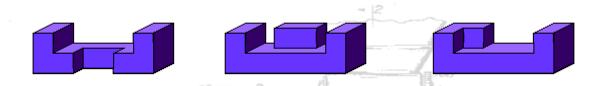
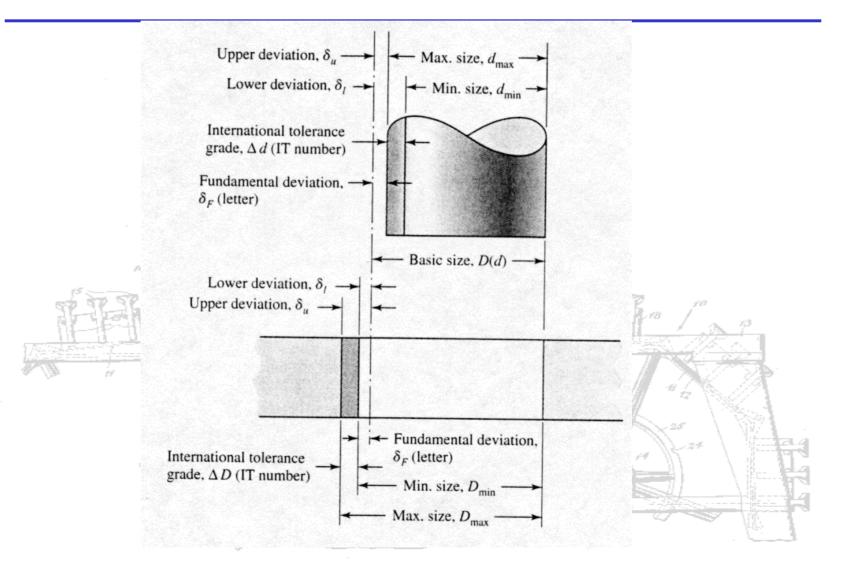

DIMENSIONAL TOLERANCE


- Width, height and length of block
- Width and depth of notches
- Surface roughness
- Seasonal Expansion/Contraction

MANUFACTURING TOLERANCE

- Puzzle piece limits were .0003" to .0016" for sliding fit.
- I want no more than 1 in 50 puzzles to fail to have a good sliding fit for all six pieces.
- We need to know what tolerance is allowable on the worst-case combination of mating pieces to meet this requirement.


NOTCHABLE, MACHINABLE, AND GENERAL PIECES

- We only need to produce notchable pieces
- There are 59 notchable pieces, of which 25 are needed to make solid burrs.
- IBM Research Buzz Puzzles site:

http://www.research.ibm.com/BurrPuzzles/

DIMENSIONAL TOLERANCE

LIMITS AND FITS - TYPE OF FIT

- Clearance
 Loose running (H11/c11)
 - Free running (H9/d9)
 - Close running (H8/f7) – Sliding (H7/g6)
 - Parts are not intended to run freely, but must move and turn freely
 - Locational clearance (H7/h6)
 - Provides snug fit for location of stationary parts, but can be freely assembled and disassembled

LIMITS AND FITS - TYPE OF FIT

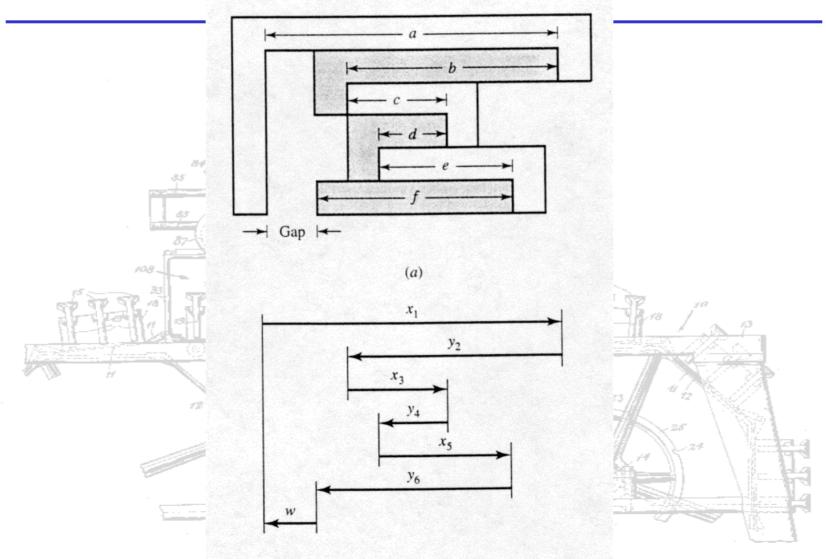
- Transition
 - Locational transition for accurate location (H7/k6)
 - Locational transition, more accurate (H7/n6)
- Interference
 Locational interference (H7/p6)
 Medium drive (H7/s6)
 Force (H7/u6)

LIMITS AND FITS - TOLERANCE GRADES

- H7/g6 = Hole with tolerance grade of 7, and shaft of fundamental deviation "g" and tolerance grade 6.
- Hole limits

 Maximum Material Condition (MMC) = basic size = D
 Least Material Condition (LMC) = D + ΔD
 For grade 7 and D=3/4", ΔD=0.0008", so D=0.7500", D+ ΔD=0.7508"

LIMITS AND FITS - TOLERANCE GRADES


- Shaft Limits
 - Fundamental deviation class 'g', sliding fit, for basic size $3/4'' = \delta_F = -0.0003''$
 - Tolerance grade for sliding fit is 6, for basic size 3/4", $\Delta d = 0.0005$ "
 - $-MMC = d + \delta_F = 0.7497''$ $-LMC = d + \delta_F \Delta d = 0.7492''$
- Max clearance = 0.7508-0.7492 = 0.0016" Min clearance = 0.7500-0.7497 = 0.0003"

MANUFACTURING TOLERANCE

- gap = additive parts subtractive parts (Eq.2-13, Fig 2-7)
- mean gap = \sum mean of additive widths \sum mean of subtractive widths
- tolerance = (max gap min gap) / 2 = \sum individual tolerances

• Find max allowable tolerance on block width/height and notch width/depth for a given pair of gap limits.

MANUFACTURING TOLERANCE

(b)