

DVT Script Reference Manual

 2

©2002-2003 by DVT Corporation.

4th Edition, First Printing (August 2003). All rights reserved.

Information in this document is subject to change without notice. Companies, names, and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the written permission of DVT Corporation.

The Legend Series 500™, Series 600™, SmartImage Sensor™, EdgeCount™, FeatureCount™,
ObjectFind™, and VirtualTour™ are trademarks of DVT Corporation.

Microsoft® Access ®, Excel®, Windows®, Windows 2000®, Windows ME®, Windows XP®, and
Windows NT® are registered trademarks or trademarks of the Microsoft Corporation in the United
States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Part Ordering Number: DOC-SCR

Documentation Control Number: MAN-102 REV A

Software Version: FrameWork 2.6

 3

Welcome to the large family of DVT product users! We are very pleased that you purchased our
products and look forward to helping you build a Smart Factory. We at DVT have made a few
improvements and changes to the content of this manual to better assist you in your endeavors.
We hope that you find this version of the manual both helpful and accommodating. If you have
any questions, suggestions, or comments in regards to any of our user manuals, please help us
to better help you by contacting our Technical Editor at docs@dvtsensors.com.

 4

 5

Table of Contents
Table of Contents ... 5

Chapter 1 – Introduction to DVT Scripts.. 13
Why Scripts? .. 14
A closer look at Scripts.. 16

What are scripts? .. 16
Types of Scripts .. 16

Background Scripts .. 17
Foreground Scripts ... 17

Creating Scripts .. 17
Timing .. 20

Designing a Script .. 20
Designing an algorithm .. 21
Algorithm Components .. 22

Data Structures ... 22
Data Manipulation Instructions .. 22
Conditional Expressions ... 23
User-defined Functions... 23
Control Structures... 24

Chapter 2 - Data Types and Manipulation ... 25
Basic Data and Manipulation ... 26
Arrays ... 28
Strings ... 29

charAt() .. 29
compareTo() ... 30
indexOf() .. 30
length() ... 30
substring()... 31
toFloat() .. 31
toInteger() ... 32
String().. 32
toByteArray() ... 32
DoubleToString() ... 33
Special Characters .. 33

 6

Chapter 3 - Basic Script Syntax... 35
Comments... 35
Key Words and Reserved Words.. 35

Conditional Expressions and Control Structures ... 36
If Statements... 36
Loops .. 38

User-defined Functions.. 40
Comparison operators... 42

The equal operator (==) ... 42
The less-than-or-equal-to operator (<=) ... 43
The less-than operator(<) ... 43
The greater-than operator(>) .. 43
The greater-than-or-equal-to operator (>=) .. 44
The not operator (!) ... 44
The not-equal operator (!=) ... 45
The or operator (||)... 45
The and operator (&&) ... 45

Bit Manipulation.. 46
Bits and Bytes... 46
The bitwise OR operator... 47
The bitwise AND operator ... 47
The bitwise XOR operator.. 48
The bitwise NOT operator.. 48
The Signed Left Shift operator ... 49
The Signed Right Shift operator ... 49
The Unsigned Right Shift operator... 50

Miscellaneous Functions.. 50
The clock() function ... 50
The sleep() function.. 51
The DebugPrint() function.. 51
SetMatchString() .. 52
GetImageID() ... 53

Chapter 4 – Accessing SoftSensor data... 55
Syntax for Basic SoftSensor Data Extraction.. 56

Translation SoftSensor Parameters... 56
Rotation SoftSensor Parameters ... 57

 7

Intensity SoftSensor Parameters ... 58
EdgeCount SoftSensors .. 58
FeatureCount SoftSensors .. 59
Measurement SoftSensors .. 59
Math Tools ... 62
Readers ... 62
Blob Tools .. 63
TemplateMatch SoftSensor .. 65
ObjectFind SoftSensor.. 66
Pixel Counting SoftSensor.. 66
Color Monitoring SoftSensor ... 67
Segmentation SoftSensor.. 67
Script SoftSensor (Foreground Script) ... 68
Spectrograph SoftSensor .. 69

Advanced Functionality: Sensor Object .. 70
GetSensorByName()... 70
GetSensorById()... 70
SetMatchString() .. 71
SetParams() .. 71
Stats() ... 72

Chapter 5 - Accessing Product Data ... 75
Syntax for Basic Product Data Extraction .. 76

SetWindow() .. 76
GetExposure() .. 77
SetExposure() ... 77
GetGain().. 78
SetGain() .. 78

Advanced Functionality: Product Object.. 78
GetProduct() ... 79
GetProductById() ... 79
GetInspectProduct().. 79
GetFirstProduct().. 80
Next() ... 80
ID() ... 80
Select().. 81
Inspect().. 81
Stats() ... 82

 8

Name .. 83
Chapter 6 - Mathematical computations... 85

Mathematical Operators and Functions.. 86
The assignment operator (=)... 86
The addition operator (+).. 87
The subtraction operator (-) .. 87
The multiplication operator (*)... 88
The division operator (/) ... 88
The increment operator (++)... 88
The decrement operator (--).. 89
The addition assignment operator (+=)... 89
The subtraction assignment operator (-=)... 90
The multiplication assignment operator (*=).. 90
The division assignment operator (/=).. 90
The modulus assignment operator (%=)... 91
The bitwise AND assignment operator (&=).. 91
The bitwise OR assignment operator (|=) ... 92
The bitwise XOR assignment operator (^=) ... 92
The signed left shift assignment operator (<<=)... 93
The signed right shift assignment operator (>>=) .. 93
The unsigned right shift assignment operator (>>>=) .. 94
The power function... 94
The Absolute Value function.. 94
The Square Root Function.. 95
The Sine function ... 95
The Cosine function ... 95
The Tangent function ... 96
The ArcSine function ... 96
The ArcCosine function.. 96
The ArcTangent function.. 97
The ArcTangent2 function.. 97
The Line Fit function.. 97

Chapter 7 - Using system memory: DVT Registers .. 99
Registers as Global Variables ... 100

RegisterReadByte() .. 101
RegisterReadShort() ... 101

 9

RegisterReadInteger()... 102
RegisterReadLong() ... 102
RegisterReadFloat().. 102
RegisterReadDouble() .. 103
RegisterReadString() .. 103
RegisterWriteByte() ... 104
RegisterWriteShort() .. 104
RegisterWriteInteger().. 105
RegisterWriteLong()... 105
RegisterWriteFloat()... 105
RegisterWriteDouble() ... 106
RegisterWriteString() ... 106

Chapter 8 – Input/Output Functions .. 109
Use of I/O commands... 110

GetInputs().. 111
GetOutputs() ... 111
SetInputs() .. 112
SetOutputs().. 112
SetOutputsAfterInspection()... 113
WaitOnInput () ... 113
WaitOnAnyInput () .. 114
DVT Register and I/O Map .. 116

Chapter 9 - Communications... 117
Socket Object.. 118

Socket() .. 118
Connect() .. 118
Bind() ... 119
Listen() ... 119
Accept() .. 120
Recv() ... 121
Recv(, ,) .. 121
Send() ... 122
Send(, ,) .. 122
ConnectTO ... 123
SendTO... 123
RecvTO .. 123

 10

RecvFrom() .. 124
SendTo()... 124

Modbus Object... 125
MBTransfer().. 125
Connect() .. 126
Close() .. 126
Read() ... 127
Write() .. 128
ReadCoils()... 129
WriteCoil() ... 130
ReadInputDiscretes() .. 130
ReadInputRegs()... 131
WriteRegister() ... 132
ReadStatus() ... 133
Mapping DVT Registers to Modbus Coils ... 135

Chapter 10 – OEM Functions ... 137
Allen Bradley Functions.. 138

AB_RegisterReadDINT()... 138
AB_RegisterReadINT().. 138
AB_RegisterReadREAL() .. 139
AB_RegisterReadSINT().. 139
AB_RegisterReadString()... 140
AB_RegisterWriteINT()... 141
AB_RegisterWriteDINT() .. 141
AB_RegisterWriteREAL() ... 142
AB_RegisterWriteSINT()... 142
AB_RegisterWriteString().. 143

Motoman Functions... 144
MotoWriteByte() .. 144
MotoWriteInt() ... 144
MotoWriteDouble().. 145
MotoWriteReal() .. 145
MotoWritePvar() .. 146

Fanuc Functions... 147
FanucSetup() .. 147
FanucWriteReg() .. 147

 11

FanucWritePReg() .. 148
Chapter 11 – Working with Images... 149

Imaging Functions ... 150
Image(,) .. 150
MarkImage(, ,).. 150
MarkImage(, , , ,).. 151
MarkImage(, , [], [],)... 152
MarkImagePoints(, , [], [],)... 153

Window Object .. 154
Window().. 154

Image Object .. 154
Image Object Fields.. 155
Image() ... 157
Acquire() .. 157
Save() ... 158
Negate() .. 158
Negate(Window) .. 159
Add() .. 159
Add(,Window)... 160
Subtract() .. 161
Subtract(,Window) .. 161
Erode(, , ,)... 162
Erode(Window, , , ,) .. 163
Dilate(, , ,)... 164
Dilate(Window, , , ,) .. 165
Filter(double filter[]) .. 166
Filter(int filter[]) ... 167
Filter(Window, double filter[]).. 168
Filter(Window, int filter[]) .. 169
Map() .. 170
Map(, Window) ... 170
Threshold(, , , ,) .. 171
Threshold(Window, , , , ,).. 172
Inspect().. 173
SetWindow(Window win) .. 173
GetWindow().. 174
Clear()... 174

 12

Copy()... 175
Chapter 12 – Flash Object ... 177

Flash()... 178
SaveRegs().. 178
RestoreRegs () .. 178

Chapter 13 – Script Examples ... 181
Extracting and using blob data ... 182
Extracting Detailed Information from a Measurement SoftSensor. ... 183
Image Object Example: Preprocessing an image ... 184
Establishing communications with Socket Object as a server.. 187

Appendix A – ASCII Table of Characters... 191

Index ... 193

 13

Chapter 1 – Introduction to DVT Scripts

Even though SmartImage Sensors contain a number of SoftSensors to perform specific tasks,
some applications require more customization. Sometimes users need to make intelligent
decisions based on bits and pieces of data from different SoftSensors. Sometimes a very specific
handshake must be implemented to successfully communicate with an external device.
Sometimes users prefer to write their own code and use the standard SoftSensors as data
gathering tools. For all these cases and for even more specific cases DVT has created the Script
tools, a set of programmable tools. This chapter explains the basic ideas behind DVT Scripts. The
most common uses are explained. No reference to syntax is made, but some practical examples
about when to use scripts are given. The types of scripts available in SmartImage Sensors are
introduced as well. The chapter also demonstrates how to take the first steps to create both
Background and Foreground Scripts. The reader is shown how to bring up both editors and how
to interpret the different options available.

 14

Why Scripts?
As a starting point to explain the functionality of SmartImage Sensors, the hierarchical
organization within SmartImage Sensor must be explained. Figure 1 illustrates the organization
inside SmartImage Sensors. There are three well defined levels within SmartImage Sensors:
system level, product level and SoftSensor level.

Figure 1: Hierarchical organization within SmartImage Sensors.

These three levels are very independent. The System level contains parameters that affect the
functionality of the SmartImage Sensor itself. Parameters such as communication settings, and
trigger mode (internal/external) are examples of system level parameters. These parameters do
not change between inspections, they define global settings. At the second level, we have the
inspection products which are specific for every inspection. Usually SoftSensors perform a variety
of inspections from the same or from different parts. An inspection product is needed for every
inspection performed. Finally, at the lower level, we have the SoftSensors. SoftSensors perform
inspection tasks. Each inspection, as defined by the inspection product, needs to perform a
number of tasks in order to fully execute. These tasks are assigned to the SoftSensors.

In order to illustrate this functionality let us work with an example. The part in Figure 2 needs to
be inspected. First, we need to verify that the drillings on the left end are vertically centered, a
certain distance apart, and of a certain radius. After that, we need to verify that the label on the
right end is centered, aligned and that it contains the correct code. The existence of products
inside SmartImage Sensors simplifies this task. The inspections can be separated into two
groups, those that take place on the left end of the part and those that take place on the right end
of the part. This will allow the user to trigger the SmartImage Sensor twice as the part moves in a
conveyor from left to right. The first trigger would occur when the left end is in front of the
SmartImage Sensor and the second one when the right end is in front of the SmartImage Sensor.

 15

Figure 2: Sample part to be analyzed in two different inspections.

This would not only add modularity to the process but also would allow for a more precise
inspection because now we can zoom in on the part. There is no need to have the entire part in a
single image. The inspections are then separated into products. A product would inspect the left
end of the part and another product would inspect the right end. In order to determine if there is a
problem with the part, those products would use a number of SoftSensors. For the first product,
both Math and Measurement SoftSensors are needed to perform the inspection. For the second
product the same SoftSensors are needed and also a reader SoftSensor (OCR SoftSensor) is
required.

This is a very effective internal structure that enables users to encapsulate tasks into specific
entities that exist inside SmartImage Sensors and design/troubleshoot each one independently
from the others. The only downside of this structure is the independence that every entity has
with respect to the others. Inspection products can only control their own SoftSensors.
SoftSensors can only reference other SoftSensors for a position reference or other minor tasks.
Different inspections cannot communicate with each other, that is, a certain inspection is
performed and when it ends all the data used by that inspection disappears from the system. For
many applications, this strict independence between entities limits the power of SmartImage
Sensors. For those cases, DVT has created a very powerful tool: DVT Scripts. Scripts can be
viewed as the exception to the rule. Scripts can access things that other SoftSensor cannot and
they can even make communications between entities possible by sharing the same system
memory.

Scripts come in two flavors: background scripts and foreground scripts. The basic difference
between them is that the first one is independent of inspections and runs at the system level
whereas the latter runs on every inspection and exists at the product level. More details about
both types of scripts will be given later in this chapter. Scripts have the ability to write values to
memory and read values from memory, and since the memory is shared between all scripts in the
system, they create the connection between different entities inside the system. Figure 3 shows
the functionality added to the system when Scripts are used. Each type of script has a limited
scope, but they can share data based on the use of the system’s memory (the DVT registers,
which will be explained later).

 16

Figure 3: Hierarchical tree with Scripts added to the system.

A closer look at Scripts
So now we know the power that can be obtained from Script tools. Even though many application
could be effectively configured with no scripts at all, in many cases there is going to be a need for
extra functionality. For those cases the answer is Scripts.

What are scripts?
Scripts are basically a programmable tool used in SmartImage Sensors. Each script is designated
as a class that can contain a number of static user-defined functions, with one required method
that will be the first to execute when the script is initialized (the name of this method is different
between a Foreground Script and a Background Script and will be detailed below). They are
designed to be fully customizable to the application’s needs. Unlike other parameters within
FrameWork, Scripts have no predefined purpose. They are created as an empty tool that is
shaped to perform the required tasks according to the user needs.

What exactly can Scripts do? Scripts can perform a number of tasks including but not limited to:
accessing data gathered by SoftSensors, accessing and modifying product and SoftSensor
parameters, establishing communications with external devices, preprocessing images before
SoftSensors analyze them, performing mathematical calculations, and more. There is a
predefined set of functions to perform each one of the tasks mentioned above and more, the user
only needs to call the specific functions every time using syntax that will be explained in Chapter
3 - Basic Script Syntax.

Types of Scripts
As Figure 3 shows, there are two different types of scripts to fulfill the user needs at different
levels within the hierarchical tree inside SmartImage Sensors: Background Scripts and
Foreground Scripts.

