Wiring and Factory Communications

- Big factories use lots of cable
- Some cables carry signals, some power
- Power sources and loads generate noise
- Noise in the signals causes havoc

Dealing with Electrical Noise

- Strategies for combating noise
 - reduce noise at source
 - reduce coupling between sensitive circuits and noisy circuits
 - reduce sensitivity of signal circuits to noise

Types of Noise

- Low frequency
 - 60Hz
 - usually caused by grounding problems
- High frequency
 - brush noise
 - PWM switching
 - arcing

Types of Noise Coupling

- Common Impedance
 - fixed by proper grounding
- Electric Field
 - fixed by proper shielding and cable routing
- Magnetic Field
 - fixed by twisted pair and proper cable routing

Reducing Sensitivity of Circuits

- Avoid high-impedance sources and loads
- Use digital signaling rather than analog
- Use differential signal transmission rather than single-ended

Analog Signal Methods

- Current Loop sensors
 - low impedance
 - zero level = 4mA
 - full scale level = 20mA
 - broken wire = OmA, detectable!

Digital Signal Methods

- Discrete (on-off) signals
 - standard is Ov and 24v
- Communication busses (low level)
 - serial bit stream
 - asynchronous:
 - start bit, data bits, "stop" bit
 - receiver and transmitter have to know bit rate
 - RS-232 common standard
 - RS-485 industrial standard (differential signalling)
 - synchronous:
 - clock signal sent with data (Ethernet)

Digital Communications

- Mid-level
 - data sent in packets
 - destination address, packet length, data, checksum (minimum number of fields)
 - Modbus, Profibus, DirectNet, etc.
 - TCP/IP taking over