
net jog-selected-neg halui.jog.selected.minus
net spindle-manual-cw halui.spindle.forward
net spindle-manual-ccw halui.spindle.reverse
net spindle-manual-stop halui.spindle.stop
net machine-is-on halui.machine.is-on
net jog-speed halui.jog-speed
net MDI-mode halui.mode.is-mdi

---coolant signals---

net coolant-mist <= iocontrol.0.coolant-mist
net coolant-flood <= iocontrol.0.coolant-flood

---probe signal---

net probe-in => motion.probe-input

---motion control signals---

net in-position <= motion.in-position
net machine-is-enabled <= motion.motion-enabled

---digital in / out signals---

net din-00 => motion.digital-in-00
net din-01 => motion.digital-in-01
net din-02 => motion.digital-in-02
net din-03 => motion.digital-in-03

---estop signals---

net estop-out <= iocontrol.0.user-enable-out
net estop-out => iocontrol.0.emc-enable-in

---toolchange signals for custom tool changer---

net tool-number <= iocontrol.0.tool-prep-number
net tool-change-request <= iocontrol.0.tool-change
net tool-change-confirmed => iocontrol.0.tool-changed
net tool-prepare-request <= iocontrol.0.tool-prepare
net tool-prepare-confirmed => iocontrol.0.tool-prepared

Custom Hal Configuration:

Include your custom HAL commands here

This file will not be overwritten when you run PNCconf again

loadrt

flipflop count=2
addf
flipflop.0 servo-thread
addf
flipflop.1 servo-thread

setp

hm2_7i92.0.gpio.012.is_output true
setp
hm2_7i92.0.gpio.013.is_output true

net dout-0-on

motion.digital-out-00 flipflop.0.set
net dout-0-off
motion.digital-out-01 flipflop.0.reset

net dout-1-on
motion.digital-out-02 flipflop.1.set
net dout-1-off
motion.digital-out-03 flipflop.1.reset

net dout-00

flipflop.0.out hm2_7i92.0.gpio.012.out
net dout-01
flipflop.1.out hm2_7i92.0.gpio.013.out