 17

Background Scripts
Background Scripts are created at the system level. When a Background Script first initializes, a
method within the class called main() will be the first to execute. Within this method is where
most of your script logic will reside. User-defined functions can be added to the class, however,
they must precede the main() function. Background Scripts are not associated with any
Inspection Product, so they are independent of inspections. Also, background Scripts are not
automatically executed every time an inspection takes place. There are three ways to start a
Background Script:

Run on power-up: this will start the Background Script when the system is powered up. This
option is usually selected when a Background Script needs to configure memory registers,
restore data to RAM memory, or continuously run on the background.

Start manually: not as common, it allows users to connect to the SmartImage Sensor and start a
Background Script manually. This option is used mostly for testing purposes.

Start on a signal: this is an advanced option of Background Scripts. Since they can be set to wait
for a specific input to change, they could be started on power-up and set to wait for a specific
input from an external device or from another script. In this case the Script is actually started
on power-up or manually, but it pauses execution until a signal is received.

Since Background Scripts are created at the system level, they have access to system and
product parameters. Common tasks for Background Scripts are to alter product parameters,
trigger inspections, establish communications with external devices, preprocess images, etc.

An important consideration regarding the nature of Background Scripts is the duration of their
process: once started there are two options for Background Scripts: single shot scripts and
continuous execution scripts. Single shot scripts are executed once, and need to be restarted to
execute again. This mode is mostly used for testing or for cases where a certain operation needs
to be performed on power-up. The second mode, continuous execution, loops through the code
executing it continuously. It can be compared to the periodic scan of the rungs by PLC in a ladder
logic program.

Foreground Scripts
Foreground Scripts are created at the product level, and they are directly related to specific
inspections. When a Foreground Script is executed, a method called inspect() will be called.
Within this method is where most of your script logic will reside. User-defined functions can be
added to the class, however, they must precede the inspect() function. Foreground Scripts run
every time the Inspection Product that contains them is called to inspect an image. Foreground
Scripts are created just like any other SoftSensor, which is why they are also called Script
SoftSensors. The main difference that they have with other SoftSensors is that they can access
data from the SoftSensors in the same Inspection Product. Common tasks for Foreground Scripts
include gathering data from other SoftSensors, performing mathematical or logical computations,
sharing information with other areas via system registers, and formatting strings to send out of the
system via DataLink. Like any other SoftSensor, Foreground Scripts can be set to PASS, WARN,
or FAIL. They can also be used to output data to the result table, monitor I/O lines, and write to
and read from the system memory.

Note: Background and Foreground Scripts are classes which can only contain static methods, so
you cannot call methods of other classes.

Creating Scripts
Now that we know what Scripts are and what they are used for, we are ready to access the Script
Editor. Both types of script use the same syntax, and to make it even simpler, they use the same
editor. The difference in the creation of a Script resides on how the editor was opened. To create
a background script, the user has to select “Background Scripts” from the main “Edit” menu. This
will bring up a dialog box as shown in Figure 4.

 18

Figure 4: Background Script menu highlighting a script.

This dialog box shows all the Background Scripts present in the system. Furthermore, it indicates
if they are saved to flash memory, if they are currently running, and if they start automatically on
power up. When a background script is created, it resides in RAM memory just like products and
SoftSensors. When the user selects to save them, they move to permanent flash memory where
they reside even after cycling the power in the SmartImage Sensor. To add a Background Script
to the system the user only needs to click on the “New” button. This will bring up a new dialog box
as shown in Figure 5.

Figure 5: Dialog box to name the newly created Background Script.

This dialog box prompts the user for the name of the Background Script and whether it will be a
script that runs automatically on power-up. When naming scripts, be sure to follow the same rules
when naming identifiers in most programming languages (i.e. they can contain letters, numbers,
and the underscore character (_); they cannot start with a number, no white spaces or other
special characters or punctuation marks, and reserved keywords cannot be used). Once the
Background Script is successfully created, it can be edited. By simply clicking on the “Edit”
button, the user will obtain access to the Script Editor. The Script editor is where both
Background and Foreground Scripts are created and edited.

The editor simplifies the way code is written by having all the functions and variables available for
point-and-click selection. A screen capture of the editor for Background Scripts is shown in Figure
6. It contains five different panes. The largest pane is used for writing the script. Here is where
the Background Script will be. The three panes on the right hand side contain data, declarations,
and structures that Background Scripts have access to.

 19

Figure 6: Screen capture of the Background Script editor.

The top pane on the right hand side contains the products created in the SmartImage Sensor.
Since Background Scripts have access to product parameters, this pane makes available all the
products in the system. The figure shows only two products and all the accessible parameters
from the second product (called “oRingDetection”). If the user needs to access any of these
parameters, a simple double click on the parameter will transfer it to the editing pane. The second
pane on the right hand side shows the functions available for Background Scripts. They are
divided in categories that can be expanded by clicking on the plus sign. The lower pane on the
right hand side contains more general tools such as variable declarations, syntax for conditional
and looping structures, operators, and even comments. Notice that neither of the panes contains
any SoftSensor data. Background Scripts cannot “see” SoftSensors. The lower pane on the left
hand side contains two tabs. The “Build” tab is where the messages from the compiler are shown.
The “Debug” tab, used in conjunction with the DebugPrint() command is reserved for
outputting special strings designed to help with the editing of a script. Finally, the number on the
lower right corner of the editor indicates the line in which the cursor is located. This number is
used to track problems in the code. When a script is written it needs to be compiled before being
executed. This is an automated process of verification that there are no errors in the code. It is
performed by clicking in the “compile” button available from the top menu (). If the compiler
finds any errors it will report the error and the line where the error was found. If there are no
errors the compiler indicates so.

The creation of a Foreground Script is slightly different. Foreground Scripts are available from the
main SoftSensor toolbar, just like any other SoftSensor. When the user selects to create a
Foreground Script, the parameters for it become available, the user only needs to give it a name,
apply the changes to the name and select “Edit” to access the Script Editor. In this case, the
editor will look slightly different. It will contain functions that are only available to Foreground
Scripts and unlike Background Scripts, it will contain all the SoftSensors in the upper right pane.
Figure 7 shows a screen capture of such editor. In this case, the script belongs to a product that
contains three other SoftSensors (positionX, positionY, and vertSize). These SoftSensors are
available from the Parameters pane.

 20

Figure 7: Screen capture of the Foreground Script editor.

The fourth SoftSensor shown in that pane is the Script itself. This is why it is very important to
select Apply immediately after naming the script and before opening the editor. If the user does
not apply the change to the name, the script will have a default name in the editor and the
reference to it will not be successfully established once the change in the name takes place.

Timing
An important consideration regarding Foreground Scripts and Background Scripts is the timing for
both. Foreground Scripts are executed during every inspection, so if they need to make an output
available, change a certain value, etc. the user knows that those changes will have taken place
by the time that the inspection finishes. This ensures that every time there is a new value being
computed, it will be made available. This is not the case with Background Scripts. Background
Scripts run independent of inspection, so for example, in cases where they need to transfer data
from inspections, they will not be very reliable unless careful consideration is given. They will
likely execute continuously transferring the data that is stored in memory, whether it is fresh data
or data from the previous inspection. In those cases, the device reading the outputs should test
whether the data that arrived is new or old.

Another important consideration regarding timing is the priority of tasks within SmartImage
Sensors. SmartImage Sensors have inspections as their main task. This ensures that when the
SmartImage Sensor is triggered, there is no delay, the image acquisition starts immediately and
right after that the inspection occurs. In most cases, other processes will be running at the same
time. When the inspection begins, the other processes (Background Scripts, communications,
etc.) are given a very small slice of processing time compared to what inspections get.

The user should be familiar with these concepts in order to avoid timing issues that usually
become difficult to troubleshoot.

Designing a Script
As mentioned before, scripts are fully configurable tools: tools that are empty upon creation and
are modeled by the user to better suit the application’s needs. This process uses a programming
language to describe the functionality that Scripts must have. That programming language is
called DVT Scripting and is unique to DVT SmartImage Sensors, but to make it easier to
understand, it follows the syntax of very common programming languages. The method to use
the programming language consists of designing an algorithm and implementing it using the
features of the DVT Scripting language.

 21

Designing an algorithm
An algorithm can be defined in general terms as a precise set of instructions that describes a
certain behavior. Every time we explain someone how to do something, we are describing the
steps of an algorithm. The algorithm can be viewed as the crucial component in a process that
produces a certain output based on certain input. Figure 8 shows how the algorithm converts an
input (or a set of inputs) into an output (or a set of outputs).

Figure 8: Algorithm as a process.

The goal is to create whatever is inside that box labeled Algorithm. Let us work with a real
example to better illustrate the process. The task is to have the SmartImage Sensor triggering
three times (with a certain period) when it receives the trigger signal. After all three inspections
are taken, compare the position and size of three parts, if the average of those values varies
more than 10% with respect to a certain specification, discard the part and increment a counter,
otherwise accept the part. The first attempt to design the proper algorithm is shown below:

1) Wait for trigger
2) Perform 3 inspections
3) Determine if it is a good part or not (fail if necessary)

As a first attempt to design the algorithm, the steps are logically correct, but more specific steps
could be added. For example, we could add the data gathering process and the data
manipulation to the second step. We know that when each inspection finishes the variables
associated with it disappear, so we must gather the data and save it somewhere safe so the last
inspection can access it. The only place where we can save data to and access it later is the DVT
Registers.

1) Wait for trigger
2) Perform 3 times:
 2.0) Inspect Part
 2.1) Save results to memory (registers)
3) Determine if it is a good part or not (fail if necessary)

We could also be more specific as to how we plan to determine if it is a good part or not:

1) Wait for trigger
2) Perform 3 times:
 2.0) Inspect Part
 2.1) Save results to memory (registers)
3) Access the data saved in memory (3 sets of data)
 3.0) Perform the mathematical computations
 3.1) Compare results with optimal values
 3.2) Determine if this consists of a good part or not
4) Check the results
 4.0) For a good part do nothing
 4.1) For a bad part fail the inspection and update a
counter

So the algorithm keeps taking shape. The more specific steps we add to it at design time, the less
trouble we are going to have when we actually write the code. We could go a bit further on the
design of the algorithm by adding some more specific steps and rewriting part of it to simplify the
process of writing it. We could even use flags to avoid the execution of unnecessary steps.

 22

1) Wait for trigger and set success flag to true
2) Perform 3 times if success flag is set to true:
 2.0) Attempt to inspect part
 2.1.0) If the part is not present reset the success flag
to false
 2.1.1) If the part is present, inspect and save results
 2.1) Wait for a fixed number of milliseconds
3) Check the success flag and proceed only if it is set to true
 3.0) Access the data saved in memory (3 sets of data)
 3.1) Calculate averages of size and position
 3.2) Compare results with optimal values
 3.3) Determine if this consists of a good part or not
 3.4) For a good part do nothing
 3.5) For a bad part set the success flag to false to fail
the inspection and update a counter
 3.6) Reset the registers used for storage of data to 0
4) If the success flag is set to false indicate failure and
reject part

So we have created an algorithm that we believe will perform the task we need when it is
translated into a DVT script. Users should always attempt to attack the problems in this manner.
Pencil and paper is not an obsolete method when working with algorithm design. It is much easier
to make changes to a “recipe” written in English (or the language of your choice) than to attempt
to change a block of code.

Note: when the script is written, the algorithm steps should be left as comments in the
code to help others understand the process.

Algorithm Components
So far we have discussed how to design the algorithm (or create the recipe) for our script. We
have written something that we can easily understand and edit if necessary. The next step is to
translate that recipe to terms that SmartImage Sensors can understand. First we have to
associate the common components that we used in our algorithm to what the Script language has
to offer. The common algorithm components are: data structures, data manipulation structures,
conditional expressions, user-defined functions, and other control structures.

Data Structures
Data structures are representations of information used by an algorithm. This includes the input
set, the output set, and the internal set which is created by the algorithm to perform the necessary
computations. Data structures can be interpreted as containers where the data values are stored.
These containers are identified by a name and are variable, that is, the value stored in them can
be changed. There are different types of containers for different types of data. We would not want
to use the same type of container to store both the string “This SoftSensor failed” and a certain
distance. We are most likely to set two different types of containers, one with a higher capacity
perhaps named “stringResult” to store the string. The second one would be a smaller container
perhaps named “totalDistance” to store our numerical value. It is important to have a good
naming convention that describes the contents of the container.

Data Manipulation Instructions
Data manipulation instructions help the algorithm perform the following tasks:

Access the input data

Manipulate the data

Save data to memory and read it back from it

Output the results

 23

For all four steps of the process the algorithm must have the functionality to manipulate data as
needed. This is given by the data manipulation instructions. Scripts have many types of data
manipulation instructions, users can select the ones that better fit the application needs.

Conditional Expressions
A very important characteristic of DVT Scripts (and computers in general) is the ability to
determine a course of action based on a particular test. This is called a conditional expression.
Our Script should be able to compare two different containers to check whether the data in those
containers follow a certain rule. Based on the outcome of that comparison, the Script should take
appropriate action. This comparison represented a conditional expression. In the algorithm we
created we have a number of conditional expressions. For example, the way we changed the
course of action based on the value of a flag. Every time we used a conditional expression to
determine the course of action, we set up a decision point in the program execution as shown in
Figure 9.

Figure 9: Basic conditional statement altering the execution of the program.

User-defined Functions
In most cases, you can think of your algorithm as being one large task that can be broken down
into many smaller tasks. Sometimes you may actually have to repeat some of those tasks
multiple times in different areas of your Script. Instead of repeating code in your Script, you can
create a user-defined function to accomplish the task and then simply call it whenever you need
it. Writing Scripts with user-defined functions in mind will result in code that is cleaner, easier to
follow, and more efficient. Figure 10 gives an overview of how you can use user-defined functions
in your Script.

Figure 10: Example of using user-defined functions to simplify execution.

In the above example, Program Block 1 executes a function call to Function 1. In this scenario,
Function 1 could be set up to accept parameters and return information back to the calling
Program Block 1. User-defined functions are discussed in further detail in Chapter 3.

 24

Control Structures
Control structures are a slightly more complicated version of the conditional statements. Using
conditional statements, we checked for a condition once and based on that we executed the
appropriate part of the algorithm. A control structure lets us execute part of the algorithm a
number of times. In the algorithm we developed we said that part of the code needs to be
executed three times. In order to implement that part of the algorithm we need a control structure
checking the number of times that the block is executed. This type of control structure is shown in
Figure 11. In this example we set up a counter to indicate how many times we inspect and we
check the counter every time we execute the code.

Figure 11: Control Structure for repetition.

Observe that every time the inspection is performed, the counter is incremented. When the
counter reaches a value of 3, the test “Is counter < 3?” will evaluate to false and the inspection
will not be performed again.

This set of algorithm components would be necessary to write our algorithm as implemented. The
challenge now becomes the translation of the algorithm written in a language that humans can
read to a language that a machine can read using the control structures mentioned above.

 25

Chapter 2 - Data Types and Manipulation
So far we have discussed what we need to implement an algorithm. Now, we will discuss what is
available from the DVT Script language to implement it. This chapter introduces a number of
basic commands and formats of scripts that allow users to write the algorithm in a way that the
processor aboard the SmartImage Sensor can understand.

 26

Basic Data and Manipulation
The very first set of tools that we need to understand is the types of data we can use in Scripts.
The basic data types allow the user to store, access numbers, letters, and Boolean expressions.
The basic data types are summarized in Table 1.

Basic data types for Scripts

Type Name Description Approximate Range

Integer byte 8-bit unsigned 0 to 255

Integer short 16-bit signed -32E03 to 32E03

Integer int 32-bit signed -2E09 to 2E09

Integer long 64-bit signed -9E18 to 9E18

Floating point float 32-bit signed 1E-45 to 3E38 *

Floating point double 64-bit signed 5E-324 to 2E308 *

Character char 8-bit signed -128 to 127

Boolean boolean 1-bit true - false
Table 1: Basic Data types available for Scripts. Note: the ranges marked with an asterisk (*) indicate that the

range is given in absolute value (it is valid for both positive and negative values).

