Manufacturing Philosophy

- Henry Ford:
 - Demand is driven by price (if you make it cheap enough, they will buy it)

Price = cost + profit

- Cost is determined by volume
- Production equipment is expensive, so must not be idle

Henry Ford's Method

- Minimizing production cost
 - Design specialized, efficient machines
 - Run the expensive machines at maximum rate
 - Make large batches of parts
 - lowers percentage of time spent with setup
 - covers scrap parts
 - covers supplier delivery problems
 Develop complex formulas for batch size and buffers between machines

Batches and Buffers

- Assembly operations can take a variable amount of time
 - Slowest operation sets cycle time for entire production line if there are no buffers
 - human fatigue
 - unpredictable operations (such as calibration)
 variations between product models or options
 malfunctions or other stoppages
- A buffer is an empty space where parts wait for the next machine

Batches and Buffers

- Stations downstream of stopped/slow machine keep working until upstream buffer is empty.
- Stations upstream of stopped machine keep working until downstream buffer is full.
- One station is the slowest "bottleneck"

 buffer upstream of bottleneck must never be empty
 - buffer downstream of bottleneck must never be full

Batches and Buffers

- With no buffers, if any station stops, bottleneck stops
- With one buffer, probability of a stop somewhere causing bottleneck to stop drops to 0.5. More buffers drop probability more.
- So, buffers anywhere in the line are there to keep the bottleneck machine running!
- If machines are similar in speed, buffers take a long time to refill after a stoppage.

Problems with Henry Ford's Method

- Work-in-process inventory (batches of parts) ties up money
- Changes in demand lead to unneeded parts
- Faulty processes lead to large amounts of scrap
- Changes in customer preferences lead to expensive machine obsolescence
- Long delay from order to finished product

Taiichi Ohno's Method (Toyota)

- Toyota was short on capital money
 - Couldn't afford large work-in-process inventory
 - Couldn't afford specialized machines
- Decided to build only what customer demanded
- Let the customer set the price profit = price - cost
- Machines depreciate, labor cost is constant
 - keep the people busy, even if machines are sometimes idle

Toyota Production System

- Inventory is the enemy
 - no buffers between machines
 - single piece part flow
 - no scrap or breakdowns permitted
 - bad parts must be recognized immediately
 - any malfunctions must be immediately analyzed and the causes fixed
 - setup times must be very short
 - transport of parts must be very efficient
 - product model mix handled by *production* smoothing

Toyota Production System

- Production smoothing
 - Example: orders for 50% sedans, 30% vans, 20% pickups
 - Don't make a batch of sedans, then a batch of vans, then a batch of pickups
 - Instead, interleave them:
 - SPSVSPSVSV SPSVSPSVSV...

What if it takes longer to make a van than a sedan or a pickup?

- interleaving gets more complicated
- add an extra V to the cycle occasionally