There are four basic groups of data: integers, floating point numbers, characters, and booleans.

Integers are used to represent quantities with no decimal places. Counters, number of blobs
found, and number of milliseconds to wait, are examples where the use of integers would be
appropriate. The user should also select the type of integer that better suits the application’s
needs and requires less memory. For a simple counter or to represent the number of blobs found,
the byte data type might be appropriate unless the value exceeds 255. To express a number of
milliseconds the user might need to use the short or even int data types depending on the
application because the byte data type would allow for a maximum of 255 milliseconds (about
1/4 of a second). The use of the long data type to represent quantities is very rare. It can go up
to really large values. It can store a number equal to the number of microseconds in 250
thousand years. Remember that there are one million microseconds in one second. A common
use for this data type is bit manipulation of 64-bit words.

Floating point data types are used to store data that requires a number of decimal places of
precision. A distance, a radius, and the constant Pi, are all examples of quantities that would
require the use of floating point data types. In most cases the float data type will be enough
given its range of values.

The char data type is used to store any type of character that can be represented by an integer
between -128 and 127. This data type is used for tasks such as communications where the
algorithm needs to verify that the other device responds with the correct set of characters. For a
table with the standard ASCII characters refer to Appendix A – ASCII Table of Characters Any
character in those lists can be stored in a char variable by assigning the correct decimal value to
it.

Finally, Booleans are used for indicators. The algorithm that we designed before used some
flags. There are two ways to work with flags. Assign the flags to a certain bit so it can take values
of zero or one, or use boolean variables to determine states (true or false). The choice depends
on the user, it is usually easier to work with boolean flags because the user has no direct
access to the bit level of the memory registers.

 27

Now that we know what the basic data types are, we are ready to create some “containers” and
populate them with data. This process consists of two steps: the declaration of the variables and
their initialization. The declaration of a variable consists of the indication of the data type and the
name we assign to it. The user has no need to type the data type, the script editor can set that up
for the user. In order to take advantage of this feature, the user must select declarations (from the
Key Words pane of the editor) and double click on the variable type needed. This will bring the
format of the declaration to the main pane. For instance, if we wanted to declare a variable
(create a container) for a counter that needs to go from zero to 1000, we need to declare a
short data type of variable. By double clicking on the appropriate choice we would get the
following line inserted in the main editing pane of the editor:

short !!variable!!;

Notice that the declaration includes the data type (short) and indicates that we must name the
variable. All we need to do is replace the word variable and the marks around it with the actual
name. We must keep the semicolon at the end. That is a requirement of the syntax. It tells the
compiler that the end of the statement has been reached. Using this procedure we can declare
different variables as follows:

byte counter, blobCount;
int area1, area2, totalArea;
float distance1, distance2;
char terminationCharacter;
boolean success;

Notice how the names describe what the variables are used for. Also notice that the names
contain only letters and numbers, and they do not start with a number. Those are syntax rules to
declare basic data types. Also, notice how by convention we start the names of basic variables
with lowercase letters. Finally, notice that more than one variable can be declared in the same
line as long as it refers to variables of the same data types.

The second step of the process is the initialization of the variable. So far we have created the
container but it is empty. We need to put some data in it. That process is called initialization and
is where the container gets filled. To populate the containers we created with data, we will use a
special operator: the assignment operator (=). This operator takes the value on the right and
assigns it to the variable on the left. To initialize the variables we created before, we will need the
following lines of code:

counter = 0;
blobCount = 0;
area1 = 3528;
area2 = 7582;
totalArea = area1 + area2;
distance1 = 125.365;
distance2 = 2 * distance1;
terminationCharacter = 122;
success = true;

Notice how an expression can be used on the right hand side of the assignment operator. For the
variable that contains the total area, we are simply adding the variables area1 and area2. To
calculate distance2 we simply multiply the variable distance1 by 2 using the multiplication
operator (an asterisk). Finally, the initialization of the char variable included a numerical value. If
we look at a table of ASCII characters, the number 122 corresponds to the letter z. If we wanted
to initialize the character directly to the letter value, we need to include single quotation marks.
The following two lines of code perform the same task:

terminationCharacter = 122;
terminationCharacter = ‘z’;

It is also possible to declare and initialize a variable in the same line as shown below:

 28

//declare and initialize variables in the same line
//of code to minimize the number of statements.
int maxTime = 255;
float dist = 0;

Arrays
Arrays consist of collections of data of the same type. These collections have a fixed number of
cells and the user can reference any cell in particular at anytime. They are used in cases where
we need to cycle through an unknown number of items. Let us say that we need to measure the
area of all the blobs that a blob generator reports. It could be ten blobs in the current image but
only 5 in the next one, and so on. In these cases we set the size of the array at the beginning of
the code and we make it equal to the number of blobs found. This way we change the size of the
array from inspection to inspection to perform the desired task. Sample code for this situation is
provided next. At this time we should assume that we have a variable called numberOfBlobs
that contains the data. Later we will see how to get that number.

int IntMyArray[];
IntMyArray = new int[numberOfBlobs];

Notice the presence of the brackets to indicate that it is an array and not a basic data type. The
declaration includes the key word new to indicate that it is an array. The variable
numberOfBlobs has to be an integer or the declaration will not be valid. This number defines
the number of cells that the array is to have. After the execution of these lines of code, the array
will contain a number of empty cells. The user can refer to those cells by using an index, with the
starting index for arrays being zero (0). For example if numberOfBlobs was equal to 5, the array
would end up having five cells which could be individually addressed as follows:
IntMyArray[0], IntMyArray[1], IntMyArray[2], IntMyArray[3], and
IntMyArray[4]. The initialization of this type of data structure requires more than a single line,
in this case it would require 5 lines of code as follows:

IntMyArray[0] = 25;
IntMyArray[1] = 35;
IntMyArray[2] = 45;
IntMyArray[3] = 55;
IntMyArray[4] = 65;

Usually, this process is done inside a loop. By writing a looping structure we can achieve the
same results without writing many lines of code. Imagine that the array had 250 cells. It would be
very redundant to use 250 statements to initialize it. So the preferred option is to loop. Loops will
be explained later, but the code below illustrates their use without using specific syntax:

Repeat 250 times
{
 myArray[x] = x;
}

This will initialize the value in every cell of the array to the value of the cell index.

Another feature of arrays is the length field. When users need to cycle through the cells of an
array but they are not sure about the size of the array, they can access it with a single call to this
field using the syntax below:

int myArray[] = new int[55]; //declare an array of 55 cells
int arraySize = myArray.length; //get the size of the array
 //into a variable

Note: Arrays could be set up to start at base 1 by including the following line before any arrays
are declared:

ArrayBaseIndexOne = true;

 29

Strings
Strings are sequences of characters. A string can be viewed as a collection of characters that
does not need to have a predefined size. Unlike arrays, which do have a predefined size, strings
require a termination character, which is given by the null character. Strings are a very special
type of data for which the declaration of a String has two minor differences with respect to that
of basic data types. The data type (String) starts with uppercase letters. To initialize the variable
we can simply assign a sequence of characters inside double quotation marks as follows:

String errorMessage;
errorMessage = “Invalid input. Try Again.”;

A major difference between strings and arrays is that arrays start at cell number 1, and strings
start at cell number 0. That is, the first element of an array uses the cell number 1, there is no cell
zero for arrays. Strings start at cell number zero, so a string of 10 characters has cell numbers 0
through 9. FrameWork contains a set of predefined functions which we will discuss next. Strings
are considered objects in Scripts. A simple definition of an object (in the way Scripts use them)
would be a complex data type capable of executing a number of predefined functions. That is,
FrameWork includes a number of complex data types that can be used in the code by
manipulating references to instances of them. The fact that they are complex does not mean that
they require extra work. In fact, it means that their complexity has been already reduced to a set
of functions. Strings are the first object we will discuss. Strings have been already introduced as a
data type. They can store a sequence of characters. Once they are declared we can use the
following functions to manipulate them:

charAt()

compareTo()

indexOf()

String()

toByteArray()

Length()

substring()

toFloat()

toInteger()

DoubleToString()

charAt()

Syntax
MyString.charAt (int n);

Arguments

An integer value specifying the character number in the string

Return values

Returns the ASCII code for the nth character in the String called MyString.

Example
String MyString;
MyString = "Inspection Failed";
char thirdChar;
thirdChar = MyString.charAt(3);

Notes

Strings are indexed starting at zero, so the char variable should contain a 112 after the
execution of the code above. The number 112 is the decimal ASCII representation of the
letter “p”. Refer to Appendix A – ASCII Table of Characters, for a list of codes.

 30

compareTo()

Syntax
Stringname.compareTo (String AnotherString);

Arguments

A second string to be compared with the original one

Return values

Integer value Result. Result = 0 if Stringname is the same as AnotherString. If
Stringname is greater than Anotherstring (using ASCII values for the comparison) the
result value is positive. If AnotherString is greater than Stringname, the result value is
negative.

Example
String String1, String2;
int result;
String1 = "Code1";
String2 = "Code2";
result = String1.compareTo(String2);//result in this case
//is negative because “Code2” is greater than “Code1”

indexOf()

Syntax
Stringname.indexOf (String Searchstring);

Arguments

A second string containing a sequence of characters to be located in the original one

Return values

Integer value Position. It represents the position of the first character of the first
occurrence of the string Searchstring in stringname. The value is -1 if the string is not
found.

Example:
String MyString;
MyString = "string test";
result = MyString.indexOf("ing");//result should contain
//a 3 after executing this code

Notes

Strings are indexed starting at zero.

length()

Syntax
Stringname.length();

Return values

Integer value length. It represents the number of characters in the string Stringname

Example:
String MyString;

 31

int result;
MyString = "number of characters";
result = MyString.length();//result should contain a 20

Notes

Even though there are 20 characters in the string, remember that they are indexed from 0
to 19.

substring()

Syntax
Stringname.substring (int beginIndex, int endIndex);

Arguments

Integer values indicating the index of the first and last characters to be extracted

Return values

String containing the characters from beginIndex to endIndex positions of the original
string.

Example
String Mystring, SubString;
int startIndex, endIndex;
MyString = "number of characters";
startIndex = 4;
endIndex = 12;
SubString = MyString.substring(startIndex,endIndex);
//the string Substring should contain the string “er of cha”
//after execution

Notes

Strings are indexed starting at zero.

toFloat()

Syntax
Stringname.toFloat()

Return values:

String Stringname as double (float) data type. The value is 0.0 if the string cannot be
converted.

Example
double dist;
String Data;
Data = "0.5";
dist = Data.toFloat();

Notes

The toFloat() command can convert a String to a floating point data type. This is useful
when a floating point value is transferred as a String and needs to be converted back
to floating point value.

 32

toInteger()

Syntax
Stringname.toInteger()

Return values

The string Stringname as int (integer) data type. The value is 0 if the string cannot be
converted.

Example
int msec;
String MilliSecs;
MilliSecs = "18356";
msec = MilliSecs.toInteger();

Notes

The toInteger() command can convert a String to an int data type. This is useful when
an integer value is transferred as a String and needs to be converted back to integer.

String()

 Syntax
String(byte[] b);

Arguments

A byte array

Return values

A string with characters that correspond to the ASCII codes in the bytes of the original
array.

Example:
byte b[] = new byte[3];//declare an array of bytes
String DVTStr;
b[0] = 68; // ASCII code for 'D'
b[0] = 86; // ASCII code for 'V'
b[0] = 84; // ASCII code for 'T'
DVTStr = String(b); // DVTStr now contains "DVT"

toByteArray()

Syntax
MyString.toByteArray();

This virtual method converts a string into a byte array.

Return values

An array of byte variables containing the ASCII values of the characters in the string.

Example:
byte buff[] = new byte[3];
String LogoString = "DVT";
buff = LogoString.toByteArray(); // now buff[0]=68, buff[1]=86,
//and buff[2]=84

 33

DoubleToString()

Syntax
DoubleToString(double val, int num_places);

Arguments

Double value to be converted to String and Integer value indicating the number of decimal places
to be used for the conversion.

Return values

String containing the digits that represent the double value.

Example:
double piSq;
String myStr="";
piSq = 3.141592654 * 3.141592654;//evaluates to
//9.869604403666763716
myStr = DoubleToString(piSq,5);//myStr now contains 9.86960

Special Characters

\'

Syntax
Stringname = "stringchars\'morechars";
Stringname = "stringchars" + "\'" + "morechars";

Return values

A string with the ’ character included (in this case: stringchars'morechars)

 \b

Syntax
Stringname = "stringchars\bmorechars";
Stringname = "stringchars" +"\b"+ "morechars";

Return values

String with a backspace character included

Notes

When shown on the Result Table, the \b is printed as a square symbol.

\"

Syntax
Stringname = "stringchars\"morechars";
Stringname = "stringchars" + "\"" + "morechars";

Return values

A string with " character included (in this case: stringchars"morechars)

 \\

Syntax
Stringname = "stringchars\\morechars";
Stringname = "stringchars"+"\\"+morechars";

 34

Return values

A string with a backslash character included

 \n

Syntax
Stringname = "stringchars\nmorechars";
Stringname = "stringchars" + "\n" + "morechars";

Return values

A string with new line character included

Notes

When shown on the Result Table, the \n is printed as a square symbol.

\r

Syntax
Stringname = "stringchars\rmorechars";
Stringname = "stringchars" + "\r" + "morechars";

Return values

A string with a return character included

Notes

When shown on the Result Table, the \r is printed as a square symbol.

\t

Syntax
Stringname = "stringchars\tmorechars";
Stringname = "stringchars" + "\t" + "morechars";

Return values

A string with the tab character included

Notes

When shown on the Result Table, the \t is printed as a square symbol.

\x

The characters \x can be used in a string to insert control characters according to their
hexadecimal ASCII number. The \x is typically used for less common control characters.
For the more common control characters like Carriage Return (\xOD) or Line Feed (\x0A)
the specially control characters \r and \n can be used.

Syntax
Stringname = "stringchars\xODmorechars";

Notes

The value 0D added to the string is the hexadecimal value of the character in ASCII
standards.

 35

Chapter 3 - Basic Script Syntax
Now that the different data types have been explained, it is time to discuss some basic syntax
about DVT scripts that will let us move on to more advanced topics.

Comments
It is good programming practice to include explanations in our code that describe the purpose of
the program itself and of every block of code (if not every statement). These are comments; the
more comments a certain script has, the more readable and easier to troubleshoot it becomes.
Since we are writing code, we must include comments in a way that the SmartImage Sensor does
not attempt to execute them. They have to be part of the code, but isolated from it because it is
intended to be read by the author or by another person. DVT Scripts offer two different types of
comments: single line comments and blocks of comments. Single line comments are used for
short explanations (less than one line) about a minor step in the code that might not be easy to
visualize. To create single line comments the user needs to start them with a sequence of two
forward slash characters (//). The code illustrates the use of single line comments:

float distance1;//used to store distance from A to B
float distance2;//used to store distance from B to C
float totalDistance;//will hold the total distance from A to C
distance1 = 3215.56;//just a value for this example
distance2 = 2563.58;//just a value for this example
//now the total distance from A to C will be computed
totalDistance = distance1 + distance2;

This brief piece of code illustrates the use of comments. When the SmartImage Sensor attempts
to run the Script, it will omit the words that come after the double forward slash. The user must
keep in mind that these are single line comments. If the comment is too long and jumps onto the
next line it will cause an error unless that line is started with the sequence of two forward slash
characters, too.

Multi line comments are used to include a number of lines of explanations about a certain part of
the script or the entire script. Multi line comments start with the sequence of a forward slash
character followed by an asterisk (/*), and end with the opposite sequence (*/). The code below
is another way to comment the previous block of code using multi line comments:

/*the following variables will be used to extract the distances
from A to B and from C to D and to compute the total distance
from A to C*/
float distance1;
float distance2;
float totalDistance;
distance1 = 3215.56;
distance2 = 2563.58;
totalDistance = distance1 + distance2;

Notice that the comments jump to the next line, but since it was declared as a multi line comment,
it will be accepted by the compiler.

Key Words and Reserved Words
Just like in any programming language, there is a set of words that cannot be used for variable
names. FrameWork includes a new feature to easily tell when we are using a reserved word or a
key word. When we use those, they will be automatically highlighted in different colors. This is
intended to simplify the interpretation of the code by the user and to avoid using reserved word as
variable names. If your script editor does not highlight the keywords in colors, you should verify

 36

that you have a copy of the file “DVTScript.ini” in your FrameWork directory. Table 2 includes a
list of words that are not used in the code but are still not supported by the compiler.

package transient default

import volatile finally

public class continue

protected extends break

private implements try

static throws throw

abstract super catch

final interface

native switch

synchronized case

Table 2: List of reserved words that are not currently used in DVT Scripts.

Even though these words are not currently used in Scripts, they are highlighted as reserved by
the compiler.

Conditional Expressions and Control Structures
Now that we have discussed the basics of data types and syntax, we can explain the different
ways that we have to change the course of a program.

If Statements
The if and if/else statements are a major component of the language. In general, users
employ scripts to perform a task that is not performed anywhere else in the software. A common
situation arises when the application requires that a decision be made based on the numerical
output of many SoftSensors. In those cases, we need tools that can read those numerical outputs
and analyze them. Those tools are Scripts, and in those cases is where the if and if/else
statements become very useful. This type of statement is used to take alternate roads in the
code. Figure 12 shows a graphical interpretation of how the program changes direction based on
the condition we specify.

Figure 12: Graphical interpretation of the if and if/else statements.

 37

The syntax for the basic if statement is shown below:

if (condition)
 statement;

Notice how the line containing the if statement does not have a semicolon at the end, only the
actual statement to be executed has it. The code shown here indicates that if the condition
evaluates to true, the statement will be executed, otherwise, it will be skipped. This syntax is
good for single statements like in this case, but if the condition required more than one statement
to be executed, we would need the following syntax:

if (condition)
{
 statement1;
 statement2;
 statement3;
}

In this case three statements are executed if the condition evaluates to true. Another option for
if statements is the case where a different set of statements has to be executed if the condition
evaluates to false. These situations use the else statement as follows:

if (condition)
{
 statement1;
 statement2;
 statement3;
}
else
{
 statement4;
 statement5;
 statement6;
}

In this case, the upper three statements are executed if and only if the condition evaluates to true,
otherwise, the last three statements are executed. Finally, and to increment the flexibility of this
function even more, we can nest and concatenate these statements. We could evaluate a
number of conditions and based on them execute different sets of statements. The code below
illustrates this:

if (condition1)
{
 if (condition2)
 {
 statement1; //condition1 = true and condition2 = true
 }
 else
 {
 statement2; //condition1 = true and
 //condition2 = false
 }
}
else if (condition3)
{
 if (condition4)
 {
 statement3; //condition1 = false, condition3 = true

 38

 //and condition 4 = true
 }
 else
 {
 statement4; //condition1 = false, condition3 = true
 //and condition 4 = false
 }

}
else
{
 if (condition5)
 {
 statement5; //condition1 = false, condition3 = false
 //condition5 = true
 }
 else
 {
 statement6; //condition1 = false, condition3 = false
 //condition5 = false
 }
}

In this case we have five different conditions to be tested and 6 different statements to be
executed. This code should illustrate how to make good use of comments and indentation. Every
statement to be executed is followed by a comment explaining why it is executed. Also, the curly
brackets that separate blocks of statements are indented to make the code easier to read. As a
programming practice, the reader should trace the code and read the comments to fully
understand the program.

Loops
The next control structure consists of the repetition of a set of statements in a Script. In many
cases some statements need to be executed a number of times. Looping structures are designed
for that purpose. There are three different looping structures: the while loop, the do/while
loop, and the for loop. The difference between the different types of loop is given by how the
condition for repetition is evaluated and by how many times they execute. The main
characteristics are summarized here:

for loops are used when the number of repetitions is known. When the user knows exactly the
number of repetitions to perform beforehand, a for loop should be used. This type of loop
requires the use of a counter that gets updated after every iteration.

while loops are used when the exact number of times that the statements are evaluated varies.
In those cases a condition is set and the loop checks that condition before every iteration. In
this case, if the condition is false, the statements are not executed even once

do/while loops are very similar to while loops except that in this case the condition is
evaluated after every iteration, so if the condition is false, the statements still get evaluated
once.

Figure 13 shows a graphical representation of all three types of loop.

 39

Figure 13: Representation of the functionality of the different types of loop.

The syntax for the while loop is shown below. It requires a condition and curly brackets to
enclose the statements that need to be executed on every iteration.

while(condition)
{
 statement1;
 statement2;
}

In this case the code checks the condition, if it is true it executes the statements and it keeps
doing that until the condition becomes false.

The syntax for the do/while loop is very similar, it is shown below:

do
{
 statement1;
 statement2;
}
while(condition);

Notice that this type of loop requires a semicolon after the while(condition) statement to
indicate that there is no more code that belongs to that block.

The syntax for the for loop is slightly different, it requires a counter that will keep rack of the
number of iterations. Three different ways to use the for loop are shown below:

//this method declares and initializes the variable
//inside the for statement
for(int count=0; count <= 5; count = count+1)
{
 statement1;
 statement2;
}

//this method declares and initializes the variable

 40

//outside the for statement
int count2 = 0;
for(; count2 <= 5; count2 = count2+1)
{
 statement1;
 statement2;
}

//this method declares the variable outside the for statement and
//initializes it inside the for statement
int count3;
for(count3 = 0 ; count3 <= 5; count3 = count3+1)
{
 statement1;
 statement2;
}

In all cases the variable is automatically updated, there is no need to update the counter. When
the for statement is used, the user specifies by how much to increment the counter after every
iteration.

User-defined Functions
In the early stage of the process of making DVT Scripts fully Java compatible, users can already
benefit by being able to create their own functions. This functionality was appropriate for the type
of functions script performed, but as the power of scripts increased, a more effective way to write
code was needed. A script today could potentially perform many complex tasks, and since all
those tasks had to be included in a single block of code, scripts became more difficult to write and
even more difficult to troubleshoot. By creating functions, users can make the code more
modular, and even reusable.

A function is basically a set of statements designed for a certain purpose that could take in certain
parameters and return other parameters. One can think of functions as workers where the script
is the manager. The script does not have to perform specific tasks as long as there is a worker
available to do it. Following this reasoning, the script would become simply a sequence of
function calls. A simple example of a function would be a function that finds the highest value in a
collection of data. That function needs to take in the collection of data (which could be a set of
numbers) and return the highest number, so whenever the maximum of a group of numbers is
needed, users could use the function. In this case the script that calls the function needs to
provide it with the data to process and accept the value that the function returns. This is only valid
within the script in which the function was created in (however, duplicates of the function can exist
in other classes). If a problem arises with the script, every function can be individually tested
which simplifies the process. It is significantly easier to find coding errors where few operations
are performed than to find them in a very long sequence of statements.

In order to create user functions users need to follow some basic rules:

• Ensure that a function is called only after it was defined
• Follow standard syntax for the creation of the function
• Indicate the arguments they take in (the values it expects to see when it is called), if any
• Indicate the return type, which determines the type of variable to be returned by the

function

Let us use an example to illustrate this, let us create an empty foreground script called “myScript”
and create a function in it to find what the maximum of three numbers is; these numbers are the
numbers of blobs found by three different Blob Selectors. Initially, the code looks like this:

 41

Next, we need a few variables to contain the actual number of blobs, so the next step would leave
our script looking like this:

Now we need to start defining the function, so we are going to follow the steps mentioned before.
The function needs to be declared before it is called, so our function will certainly be included
above the inspect function. As of syntax, we have to mimic what the inspect function does and
add the keyword “static” to it. We have to use the keyword “public” then the keyword “static” then
the data type that is returned (void means nothing is returned) and then the name of the function.
The last thing to consider is the list of arguments, the values that the function will take in. In our
example, the function will take in 3 integer variables and return 1 integer value, so the script with
the function added looks like this:

As the figure shows, the variables that the function takes in have arbitrary names. In fact, we can
use any name for these parameters for their scope is limited to the scope of the function. That is,
integer variables a, b, c, or any variable defined inside the function will not be available from
anywhere else in the script but our function. This is a very important concept and users should
always keep it in mind when writing scripts. All the variables must be defined inside functions, and
that limits their scope. It was illegal in the past to have different variables with the same name.
With the current implementation it is legal to do it, but it is never a good idea for it makes the code
harder to read. Now our script is missing a few things: the computation for the maximum value,
and the function call. After we add these items, the script looks like this:

 42

The question is, if max is not seen by the function inspect, how can we read its value? The
answer is by using the return statement. When our function computes the maximum it returns the
value and exits, this value can be read by the function that calls it by using as assignment
operator like the figure shows.

More functions could be added as needed, and user functions can even call other user functions
as long as they follow rule number 1 above: a function can only be called after it is defined. For
example if we were to add a function that calls the getMaximum function and it is called by the
inspect function, it would have to be defined after getMaximum but before the inspect function.
The same happens with background scripts, except that for background scripts there is no
inspect function but a main function instead.

Comparison operators
Until now, we have discussed a number of ways to check conditions. We have seen how to
change the execution of the code based on certain conditions. Now we will see how to check
those conditions. Every time we check a condition, we are evaluating something to see if it is
true or false, so one way of checking conditions is to use a boolean variable. These
variables, as explained before, can have only two values: true and false. Another way to do
that is to use logical operators. Logical operators are used to compare values and produce a
boolean result from the comparison. The most common operators are:

The equal operator (==)
Used for comparisons of basic data types

Syntax
argument1 == argument2;

Arguments

This operator accepts any basic data type as an argument. It can also be used to verify if
an object is null by comparing the object with null.

Return values

Returns the boolean value of true if the arguments are equal, returns false otherwise

Example:

 43

if (x==1)
{
 statement1;//statement performed if x is equal to 1
}

Notes

Do not attempt to use this operator to compare strings. Use the string function
“compareTo().”

The less-than-or-equal-to operator (<=)
Used for comparisons of basic data types

Syntax
argument1 <= argument2;

Arguments

This operator accepts any basic data type as an argument.

Return values

Returns the boolean value of true if argument1 is less than or equal to argument 2,
returns false otherwise

Example:
if(x<=1)
{
 statement1;//statement performed if x is less or equal to 1
}

The less-than operator(<)
Used for comparisons of basic data types

Syntax
argument1 < argument2;

Arguments

This operator accepts any basic data type as an argument.

Return values

Returns the boolean value of true if argument1 is less than argument2, returns false
otherwise

Example
if(x<1)
{
 statement1;//statement performed if x is less than 1
}

The greater-than operator(>)
Used for comparisons of basic data types

Syntax
argument1 > argument2;

 44

Arguments

This operator accepts any basic data type as an argument.

Return values

Returns the boolean value of true if argument1 is greater than argument2, returns false
otherwise

Example
if(x>1)
{
 statement1;//statement performed if x is greater than 1
}

The greater-than-or-equal-to operator (>=)
Used for comparisons of basic data types

Syntax
argument1 >= argument2;

Arguments

This operator accepts any basic data type as an argument.

Return values

Returns the boolean value of true if argument1 is greater than or equal to argument2,
returns false otherwise

Example
if(x>=1)
{
 statement1;//statement performed if x is greater or
 //equal to 1
}

The not operator (!)

Syntax
!argument1;

Arguments

A boolean data type or an expression that evaluates to a boolean value (true or false)

Return values

Returns the boolean value of true if argument1 is false, returns true otherwise

Examples
//using a boolean variable
if (!badresult)
{
 statement1; //performed if the variable badresult is false
}

//using an expression
if(!(x>=1))
{

 45

 statement1; //statement executed if x is not greater
 //than or equal to 1
}

The not-equal operator (!=)
Used for comparisons of basic data types

Syntax
argument1 != argument2;

Arguments

This operator accepts any basic data type as an argument. It can also be used to verify if
an object is null by comparing the object with null.

Return values

Returns the boolean value of true if the arguments are not equal, returns false otherwise

Examples
if (x!=1)
{
 statement1; //statement performed if x = something
 //other than 1
}

The or operator (||)
Used to concatenate conditional operations

Syntax
(boolean argument1) || (boolean argument2);

Arguments

Two boolean data types or expressions that evaluate to boolean values (true or false)

Return values

Returns the boolean value of true if either argument1, argument2, or both are true,
returns false otherwise

Example:
if ((x==1) || (y==2))
{
 statement1;//performed if either x equals 1 or y equals 2
}

The and operator (&&)
Used to concatenate conditional operations

Syntax
(boolean argument1) && (boolean argument2);

Arguments

Two boolean data types or expressions that evaluate to boolean values (true or false)

Return values

 46

Returns the boolean value of true if both arguments are true, returns false otherwise

Example:
if ((x==1) && (y==2))
{
 statement1;//performed if x equals 1 and y equals 2
}

Bit Manipulation
In many cases it is necessary to perform operations that access or modify single bits. So far, we
have not seen any operator capable of doing that. This section discusses why we need those
operators and describes the use of them.

Bits and Bytes
We have mentioned so far that the size of DVT registers is 8-bits. That means that we have eight
individual binary digits in every register. Those binary digits can take only the values of 0 and 1;
FrameWork provides some bit operators to access those digits individually. A byte is a group of 8
bits, so one DVT register is the same as one byte. That is why the byte data type in scripts takes
only one register; it is represented by eight bits. The int data type for example, has been defined
as a 32-bit integer value. For that reason, it has been said that int variables take four DVT
registers when saved to memory. One example of the use of bit manipulators is the use of Inputs
and Outputs. DVT SmartImage Sensors have a total of 32 inputs and 64 outputs. In order
access/change a single output, we need to get a 64-bit word and use it with the appropriate
mask. The example below illustrates this process with a 16-bit word. We have a set of 16 values
mapped into a 16-bit word. Every bit in this word represents a data point (for example an output
line). Our task is to set bit 11 to 0. The process is very simple and it is shown in Table 3. First, a
variable is created with the same number of bits as our data (16 bits). This variable could be a
short data type. The variable is initialized to 1 to have a nonzero bit. It is the shifted to the left,
so the nonzero bit is bit number 11. It is then inverted and anded with the original variable.

bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

Original Data: 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0

STEP 1

16-bit Variable: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

STEP 2

Shift the Variable 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

STEP 3

Invert Variable 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

STEP 4

Inverted Variable 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

Original Data: 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0

Apply bitwise
AND 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0

Table 3: Use of the bit manipulation operators.

This process uses three bit manipulation operators: shift, inversion and the AND operator. All the
operators available form FrameWork are explained next.

 47

The bitwise OR operator
The “|” is the bit “OR” operator, it reads the data in a bit from two variables and if either one is set
to 1 (or both are set to 1), it returns a 1, otherwise it returns a zero.

Syntax
variable1 | variable2;

Arguments

Two integer data types with the same number of bits

Return values

Returns a variable of the same size as the argument with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below.

argument1 argument2 result

0 0 0

0 1 1

1 0 1

1 1 1

Example:
byte i, j, mask;
i= 8; //bit values of 00001000
mask = 4; //bit values of 00000100
j = i|mask; //sets the third bit from the right: 00001100 =
decimal 12

The bitwise AND operator
The “&” is the bit “AND” operator, it reads the data in a bit from two variables and if both are set to
1, it returns a 1, otherwise it returns a zero.

Syntax
variable1 & variable2;

Arguments

Two integer data types with the same number of bits

Return values

Returns a variable of the same size as the argument with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below

argument1 argument2 result

0 0 0

0 1 0

1 0 0

1 1 1

Example:

 48

byte data, dataMask;
dataMask = 4; //bit values of 00000100
if ((data & dataMask) != 0){
 //this statement will be executed if the third bit from the
 //right in variable data is a 1.
}

The bitwise XOR operator
The “^” is the bit “XOR” operator, it reads the data in a bit from two variables; if exactly one of
them is set to 1, it returns a 1, otherwise it returns a zero.

Syntax
variable1 ^ variable2;

Arguments

Two integer data types with the same number of bits

Return values

Returns a variable of the same size as the argument with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below:

argument1 argument2 result

0 0 0

0 1 1

1 0 1

1 1 0

Example:
byte i, j, mask;
i=20; //00010100
mask = 12; //00001100
j = i^mask; //j is 00011000 or 24

The bitwise NOT operator
The “~” is the bit “NOT” operator, it reads the data in a bit from a variable and inverts the state of
every bit

Syntax
~variable1;

Arguments

An integer data type

Return values

Returns a variable of the same size as the argument with bit values inverted according to
the truth table below

Argument result

0 1

 49

1 0

Example:
byte data1;
data1 = 20; //binary value of: 00010100
data1 = ~data1; //data1 is now: 11101011

The Signed Left Shift operator
The “<<” is the bit “Left Shift” operator, it takes two arguments and shifts the bits in the first
argument to the left a number of places specified by the second argument.

Syntax
var1 = var1<<3;

Arguments

An integer data type and an integer value

Return values

A variable of the same size as the argument with the bits shifted to the left a number of
places equal to the value of the integer argument

Example:
byte data1;
data1 = 10; //binary value of: 00001010
data1 = data1<<3;//data1 is now: 01010000 (decimal 80)

Notes:

When a binary value is shifted to the left one place its value is duplicated, so in this case
we started with a 10 and shifted left three times to get first a 20, then a 40 and finally an
80. Note that new positions are filled with zeros (0), as demonstrated in the above
example.

The Signed Right Shift operator
The “>>” is the bit “Right Shift” operator, it takes two arguments and shifts the bits in the first
arguments to the right a number of places specified by the second argument.

Syntax
var1 = var1>>3;

Arguments

An integer data type and an integer value

Return values

A variable of the same size as the argument with the bits shifted to the right a number of
places equal to the value of the integer argument

Example:
byte data1;
data1 = 80; //binary value of: 01010000
data1 = data1>>3;//data1 is now: 00001010 (decimal 10)

Notes

 50

When a binary value is shifted to the right one place its value is halved, so in this case we
started with an 80 and shifted right three times to get first a 40, then a 20 and finally a 10.
Note that when bit shifting a negative number with the signed right shift operator, the
leading bit position is always filled with a one (1), otherwise it’s filled with a zero.

The Unsigned Right Shift operator
The “>>>” is the bit “Right Shift” operator, it takes two arguments and shifts the bits in the first
arguments to the right a number of places specified by the second argument.

Syntax
var1 = var1>>>3;

Arguments

An integer data type and an integer value

Return values

A variable of the same size as the argument with the bits shifted to the right a number of
places equal to the value of the integer argument

Example:
byte data1;
data1 = 80; //binary value of: 01010000
data1 = data1>>>3;//data1 is now: 00001010 (decimal 10)

Notes

When a binary value is shifted to the right one place its value is halved, so in this case we
started with an 80 and shifted right three times to get first a 40, then a 20 and finally a 10.
Note that with the unsigned right shift operator, the leading bit position is always filled
with a zero (0). This means an unsigned right shift operation always results in a positive
number.

Miscellaneous Functions

The clock() function
The clock() function returns the number of milliseconds since the last SmartImage Sensor
power-up as an integer value.

Syntax
clock();

Arguments

None

Return values

The number of milliseconds since power-up as an integer value

Example:
int totalTime;
totalTime = clock();
 //execute a number of statements here
totalTime = clock() - totalTime;//total time will indicate
 //the duration in milliseconds of the
 // execution of the statements

 51

Notes

Do not capitalize ‘clock’ or the script will return a syntax error.

The sleep() function
The sleep() function takes in an argument (integer data type) and pauses the execution of the
code for the number of milliseconds specified as the argument.

Syntax
sleep(int totalPause);

Arguments

An integer value

Return values

None

Example:
byte flags;
while(true)
{
 flags = RegisterReadByte(100);
 if((flags & 00001000) == 0)
 {
 //execute some commands
 }
 sleep(250);//pause execution for 250 msec
}
This example shows a loop that reads a value from a register and tests it to determine if
certain some operations need to be executed. The loop executes every 250 milliseconds
to avoid overloading the processor. The sleep() command is used to set this interval.

Note

If the argument is negative, the function uses a zero instead of giving an error.

The DebugPrint() function
This function prints a string to the Script Debug Window located in the main Edit Menu of
FrameWork. This function is very valuable for troubleshooting your scripts.

Syntax
DebugPrint(String str);

Arguments

String to display in the Script Debug Window

Return values

None.

Example
if(data1 < data2)
{
 //execute statements
 dataDiff = data2-data1;
 DebugPrint("data1 was less that data2 by: "+dataDiff);

 52

}
else
{
 //execute statements
 dataDiff = data1-data2;
 DebugPrint("data2 was less that data1 by: "+dataDiff);
}

Notes

In this case a condition is being checked. The DebugPrint() statement is used to show
the relevant data in both cases.

Every time a DebugPrint statement is executed, a new line appears in the Script Debug
Window (Available from the main Edit menu). This line contains the following parts:

A prompt indicating new line($)

A time stamp in milliseconds that gets reset to zero on power-up

An integer value containing the SoftSensor ID of the Foreground Script that executed the
DebugPrint statement if it is from a Foreground Script. In case the statement comes
from a Background Script it contains the Background Script ID

An integer value indicating if the string comes from a Background Script (value = 2) or a
Foreground Script (value = 0).

The string containing the message

Sample display for a string coming from a Foreground Script with sensor ID 4:

$ 3214562 4 0 Here is the String

SetMatchString()
This function is exclusive of Background Scripts and is the only function in a Background Script
that can access and modify a SoftSensor. It is used to change the match string for a reader
SoftSensor (OCR, DataMatrix, or Barcode).

Syntax
SetMatchString(Product P, String SensorName, String NewString);

Arguments

Product P: A product object containing the product where the SoftSensor to be changed
is located

String SensorName: A string containing the name of the SoftSensor to be accessed and
modified.

String NewString: A string that is to be set as the match string in the specified
SoftSensor.

Return values

Int result: result = 1 for a successful operation. Result = -1 for errors (ex. Sensor not
found, called from a foreground script, etc.)

Example
//change the match string in sensor CodeReader
//of the product Labels to “AC765”
Product P;
P = GetProduct(“Labels”);
SetMatchString(P , “CodeReader”, “AC765”);

 53

Note

This is the only command in a background script that allows the user to access a
SoftSensor. Users should remember that SoftSensor access is given to Foreground
Scripts only.

GetImageID()
This function is exclusive of Foreground Scripts. It is used to obtain the image ID of the image
being inspected by the product containing the script.

Syntax
int imgID = GetImageID ();

Arguments

NONE

Return values

Int imgID: integer number containing the image ID

Example
//add the image ID to the script string
//to send out via DataLink
int imgID = GetImageID();
myScript.String = “Current Image ID = ” + imgID;

 54

 55

Chapter 4 – Accessing SoftSensor data
This chapter describes how to get data from SoftSensors. In many cases, users need to extract
information from the SoftSensors to perform calculations based on those or to send out to an
external device. Foreground Scripts (also called Script SoftSensors) can be used to extract the
necessary data by using a combination of commands and syntax. As explained before, this type
of Script reside at the product level thus gaining access to all the SoftSensors (even to other
foreground scripts) in the product. Both the commands needed and the syntax used are
explained in this chapter.

 56

Syntax for Basic SoftSensor Data Extraction
In order to gain access to SoftSensor data from scripts, users simply need to create a variable
and assign the desired data from the desired SoftSensor to it. To reference the individual
SoftSensor parameters, the user needs to use the following syntax:

<SoftSensor name>.<SoftSensor parameter>
Let us start with a basic example. We have a particular SoftSensor from which we need to extract
the X and Y position. That is, the SoftSensor is likely to be detecting the presence of a certain
part. We need those coordinates to perform a certain calculation. The SoftSensor name is
locator; the simple syntax needed to perform this task is shown below:

int posX, posY;
posX = locator.Position.X;
posY = locator.Position.Y;

This simple procedure transfers the X and Y coordinates of the position determined by the
SoftSensor to the integer variables posX, and posY. This is a very basic example, what if we
wanted to make sure that the locator passed the inspection? In many cases, the SoftSensor
looking for a certain position can be set to pass or fail when the object has changed the location
too much or is not present at all. The new Script would look like this:

int posX, posY;
if(locator.Result == PASS)
{
 posX = locator.Position.X;
 posY = locator.Position.Y;
}

In this case, we are declaring the variables but only accessing the data from the other SoftSensor
if that SoftSensor passed the inspection, otherwise we do not execute any commands. Notice the
use of all uppercase letters in the keyword PASS. This is required for the compiler to correctly
interpret the commands. Another way to refer to the result is the numerical value. The inspection
result from a SoftSensor is assigned a numerical value. The value zero means that the
SoftSensor passed the inspection. A negative value indicates that the inspection result for that
SoftSensor was FAIL, whereas a positive value for the SoftSensor result indicates a result of
WARN. The absolute value of these numerical values indicates the cause for failure (or warning)
which is displayed in the result table. It is recommended to use the strings PASS, WARN, and FAIL
to make the scripts more readable and simplify troubleshooting.

Our example above referred to a translation SoftSensor, but different types of SoftSensor can
provide different sets of data, for instance, an OCR reader can provide a string as the output for a
particular image, a measurement SoftSensor can provide a distance, and so on. The next section
describes the type of parameters available form the different SoftSensors. Readers should be
familiar with the types of SoftSensor to better understand the parameters explained here.

Translation SoftSensor Parameters
Translation SoftSensors offer the following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

Position.X: absolute x-coordinate of the point passed as a position reference by this SoftSensor.

Position.Y: absolute y-coordinate of the point passed as a position reference by this SoftSensor.

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

 57

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

TransformedPoint.X: transformed absolute x-coordinate of the point passed as a position
reference by this SoftSensor. Requires the use of a coordinate system SoftSensor.

TransformedPoint.Y: transformed absolute y-coordinate of the point passed as a position
reference by this SoftSensor. Requires the use of a coordinate system SoftSensor.

Rotation SoftSensor Parameters
Rotation SoftSensors offer the following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

Position.X: for the rotational arc, this represents the absolute X-coordinate of the center of the
arc, for the rotational parallelogram this represents the absolute X-coordinate of the point
passed as a position reference by this SoftSensor.

Position.Y: for the rotational arc, this represents the absolute Y-coordinate of the center of the
arc, for the rotational parallelogram this represents the absolute Y-coordinate of the point
passed as a position reference by this SoftSensor.

Point.X: for the arc tool it represents the absolute x-coordinate of the point of intersection of the
arc and the desired feature. For the parallelogram tool it has the same value as the
Position.X field.

Point.Y: for the arc tool it represents the absolute y-coordinate of the point of intersection of the
arc and the desired feature. For the parallelogram tool it has the same value as the
Position.Y field.

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

TransformedPoint.X: transformed absolute x-coordinate of the point passed as a position
reference by this SoftSensor. Requires the use of a coordinate system SoftSensor.

TransformedPoint.Y: transformed absolute y-coordinate of the point passed as a position
reference by this SoftSensor. Requires the use of a coordinate system SoftSensor.

Angle: the angle calculated by the SoftSensor. Absolute angles are reported as negative if they
are measured counterclockwise, and as positive if they are measured clockwise follows:

0 to +90 degrees: quadrant 4

90 to 180 degrees: quadrant 3

0 to -90 degrees: quadrant 1

-90 to -180 degrees: quadrant 2

The figure below illustrates the value of the angles relative to quadrants and the positive X-axis

 58

Intensity SoftSensor Parameters
Intensity SoftSensors offer the following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

MeanIntensity: average intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

MedianIntensity: median intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

Percent: percent of the pixels in the SoftSensor that are below threshold (dark pixels) scaled by
100 (which gives it a range from 0 to 10000). For example, if the SoftSensor reports 97.15%
bright area, it contains 2.85% dark area, so this field would return 285.

IVal: array of 255 cells containing integer values that represent the number of pixels in the
SoftSensor at every intensity level. Intensity levels range from 0 to 255, this array has cells 1
through 256 to represent every intensity level.

TotalPixelCount: the total number of pixels in the SoftSensor.

EdgeCount SoftSensors
EdgeCount SoftSensors expose the following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

 59

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

NumEdges: the number of edges found in the image according to user specifications.

FeatureCount SoftSensors
FeatureCount SoftSensors expose the following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

NumFeatures: the number of features found in the image according to user specifications.

Measurement SoftSensors
Measurement SoftSensors offer access to many parameters, some of them unique to the type of
Measurement SoftSensor being used. The common parameters to all the measurement
SoftSensors are:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels from 0
to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

The rest of the parameters are unique to every SoftSensor. Even though in many cases the
parameters share the name, the functionality is not the same. The parameters for every type of
Measurement SoftSensor are:

For the basic Line SoftSensor:

Position.X: absolute x-coordinate of the location of the edge found. Used for positioning.

Position.Y: absolute y-coordinate of the location of the edge found. Used for positioning.

Point.X: absolute x-coordinate of the location of the edge found. In this case the value is
reported as a floating point number with sub pixel accuracy if a gradient based threshold
is used.

 60

Point.Y: absolute y-coordinate of the location of the edge found. In this case the value is
reported as a floating point number with sub pixel accuracy if a gradient based threshold
is used.

For the Measure Across Line SoftSensors:

Position.X: absolute x-coordinate of the location of the center of the feature found. Used for
positioning.

Position.Y: absolute y-coordinate of the location of the center of the feature found. Used for
positioning.

Point.X: absolute x-coordinate of the location of the center of the feature found. In this case
the value is reported as a floating point number with sub pixel accuracy if a gradient
based threshold is used.

Point.Y: absolute y-coordinate of the location of the center of the feature found. In this case
the value is reported as a floating point number with sub pixel accuracy if a gradient
based threshold is used.

For Area Edge Line SoftSensor:

Position.X: integer value indicating absolute x-coordinate of the intersection of the edge found
and the first scan line (the edge of the SoftSensor). Used for position reference.

Position. Y: integer value indicating absolute y-coordinate of the intersection of the edge
found and the first scan line (the edge of the SoftSensor). Used for position reference.

Point.X: floating point value indicating absolute x-coordinate of the intersection of the edge
found and the first scan line (the edge of the SoftSensor). If the SoftSensor uses a
gradient based threshold, this number will report sub pixel accuracy.

Point.Y: floating point value indicating absolute y-coordinate of the intersection of the edge
found and the first scan line (the edge of the SoftSensor). If the SoftSensor uses a
gradient based threshold, this number will report sub pixel accuracy.

Angle: angle determined by the edge found and the edge of the SoftSensor where all the
scanning lines begin. As viewed from the intersection point between the two, the angle
will be positive if the direction as defined is clockwise, negative if it is counterclockwise.

Straightness: reports the distance in pixels, between the two data points that are farthest
away from the output line in each direction. If the edge is perfectly straight, this value
should be close to zero. As the edge becomes noisier, the value increases.

NumEdgePoints: number of data points collected (the number of intersections between
scanning lines and part edges).

EdgePoint.X[]: array containing the absolute x-coordinate of the data points used for the line
fitting (resulting from intersection of scan lines and part edges). It contains
“NumEdgePoints” cells.

EdgePoint.Y[]:array containing the absolute y-coordinate of the data points used for the line
fitting (resulting from intersections of scan lines and part edges). It contains
“NumEdgePoints” cells.

For Measure Across Area:

Position.X: integer value indicating absolute x-coordinate of the intersection of the output line
(midline between the edges found) and the first scan line (the edge of the SoftSensor).
Used for position reference.

Position. Y: integer value indicating absolute y-coordinate of the intersection of the output line
(midline between the edges found) and the first scan line (the edge of the SoftSensor).
Used for position reference.

 61

Point.X: floating point value indicating absolute x-coordinate of the intersection of the output
line (midline between the edges found) and the first scan line (the edge of the
SoftSensor). If the SoftSensor uses a gradient based threshold, this number will report
sub pixel accuracy.

Point.Y: floating point value indicating absolute y-coordinate of the intersection of the output
line (midline between the edges found) and the first scan line (the edge of the
SoftSensor). If the SoftSensor uses a gradient based threshold, this number will report
sub pixel accuracy.

Angle: angle determined by the lines that the SoftSensor computes as the true edges of the
part being measured. The angle is measured from the line closer to the origin of the
SoftSensor to the other one. As viewed from the intersection point between the two, the
angle will be positive if the direction as defined is clockwise, negative if it is
counterclockwise.

Straightness: this is the same concept as in the Area Edge Line SoftSensor but in this case
the SoftSensor reports the highest value between the two lines that it fits.

NumEdgePoints: number of data points collected (the number of intersections between
scanning lines and part edges). Only one data point per line is included in this value.

EdgePoint.X[]: array containing the absolute x-coordinate of the data points used for the line
fitting (resulting from intersection of scan lines and part edges) of the first line (the one
closer to the origin of the SoftSensor. It contains “NumEdgePoints” cells.

EdgePoint.Y[]:array containing the absolute y-coordinate of the data points used for the line
fitting (resulting from intersections of scan lines and part edges) of the first line (the one
closer to the origin of the SoftSensor. It contains “NumEdgePoints” cells.

EdgePoint2.X[]: array containing the absolute x-coordinate of the data points used for the line
fitting (resulting from intersection of scan lines and part edges) of the second line (the
one farther away from the origin of the SoftSensor. It contains “NumEdgePoints” cells.

EdgePoint2.Y[]:array containing the absolute y-coordinate of the data points used for the line
fitting (resulting from intersections of scan lines and part edges) of the second line (the
one farther away from the origin of the SoftSensor. It contains “NumEdgePoints” cells.

For Find Circle:

Position.X: integer value indicating absolute x-coordinate of the center of the circle found.
Used for position reference.

Position. Y: integer value indicating absolute y-coordinate of the circle found. Used for
position reference.

Point.X: floating point value indicating absolute x-coordinate of the center of the circle found.
This number reports sub pixel accuracy.

Point.Y: floating point value indicating absolute y-coordinate of the center of the circle found.
This number reports sub pixel accuracy.

Roundness: reports the distance in pixels, between the two data points that are farthest away
from the output circle in each direction. If the edge is perfectly straight, this value should
be close to zero. As the edge becomes noisier, the value increases.

NumEdgePoints: number of data points collected (the number of intersections between
scanning lines and part edges).

EdgePoint.X[]: array containing the absolute x-coordinate of the data points used for the
circle fitting (resulting from intersection of scan lines and part edges). It contains
“NumEdgePoints” cells.

 62

EdgePoint.Y[]:array containing the absolute y-coordinate of the data points used for the circle
fitting (resulting from intersections of scan lines and part edges). It contains
“NumEdgePoints” cells.

Math Tools
Math tools offer an assortment of SoftSensors that vary a lot in their functions. Thus, the sets of
parameters available are very different as well. Except for the Result and intensity levels
parameters, common to all of them, they contain specific parameters. The parameters are:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

Distance: only applicable to the Distance SoftSensor. Reports the distance calculated according
to user parameters.

Angle: only applicable to the Angle SoftSensor and SoftSensors that report lines (lines are
reported as a point and an angle). Reports the angle calculated according to user parameters
(could be the slope of the line). For the Angle SoftSensor it reports the value of the angle
between the specified lines. For SoftSensors that report a line as their output (Midline, Line
Through two points and Perpendicular) it reports the angle using standard sign from -180 to +
180 degrees: positive angles above the x-axis, and negative angles below the x-axis.

Scale: only applicable to the Scale Factor SoftSensor. Reports the scale factor calculated
according to user parameters.

Point.X: only applicable to SoftSensors that have points or lines as their outputs. Represents the
sub pixel absolute x-coordinate of the point being reported (lines are reported as a point and
an angle)

Point.Y: only applicable to SoftSensors that have points or lines as their outputs. Represents the
sub pixel absolute y-coordinate of the point being reported (lines are reported as a point and
an angle)

TransformedPoint.X: only applies to SoftSensors that report single points (Midpoint, Intersection,
and Coordinate Transformation). Contains the transformed sub pixel absolute X-coordinates
of the point (when a coordinate transformation is applied).

TransformedPoint.Y: only applies to SoftSensors that report single points (Midpoint, Intersection,
and Coordinate Transformation). Contains the transformed sub pixel absolute Y-coordinates
of the point (when a coordinate transformation is applied).

Readers
Reader SoftSensors, which include 1D barcode readers, 2D code readers, and OCR offer the
following parameters:

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255). Only available for barcode reader and DataMatrix SoftSensors.

NumErrors: exclusive of 1D and 2D readers. Indicates the number of errors detected in the code
being read and requires that the code being read contains some type of error checking
method.

String: refers to the data extracted from the image. This filed exposes a string which is populated
with the data resulting from decoding the image.

Exclusive of 1D Reader:

 63

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Exclusive of DataMatrix:

AxialNonuniformity: indicates how “stretched” the matrix is. This is a standard DataMatrix
quality measurement.

Position.X: indicates the absolute X-coordinate of the corner of the DataMatrix where the
solid sides meet.

Position.Y: indicates the absolute Y-coordinate of the corner of the DataMatrix where the
solid sides meet.

Position.ThetaX: indicates the rotation associated with the DataMatrix found. See formula
below for an explanation on how to interpret it.

Position.ThetaY: indicates the rotation associated with the DataMatrix found. See formula
below for an explanation on how to interpret it.

=

=

16384
.

16384
. ThetaYPositionArcSinThetaXPositionArcCosθ

PrintGrowth: refers to the variation of the size of the dark cells for the same DataMatrix
because of changes in the printing process.

UnusedErrorCorrection: refers to the available “room for error” in the current image.

SymbolContrast: refers to the contrast found in the area where the DataMatrix is present. The
difference in intensity between dark and light cells.

Exclusive of OCR:

NumChars: number of characters being read.

CharacterPosition.X[]: array containing the absolute x-coordinate for each character being
read. The lower left corner of the character is used.

CharacterPosition.Y[]: array containing the absolute x-coordinate for each character being
read. The lower left corner of the character is used.

CharacterThreshold[]: array containing the threshold levels used for each character.

CharacterScore[]: array containing the individual character scores (which refers to how well
the characters in the current image match the learned characters).

CharacterDistance[]: array containing the distance from the origin of the SoftSensor to the
location of each character. Used to detect presence of spaces in the code.

Blob Tools
Blob tools consist of two SoftSensors: blob generator and blob selector. Each one has its own
parameters as shown below, but the important thing to remember is that since they work with a
number of blobs, they contain mostly arrays as their parameters. Each entry in the array refers to
a different blob, so the size of these arrays is the number of blobs present. Notice that all the
array variables contain the brackets at the end of the name. That means that besides using the
parameter the user needs to specify an index (blob number).

Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for
WARN, and negative for FAIL)

 64

NumBlobs: indicates how many blobs the SoftSensor found. This number sets the size of the
arrays containing information about the blobs.

Exclusive of the blob generator:

MinIntensity: lowest intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

MaxIntensity: highest intensity value found in the area analyzed by the SoftSensor (in levels
from 0 to 255).

Threshold: threshold level (in levels from 0 to 255).

Contrast: indicates the contrast found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Exclusive of the blob selector:

BlobAngle[]:this value is calculated only when Calculate Blob Angles is checked in the Blob
Selector Parameters Tab. There are four options to obtain the angle:

//get the angle as formatted using the Blob Parameters tab
//of the blob selector
softsensorname.BlobAngle[n];

// get the angle of the blob’s principal axis using the
//0 to 180 degree format
softsensorname.BlobAngle.PA180[n];

// get the angle of the blob’s principal axis using the
// 0 to 360 degree format. To establish a direction
//here, the algorithm uses mass distribution.
softsensorname.BlobAngle.PA360[n];

// get the angle that the line through the centroid and
//maximum point of the blob makes with the direction
// of the positive x axis
softsensorname.BlobAngle.MaxPoint[n];

BlobArea[]: array containing the area of all the blobs found

BlobPosition.X[]:array containing the absolute x-coordinates of the center of the blobs found
by the SoftSensor. Used for position reference.

BlobPosition.Y[]:array containing the absolute y-coordinates of the center of the blobs found
by the SoftSensor. Used for position reference.

BlobBoundingBox: set of arrays containing information about the bounding box for each one
of the blobs found. The user can even access the information for the bounding box as
follows:

//n is a number between 1 and the maximum number of blobs
SoftSensor.BlobBoundingBox.Width[n]
SoftSensor.BlobBoundingBox.Height[n]
//upper-left corner x point of box
SoftSensor.BlobBoundingBox.X0[n]
//upper-left corner y point of box
SoftSensor.BlobBoundingBox.Y0[n]
//lower-right corner x point of box
SoftSensor.BlobBoundingBox.X1[n]
//lower-right corner y point of box
SoftSensor.BlobBoundingBox.Y1[n]

 65

BlobCompactness[]: array containing the compactness of every blob found by the
SoftSensor.

BlobEccentricity[]:array containing the compactness of every blob found by the SoftSensor.

BlobIntensity[]:array containing the compactness of every blob found by the SoftSensor.
Intensity values are scaled between 0 and 255.

BlobMaxPoint.X[]:array containing the absolute x-coordinate of the point that is farthest away
from the centroid of the blob. One cell for each blob.

BlobMaxPoint.Y[]:array containing the absolute y-coordinate of the point that is farthest away
from the centroid of the blob. One cell for each blob.

BlobPerimeter[]:array containing the perimeter of every blob found by the SoftSensor.

BlobRadius[]:array containing the radius of every blob found by the SoftSensor.

BlobTransformedPoint.X[]:array containing the absolute x-coordinate of the blobs found by
the SoftSensor corrected with a coordinate transformation.

BlobTransformedPoint.Y[]:array containing the absolute y-coordinate of the blobs found by
the SoftSensor corrected with a coordinate transformation.

TemplateMatch SoftSensor
Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for

WARN, and negative for FAIL)

MinIntensity: Lowest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

MaxIntensity: Highest intensity value found in the area analyzed by the SoftSensor (in levels from
0 to 255).

Threshold: Threshold level (in levels from 0 to 255).

Contrast: Indicates the contrast found in the area analyzed by the SoftSensor (in levels from 0 to
255).

Position.X: absolute x-coordinate of the location of the center of the template found, point passed
as a position reference by this SoftSensor. This parameter is only applicable to the
SoftSensor that searches for the template.

Position.Y: absolute y-coordinate of the location of the center of the template found, point passed
as a position reference by this SoftSensor. This parameter is only applicable to the
SoftSensor that searches for the template.

TransformedPoint.X: contains the transformed absolute x-coordinates of the position (when a
coordinate transformation is applied). This parameter is only applicable to the SoftSensor that
searches for the template.

TransformedPoint.Y: contains the transformed absolute y-coordinates of the position (when a
coordinate transformation is applied). This parameter is only applicable to the SoftSensor that
searches for the template.

PixelError: number of pixels in the SoftSensor that report an error in the image.

PercentPixelError: percentage of the pixels in the SoftSensor that report an error in the image.

MaxPixelError: number of pixels (in the segment that contains the most error) that report an error
in the image.

MaxPercentError: percentage of pixels (in the segment that contains the most error) that report
an error in the image.

 66

ObjectFind SoftSensor
Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for

WARN, and negative for FAIL)

NumObjects: number of Objects found by an ObjectFind SoftSensor as an integer value.

Point.X: absolute x-coordinate of the object being found. This option is used for cases where a
single object is being located.

Point.Y: absolute y-coordinate of the object being found. This option is used for cases where a
single object is being located.

ObjectPosition.X[]:array containing the absolute x-coordinates of the objects being found. This
option is used both when single and multiple objects are being located. Every cell in the array
corresponds to a different object; for single objects only the first cell is used (index
1).responds to a different object.

ObjectPosition.Y[]:array containing the absolute y-coordinates of the objects being found. This
option is used both when single and multiple objects are being located. Every cell in the array
corresponds to a different object; for single objects only the first cell is used (index
1).responds to a different object.

ObjectAngle[]:array containing the angle by which the objects are rotated respect to the learned
position. This option is used both when single or multiple objects are being located, for single
object simply use index 1 of the array. Every cell in the array corresponds to a different
object. The angle is based on what the position of the object as learned (that represents the
zero degree angle). Angle formats are given by 0 to 180 degrees starting from the positive x-
axis. Clockwise direction gives a positive angle, counterclockwise gives a negative one.

ObjectTransformedPoint.X[]:array containing the transformed x-coordinates of the objects being
found. This option is used both when single or multiple objects are being located, for single
object simply use index 1 of the array. Every cell in the array corresponds to a different
object. A coordinate transformation SoftSensor is needed.

ObjectTransformedPoint.Y[]:array containing the transformed y-coordinates of the objects being
found. This option is used both when single or multiple objects are being located, for single
object simply use index 1 of the array. Every cell in the array corresponds to a different
object. A coordinate transformation SoftSensor is needed.

NumEdges: number of edges of the largest object in the Object Find’s region (not necessarily the
learned object). Use this in conjunction with EdgePoint.X[] and EdgePoint.Y[].

ObjectEdgePoint.X[]: array containing the sub pixel x-coordinates of edges found by an
ObjectFind SoftSensor.

ObjectEdgePoint.Y[]: array containing the sub pixel y-coordinates of edges found by an
ObjectFind SoftSensor.

Note: the EdgePoint parameter does not refer to the learned or found object, but to the largest
object in the area analyzed by the SoftSensor.

Pixel Counting SoftSensor
Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for

WARN, and negative for FAIL)

MatchPixelCount: indicates the number of pixels (of the best color match) present in the image.
Equivalent to the DominantColorPixels entry in the result table for this SoftSensor.

MatchIndex: indicates the index of the best matched color. Useful when working with lists of
colors.

 67

MatchColorName: indicates the name of the best matched color. Useful when working with lists of
colors.

PixelPercent: percentage of the pixels in the SoftSensor that are recognized as pixels of any of
the colors in the list of learned colors.

PixelCount: number of the pixels in the SoftSensor that are recognized as pixels of any of the
colors in the list of learned colors.

Color Monitoring SoftSensor
Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for

WARN, and negative for FAIL)

MatchScore: provides the overall color difference scaled from 0 to 10,000.

MatchIndex: indicates the index of the best matched color. Useful when working with lists of
colors.

MatchColorName: indicates the name of the best matched color. Useful when working with lists of
colors.

ColorDeltaX: indicates the color difference found in every channel. X could be 1, 2, or 3. For
example, when using RGB space channel 1 is for Red, channel 2 is for Green, and channel 3
is for Blue. This value is scaled up by 100, that is, for a color difference in red of -2.56, this
field would report -256. When a Monochrome system is being used, this parameter changes
to IntensityDelta.

LiveMeanX: indicates the mean value for a certain channel, X could be Red, Green, Blue, _L, _a,
_b, _C, and _H depending on the color domain and the channel selected. This value refers to
the image being analyzed. This value is scaled up by 100, that is, for a mean of 25.83, this
field would report 2583. When a Monochrome system is being used, this parameter changes
to LiveMeanIntensity.

LiveStdDevX: where X could be Red, Green, or Blue, indicates the standard deviation of the
values in each channel. This value is scaled up by 100, that is, for a standard deviation of
6.55 this field would report 655. When a Monochrome system is being used, this parameter
changes to LiveStdDevIntensity.

GoldenMeanX[]: where X could be Red, Green, Blue, _L, _a, _b, _C, or _H, represents an array
indicating the mean values of the learned colors. The array contains one cell for every color
in the list. For example, to get the mean value of Hue for color number 5, the command
should be sensorName.GoldenMean_H[5];. This value is scaled up by 100, that is, for a
mean of 25.83, this field would report 2583. When a Monochrome system is being used, this
parameter changes to GoldenMeanIntensity.

GoldenStdDevX[]:where X could be Red, Green, or Blue, represents an array indicating the
values of the standard deviation for the learned colors. The array contains one cell for every
color in the list. This value is scaled up by 100, that is, for a standard deviation of 6.55 this
field would report 655. When a Monochrome system is being used, this parameter changes
to GoldenStdDevIntensity.

Segmentation SoftSensor
Result: overall result of the inspection of the part as an integer value (0 for PASS, positive for

WARN, and negative for FAIL)

NumSegments: returns the number of segments found in the image.

LiveSegmentPosition.X[]: array containing the absolute x-coordinates of the center of the
segments found in the image.

 68

LiveSegmentPosition.Y[]: array containing the absolute y-coordinates of the center of the
segments found in the image.

LiveAveX[]: where X can be Red, Green, or Blue, refers to the average content of Red, Green or
Blue present in a certain segment. Each array has one cell for every segment found in the
image. The value reported is the actual value is scaled up by 100.

LivePixelCount[]: array containing the pixel count for all the segments found in the image.

Script SoftSensor (Foreground Script)
Script SoftSensors (or Foreground Scripts) have a number of parameters as well. However, these
parameters can be altered from the script. That is, the user can access this set of parameters
from another script (just like any SoftSensor) but it is possible to change the parameters of the
Script being edited. The parameters are:

Result: the user can read (from another script) or set (from current script) the result (PASS,
WARN, or FAIL). This is useful when the application requires complex decisions, a script
could make the decision and pass or fail to indicate the overall result.

Note: The Script will not fail if it references a SoftSensor that has failed. If you wish to have the
Script SoftSensor fail when it references a failed SoftSensor, ensure that the following line is
included in the beginning of your script:

FailOnFailingReference = true;

Intensity: this field is reserved for an integer value. Any integer value could be assigned to this
field.

Line: set of four parameters: Line.A, Line.B, Line.X, and Line.Y. The equation for a line in this
format is Ax + By = 0. The parameters A and B determine the slope while the parameters X
and Y determine a point in the line.

Position : set of parameters that can be referenced by other SoftSensors through the "Enable
Position Reference" checkbox. Position consists of four separate parameters: Position.X,
Position.Y, Position.ThetaX, and Position.ThetaY. These parameters are used to change the
position of a script, and they are used as follows;

//Script Positioning: directly assign integer values or variables
//to the x and y parameters
this.Position.X=0;
this.Position.Y=0;
//for the angle (reference of rotation) it requires more work
//first declare a float variable for the angle in radians
float radangle;
int degangle=0;
//convert it to degrees if needed
radangle = degangle*3.14159/180;
//load the parameters as follows
//the output angle is scaled by 16384
this.Position.ThetaX=cos(radangle)*16384;
this.Position.ThetaY=sin(radangle)*16384;
//When all these parameters are set and another SoftSensor
//references the Foreground Script for position, it will
//translate and rotate as indicated by the script parameters

Distance : This field is reserved for a floating point value. Any floating point value could be
assigned to this field.

Angle : This field is reserved for a floating point value. Any floating point value could be assigned
to this field.

 69

Point : a set of floating point parameters. Point consists of two parameters: Point.X and Point.Y
representing the coordinates of a point in the image.

String: a string data-type of maximum length 200 characters. Any string of less than 200
characters could be assigned to this output parameter.

DVal[]: array of double variables used only in a script SoftSensor. The DVal array can be used to
store double values which can then be used with Data Link. Before using it, the size of the
array must be defined. This method was a standard procedure in older systems. In newer
systems users are encouraged to use a String instead of this array.

IVal[]:array of integer variables used only in a script SoftSensor. The IVal array can be used to
store integer values which can then be used with Data Link. Before using it, the size of the
array must be defined. This method was a standard procedure in older systems. In newer
systems users are encouraged to use a String instead of this array.

Note: Once the Script SoftSensor (or Foreground Script) outputs have been assigned, the
user needs to select which one(s) to display to the result table by adding a checkmark to
the corresponding outputs in the Outputs tab of the SoftSensor parameter dialog. Only

those selected in that tab will be displayed on the result table.

Spectrograph SoftSensor
MatchScore: is the Spectrum Difference.

MatchIndex: the index number of the closest spectrum match.

MatchSpectrumName: the name of the closest spectrum match.

LivePeakIntensity: highest intensity in the spectrograph.

LivePeakLocation: the location of LivePeakIntensity in nm.

PeakIntensityChange: the intensity difference between the learned peak intensity and
LivePeakIntensity.

PeakLocationChange: the change in location between the learned peak intensity and
LivePeakLocation in nm.

LiveAverage[]: is used to get the intensity of spectrum at a particular wavelength. Resultant
spectrum is computed by averaging. LiveAverage[500] returns the intensity of spectrum at
500nm if available, and an error otherwise.

LiveContrast[]: gets the contrast (Max – Min) at a particular wavelength.

LiveMaximum[]: gets the maximum at a particular wavelength.

LiveMedian[]: gets the median at a particular wavelength.

LiveMinimum[]: gets the minimum at a particular wavelength.

LivePeak[]: gets the peak at a particular wavelength.

LiveStdDev[]: gets the standard deviation at a particular wavelength.

Note: The absolute color values of the resultant live spectrum can be read by: LiveMean_X,
LiveMean_Y, LiveMean_Z, LiveMean_L, LiveMean_a, LiveMean_b, LiveMean_C, LiveMean_H.

Note: The absolute color values of learned spectrums can also be read. The index to the list is
zero based. Here is the list: GoldenMean_X[], GoldenMean_Y[], GoldenMean_Z[],
GoldenMean_L[], GoldenMean_a[], GoldenMean_b[], GoldenMean_C[], GoldenMean_H[].

 70

Advanced Functionality: Sensor Object
All the parameters specified so far in this chapter are readily available from the script editor just
one click away. These parameters represent data that the user can access from the SoftSensors
to perform more complex decisions. There is another way to access the SoftSensor from
Foreground Scripts that allows the user to modify SoftSensor parameters: the use of Sensor
Objects. Sensor Objects are entities with a predefined functionality. When one of those entities
are created and assigned to an existing SoftSensor, the functionality can be used to manipulate
parameters in that SoftSensor. When using a Sensor Object, some advanced functions can be
used. Those functions are explained in this section.

GetSensorByName()
The GetSensorByName Function is used to set a Sensor Object using the sensor name. Use of
this function is necessary when using any sensor script methods.

Syntax
S=GetSensorByName(string Name);

Arguments

A string containing the name of the desired SoftSensor.

Returns

A Sensor object associated with the Sensor Name.

Example
//create a Sensor Object and assign SoftSensor “OCRReader” to it
Sensor S;
S=GetSensorByName("OCRReader");

GetSensorById()
This function is used to initialize a Sensor Object by referencing the internal sensor ID of the
SoftSensor. These IDs can be determined by issuing a sensor query command (#SQ) for a
product via the system terminal. The GetSensorByName function is often used instead of this
function.

Syntax
<SensorObjectName>.GetSensorById(int id);

Arguments:

An integer value indicating the internal ID of the SoftSensor to be assigned to the Sensor
Object

Return values

The function returns a reference to the Sensor Object (the Sensor handle)

Error Codes

-KS_IVALID_PARAM: (-2) invalid bit position specified for the virtual input.
-KS_TIMEOUT (-4) Wait operation timed out.

Examples:
//The following script initializes the Sensor Object
Sensor S;
S=GetSensorById(1);

 71

SetMatchString()
The SetMatchString() Method is used to set a Sensor match string for a Reader SoftSensor.

Syntax
<SensorObjectName>.SetMatchString(String NewString);

Arguments:

A String or String variable containing the new string to be matched by the SoftSensor.

Return values

None

Examples:
// SetMatchString for an OCR SoftSensor
Sensor S;
S = GetSensorByName("OCRReader");
S.SetMatchString("ABCD1234");

SetParams()
The SetParams() method is used to set parameters associated with a SoftSensor. This method
can be useful for setting the Shape of a SoftSensor or Importing a dominant color into a
SoftSensor.

Syntax
<Sensor Object Name>.SetParams(String Command);

Arguments:

A string literal or string variable containing the command to set the SoftSensor
parameters. These commands are derived from the commands list (this list is included in
the FrameWork help files and is available for free download from the DVT website). The
string consists of the parameter ID and the data for that parameter.

Return values

An int value indicating the result of the operation. Result=0 for success, Result<0 for
error.

Examples:
//The following script sets the shape of a blob SoftSensor
//to a rectangle with an upper left corner 100,100 and
//lower right corner 200,200
Sensor Blobs;
Blobs = GetSensorByName("BlobGen");
Blobs.SetParams("0 10 100 100 200 200");
This example changes the shape of the SoftSensor, so the String contains a zero
(parameter ID for sensor shape according to the commands list) and the data. The data
consists of the shape of the SoftSensor which is an area rectangle (according to
commands list it is represented by a 10) and the specific data for that shape which
according to the commands list is the x and y coordinates of the upper left corner of the
rectangle followed by the x and y coordinates of the lower right corner of it. All the
parameters are separated by a space. The resulting string is then “0 10 100 100 200 200”
for a rectangle form pixel (100,100) to pixel (200,200).

//this scripts makes a color sensor learn new colors
Sensor CSensor;//declare the sensor object

 72

//assign the existing “colorArray” softsensor to the object
CSensor = GetSensorByName("colorArray");
//check if the assignment was successful, if it is not,
//the reference to the object will contain a null character
//so we need to verify that the reference is not null
if(CSensor != null)
{
 DebugPrint("Successful assignment");//for debugging
 if(RegisterReadByte(200) == 0)
 {
 //if a certain flag is set to 0 execute this command
 CSensor.SetParams("45");
 }
 else if(RegisterReadByte(200) == 1)
 {
 //if the flag is set to 1 execute this command
 CSensor.SetParams("44");
 }
}
This example involves a Pixel Counting SoftSensor called “colorArray.” The idea here is
that the pixel counting SoftSensor has to learn a single color or many colors at the same
time based on the status of a flag. If the register 200 is set to 0 learn a single color, if it is
set to 1 learn many colors, otherwise do nothing. The strings used are “45” to learn a
single color and “44” to learn many colors.

Stats()
This command populates an array of integer values indicating the times of the inspection.

Syntax
<Sensor Object Name>.Stats(int statsArray[]);

Arguments:

statsArray: a four element integer array

Return values

This command populates the array as follows:

element 1 is the minimum inspection time

element 2 is the maximum inspection time

element 3 is the average inspection time

element 4 is the last inspection time

Examples:
//declare array to hold values
int stats[]=new int[4];
//declare sensor object
Sensor s;
String str;
//assign sensor
s=GetSensorByName("colorArray");

if (s!=null)
{
 //get stats from sensor if not null

 73

 s.Stats(stats);
 //set string to display in result table
 str = stats[1]+"/"+stats[2]+"/"+stats[3]+"/"+stats[4];
 this.String = str;
}
This example makes the script’s string equal to a sequence of four integer values
separated by a forward slash character. Those four numbers represent the times from the
inspection.

 74

 75

Chapter 5 - Accessing Product Data
This chapter describes how to get data from Products and how to change a limited number of
Product Parameters. In many cases, users need to change parameters such as exposure time
and product gain, which are product specific. Background Scripts can be used to extract the
necessary data by using a combination of commands and syntax. As explained before, this type
of Script reside at the system level thus gaining access to all the products in the SmartImage
Sensor. Both the commands needed and the syntax used are explained in this chapter.

 76

Syntax for Basic Product Data Extraction
In order to gain access to Product data from scripts, users simply need to create a variable and
assign the desired data from the desired Product to it. To reference the individual Product
parameters, the user needs to use the following syntax:

<Product name>.<Product parameter>
Let us illustrate this with an example. We have a particular Product from which we need to
change the exposure time. A particular Foreground Script is reading the data from an intensity
SoftSensor in that product and saving that value as a float data type to a particular DVT
register. The Background Script then needs to read the value in that register and alter the
exposure time. It will increase the exposure time if the intensity read is too low, it will decrease it if
the intensity level is too high, and it will not change it if the intensity read is at an acceptable level.
Assuming that the value is written to register 20 and that the product name is Product1, the
syntax would be as shown below:

float minIntensity = 70, maxIntensity = 90;
float intensityLevel;
while(true)
{
 //first the value is read
 intensityLevel = RegisterReadFloat(20);
 //next, it is compared to the minimum allowed
 if(intensityLevel < minIntensity)
 {
 //change exposure time if necessary
 Product1.SetExposure(Product1.GetExposure() * 1.2);
 }
 //compare it to maximum if it was higher than minimum
 else if(intensityLevel > maxIntensity)
 {
 //change exposure time if necessary
 Product1.SetExposure(Product1.GetExposure() * 0.8);
 }
 sleep(3000);//pauses execution for 3000 msec
}

In this case the Background Script is declaring the necessary variables and then entering a loop
which gets executed every 3000 milliseconds (note the sleep command). Every three seconds
the Background Script reads the intensity level from a memory register (a Foreground Script
should write it to memory, remember that Foreground Scripts are the only scripts that can access
SoftSensor data). Once the value is read, it is compared to the arbitrary levels of minimum
intensity and maximum intensity. Depending on the result of these comparisons, the exposure
time is incremented or decremented by 20%. The command used to perform these changes is a
combination of two commands: GetExposure() and SetExposure(). The first one accesses
the value and the second one applies changes to it. The available commands are explained next.

SetWindow()
This command is used to change the partial window of acquisition. By using this command the
Background Script can change the window for a particular product as needed.

Syntax
Product1.SetWindow(int x0, int y0, int x1, int y1);

Arguments:

Four integer values specifying the coordinates of the upper left corner of the window (x0,
y0) and the lower right corner of the window (x1, y1)

 77

Example:
int x0, x1, y0, y1;
x0 = 15;
y0 = 15;
x1 = 625;
y1 = 465;
Product1.SetWindow(x0, y0, x1, y1);

Notes

The coordinates are in pixels, so for a 640 by 480 resolution SmartImage Sensor the
ranges are 0 to 639 for x and 0 to 479 for y.

GetExposure()
This command is used to obtain the exposure from a product

Syntax
Product1.GetExposure();

Arguments:

None

Return values

The exposure time as an integer value in microseconds.

Example:
int expTime;
expTime = Product1.GetExposure();

Notes

This function uses returns the exposure time in microseconds whereas the user interface
displays it in milliseconds.

SetExposure()
This command is used to set the exposure from a product

Syntax
Product1.SetExposure(int expTime);

Arguments:

The new exposure time for the product as an integer value (in microseconds).

Examples:
//two ways to increase the exposure time by 20%
//first method: the long way
int expTime;
expTime = Product1.GetExposure();//obtain current value
expTime = expTime * 1.2; //update value
Product1.SetExposure(expTime);//set new value
//second method: shorter but more complex
//this method does everything in one line and avoids the
//use of extra variables.
Product1.SetExposure(Product1.GetExposure() * 1.2);

Notes

 78

This function returns the exposure time in microseconds whereas the user interface
displays it in milliseconds.

GetGain()
This function is used to access the value set for the gain in a product.

Syntax
float f = Product1.GetGain();

Arguments:

None

Return values

The product gain as a float.

Example:
float f;
f = Product1.GetGain();

Notes

The values for the gain range from 1 to 25, the default value is 2

SetGain()
This function is used to modify the value set for the gain in a product.

Syntax
Product1.SetGain(float newGain);

Arguments:

A float data type variable containing the new value for the gain

Examples:
//Example 1
float newGain = 3.3;
Product1.SetGain(newGain);
//Example 2: increase current gain by 20%
float newGain;
newGain = Product1.GetGain() * 1.2;
Product1.SetGain(newGain);

Notes

The values for the gain range from 1 to 25, the default value is 2

Advanced Functionality: Product Object
All the parameters specified so far in this chapter are readily available from the script editor just
one click away. These parameters represent the basic functionality of the products. There is
another way to access Products from Background Scripts: the use of Product Objects. Product
Objects are entities with a predefined functionality. When one of those entities is created and
assigned to an existing Product, more advanced functionality becomes available: the ability to
access the inspection product (without knowing which one it is), the ability to loop through all the
products in the SmartImage Sensor, and the ability to manipulate references to a product without
using that product’s name. That is, all the functions explained so far can be called from this

 79

Product Object, but other functions become available as well. Those advanced functions are
explained in this section.

GetProduct()
The GetProduct() function is used to set a Product object using the product name.

Syntax
GetProduct(string ProdName);

Arguments:

A string containing the product name.

Examples:
// increase product exposure time by 10%
Product P;
P=GetProduct("My Product");
P.SetExposure(P.GetExposure()*1.10);

Notes

As the example illustrates, the basic functions (such as GetExposure()) can still be used
when working with Product Objects

GetProductById()
The GetProductByID() function is used to set a Product variable using the digital ID set in the
Product Management dialog in FrameWork.

Syntax
GetProductById(int prodID);

Arguments:

Integer value containing the product digital ID

Return values

The product with the corresponding digital ID

Examples:
// increase product exposure time by 10%
Product P;
P=GetProductById(3);
P.SetExposure(P.GetExposure()*1.10);

GetInspectProduct()
The GetInspectProduct() function is used to set a Product based on the current inspection
product, which can be externally changed using product selection.

Syntax
MyProduct = GetInspectProduct();

Arguments:

None

Return values

The current inspection product

 80

Examples:
// increase product exposure time by 10%
Product P;
P = GetInspectProduct();
P.SetExposure(P.GetExposure()*1.10);

GetFirstProduct()
The GetFirstProduct() function is used in combination with the Next() method to loop through the
products in a SmartImage Sensor.

Syntax
MyProduct = GetFirstProduct();

Arguments:

None

Return values

The first product that was created in or loaded to the SmartImage Sensor.

Examples:
//see the Next() function for a complete example
Product P;
P=GetProduct("My Product");

Next()
The Product Next method is used to change a Product variable to the next DVT product in the
SmartImage sensor. Note: the next product is determined by the order in which the products were
created in or loaded to the SmartImage Sensor. This function is often used to change product
parameters in multiple products using a while loop.

Syntax
MyProduct.Next();

Return values

The next product according to the order in which they were added to the system

Example:
//increase the gain in all products by 20%
Product P;
P=GetFirstProduct();
while(P!=null)
{
 P.SetGain(P.GetGain() * 1.2);
 P = P.Next();
 sleep(150);
}

ID()
The Product ID method returns the digital product ID of the associated product as set in the
Product Management Dialog.

Syntax
MyProduct.ID();

 81

Arguments:

None

Return values

Digital Product ID of the associated product as an Integer.

Examples:
// Put the digial ID of a product named Product1
// in a register
Product P;
P = GetFirstProduct();
RegisterWriteInteger(20,P.ID());

Select()
This command is used to set a certain product as the inspection product.

Syntax
MyProduct.Select();

Arguments:

None

Example:
//this example reads a boolean variable and sets the inspection
//product accordingly
Product MyProduct;
boolean useProduct1 = (RegisterReadByte(100) == 1);

if(useProduct1 == true)
{
 Product1.Select();
}
else
{
 Product2.Select();
}

Inspect()
The Inspect function triggers the SmartImage Sensor to take an inspection. The product Select
method can be used to set the inspection product prior to inspection. Typically, the busy output bit
should be monitored to make sure the inspection is completed before allowing the script to
continue.

Syntax
Inspect();

Arguments:

None

Example:
//This example sets the inspection product, takes an
//inspection, then waits for the inspection to be finished.
Product P;
long Bit = 1;

 82

//Select the product, in this case the system must contain a
//product called "Product 1"
P = GetProduct("Longo");
P.Select(); //Set inspection product

//record the time before the inspection
int time = clock();

Inspect(); //trigger inspection

//wait for inspection to finish by monitoring the busy output
while ((GetOutputs() & (Bit<<3))!=0) ;

time= clock() - time;

//Output the inspection time
DebugPrint("InspectionTime = " + time);

Stats()
This command populates an array of 4 integer values with statistical data about the inspections.

Syntax
<Product Object Name>.Stats(int statsArray[]);

Arguments:

statsArray: a four element integer array

Return values

This command populates the array as follows:

Element 1 is the last inspection result (-1 means PASS, 0 means WARN, and 16 means
FAIL). If the product contains no SoftSensors and the SmartImage Sensor is not running
inspections, a -2 will be assigned to this element.

Element 2 is the non-failed inspection count, or PASS + WARN. It keeps count of the
inspections that produced a WARN or a PASS as the overall result.

Element 3 is the WARN count. It keeps count of the inspections that produced a WARN
as the overall result.

Element 4 is the FAIL count. It keeps count of the inspections that produced a FAIL as
the overall result.

Examples:
//declare array to hold values
int stats[]=new int[4];
//declare product object
Product P;
String str;
while(true)
{
 //assign product
 P = GetInspectProduct();
 if (P != null)
 {
 P = GetInspectProduct();
 P.Stats(stats);

 83

 str = "Stats: ”+stats[1]+"/"+stats[2];
 str = str + "/"+stats[3]+"/"+stats[4];
 str = str + “ For Product ID: "+P.ID();
 DebugPrint(str);
 }
 sleep(5000);
}
This example of a Background Script prints the inspections statistics every 5 seconds.
Notice that the configuration of the string could be done in a single line, it was done in 3
lines instead to make it easier to read from the manual.

Name
This is a field of the Product Object not a method. It returns the name of the product that the
Product Object is referencing.

Syntax
MyProduct.Name;

Arguments:

None

Return values

String containing the name of the product

Examples:
Product P;
P = GetInspectProduct();
string ProdName = P.Name;//the string ProdName contains now the
 //product name of the inspection product

 84

 85

Chapter 6 - Mathematical computations
This chapter discusses the functions and operators available for mathematical calculations and
how to use them. Every function is explained and a quick example is included to better illustrate
the functionality.

 86

Mathematical Operators and Functions
One of the powerful features of DVT Scripts is the ability to perform mathematical computations.
In order to simplify those, there are a number of functions and operators available to the user.
The table below shows all of them.

OPERATORS

=

+

-

*

/

--

++

+=

-=

*=

/=

%=

&=

|=

^=

<<=

>>=

>>>=

FUNCTIONS

pow(,)

abs()

sqrt()

sin()

cos()

tan()

asin()

acos()

atan()

atan2()

The assignment operator (=)
The assign operator is used to assign values to variables; it works with all data types.

Syntax
x=y;

Arguments

Any data type

Return values

None

Example
int i, x, y;
double d;
String MyStr;
i=4;//assign value to integer
d=4.567;//assign value to double

 87

MyStr=”123”//assign value to string
x=5; //assign value to integer
y=x;//assign value of variable to another variable

Notes

Use assign (=) to store one value in another variable. See the equal (==) operator to
compare two values for a true condition.

The addition operator (+)
The addition operator works with integer and floating point numbers to produce the sum of the
values. When using the addition operator on strings, the result is a concatenated string. When
used in a string operation, the addition operator converts integer and floating point values to a
string.

Syntax
x+y;

Arguments:

Two basic data types

Return values

The result of adding the numerical value of the variables a and b in the case where the
arguments are basic data types. If one of the arguments is a string, the result is a new
string resulting from concatenating the data.

Example
//Write DVT Corp using + operator
int j=10,x1,x2;
String myStr;
j=j+1;//j is 11 now
myStr="DVT" + " Corp";//DVT + Corp = DVT Corp
x1 = 8;
x2 = 9;
myStr="x1+x2 = " + (x1+x2);//the string is now “x1+x2 = 17”

The subtraction operator (-)
The subtraction operator works with both integers and doubles to produce the difference between
two values.

Syntax
expression - expression2;

Arguments

Two variables of the same basic data type

Return values

The result of subtracting expression2 from expression

Example:
int i,j,k,m;
double d;
j=7;
k=4;
m=j-k;

 88

k=3-4;
d=1.23 – 0.02;

The multiplication operator (*)
The multiplication operator works with both numerical types to obtain the product of two values.

Syntax
x*y;

Arguments

Two variables of the same numerical basic data type

Return values

The value of x times y

Examples:
double area, r =4.5, rSquared;
rSquared = r*r; //result is I squared
area=3.1415*rSquared; //Area result is pi times the
 //radius squared

The division operator (/)
The division operator works with both integers and doubles to produce the quotient of two values.

Syntax
x/y;

Arguments

Two variables of the same numerical basic data type

Return values

The value of x divided by y

Example
double d,R;
R=d/2.0;// radius of a circle

Notes

Division between two integers results in an integer.

The increment operator (++)
Used to increment variables. There are two ways you can use the increment operator: postfixed
or prefixed. If the operator is postfixed, the variable is first used and then incremented; if the
operator is prefixed, the variable is first incremented and then used.

Syntax

Postfix increment

variable1++;

Prefix increment

++variable1;

 89

Arguments

An integer data type

Return values

Returns an integer value incremented by one (1)

Example:
int prefix_cnt = 5;
int postfix_cnt = 5;

this.Point.X = ++prefix_cnt; //point X will equal to 6
DebugPrint("" + prefix_cnt); //DebugPrint displays 6
this.Point.Y = postfix_cnt++; //point Y will equal to 5
DebugPrint("" + postfix_cnt); //DebugPrint displays 6

The decrement operator (--)
Used to decrement variables. There are two ways you can use the decrement operator: postfixed
or prefixed. If the operator is postfixed, the variable is first used and then decremented; if the
operator is prefixed, the variable is first decremented and then used.

Syntax

Postfix decrement

variable1--;

Prefix decrement

--variable1;

Arguments

An integer data type

Return values

Returns an integer value decremented by one (1)

Example:
int prefix_cnt = 5;
int postfix_cnt = 5;

this.Point.X = --prefix_cnt; //point X will equal to 4
DebugPrint("" + prefix_cnt); //DebugPrint displays 4
this.Point.Y = postfix_cnt--; //point Y will equal to 5
DebugPrint("" + postfix_cnt); //DebugPrint displays 4

The addition assignment operator (+=)
This operator uses infixed notation and is equivalent to op1 = op1 + op2.

Syntax
x += y;

Arguments

Two numerical values.

Return values

 90

The value of x results from adding the numerical value of the variables x and y.

Example:
int x = 2;
int y = 3;

x += y;
this.String = x; //string equals 5;

The subtraction assignment operator (-=)
This operator uses infixed notation and is equivalent to op1 = op1 - op2.

Syntax
x -= y;

Arguments

Two numerical values.

Return values

The value of x results from subtracting the numerical variable y from x.

Example:
int x = 2;
int y = 3;

x -= y;
this.String = x; //string equals -1;

The multiplication assignment operator (*=)
This operator uses infixed notation and is equivalent to op1 = op1 * op2.

Syntax
x *= y;

Arguments

Two numerical values.

Return values

The value of x results in the product of x multiplied by y.

Example:
int x = 2;
int y = 3;

x *= y;
this.String = x; //string equals 10;

The division assignment operator (/=)
This operator uses infixed notation and is equivalent to op1 = op1 / op2.

Syntax
x /= y;

Arguments

 91

Two numerical values.

Return values

The value of x results in the quotient of x divided by y.

Example:
float x = 2.0;
float y = 3.0;

x /= y;
this.String = x; //string equals 0.67;

The modulus assignment operator (%=)
This operator uses infixed notation and is equivalent to op1 = op1 % op2.

Syntax
x %= y;

Arguments

Two numerical values.

Return values

The value of x results in the modulus of x and y.

Example:
int x = 2;
int y = 3;

x %= y;
this.String = x; //x equals 2;

The bitwise AND assignment operator (&=)
This operator uses infixed notation and is equivalent to op1 = op1 & op2.

Syntax
x &= y;

Arguments

Two integer data types with the same number of bits.

Return values

Assigns x a value the same size as the arguments, with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below:

argument1 argument2 result

0 0 0

0 1 0

1 0 0

1 1 1

Example:

 92

int x = 2; //bit value of 10
int y = 3; //bit value of 11

x &= y;
this.String = x; //x equals bit value of 10 (decimal value of 2)

The bitwise OR assignment operator (|=)
This operator uses infixed notation and is equivalent to op1 = op1 | op2.

Syntax
x |= y;

Arguments

Two integer data types with the same number of bits

Return values

Assigns x a value the same size as the arguments, with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below:

argument1 argument2 result

0 0 0

0 1 1

1 0 1

1 1 1

Example:
int x = 2; //bit value of 10
int y = 3; //bit value of 11

x |= y;
this.String = x; //x equals bit value of 11 (decimal value of 3)

The bitwise XOR assignment operator (^=)
This operator uses infixed notation and is equivalent to op1 = op1 ^ op2.

Syntax
x ^= y;

Arguments

Two integer data types with the same number of bits

Return values

Assigns x a value the same size as the arguments, with bit values corresponding to the
result of a comparison between the bits in both arguments according to the truth table
below:

argument1 argument2 result

0 0 0

0 1 1

 93

1 0 1

1 1 0

Example:
int x = 2; //bit value of 10
int y = 3; //bit value of 11

x |= y;
this.String = x; //x equals bit value of 01 (decimal value of 1)

The signed left shift assignment operator (<<=)
This operator uses infixed notation and is equivalent to op1 = op1 << op2.

Syntax
x <<= y;

Arguments

Two integer data types

Return values

Assigns x a value of the same size as the argument with the bits shifted to the left a
number of places equal to the value of y

Example:
byte x = 2; //bit value of 00000010
byte y = 3;

x <<= y;
this.String = x; //x equals bit value of 00010000 (decimal value
 //of 16)

The signed right shift assignment operator (>>=)
This operator uses infixed notation and is equivalent to op1 = op1 >> op2.

Syntax
x >>= y;

Arguments

Two integer data types

Return values

Assigns x a value of the same size as the argument with the bits shifted to the right a
number of places equal to the value of y

Example:
byte x = 8; //bit value of 00001000
byte y = 3;

x >>= y;
this.String = x; //x equals bit value of 000000001 (decimal value
 //of 1)

 94

The unsigned right shift assignment operator (>>>=)
This operator uses infixed notation and is equivalent to op1 = op1 >>> op2.

Syntax
x >>>= y;

Arguments

Two integer data types

Return values

Assigns x a value of the same size as the argument with the bits shifted to the right a
number of places equal to the value of y.

Example:
byte x = 8; //bit value of 00001000
byte y = 3;

x >>= y;
this.String = x; //x equals bit value of 000000001 (decimal value
 //of 1)

The power function
The pow() function is used to raise a number to a power.

Syntax
pow(double i, double j);

Arguments

Two numerical variables

Return values

The argument i raised to the j power as a double

Example:
Double i,j,k;
 i=4.56;
 j=2.65;
 k=pow(i,j); //result is 55.751535

The Absolute Value function
The absolute value function returns the absolute value of the argument.

Syntax
abs(double value);

Arguments

Any basic signed data type

Return values

The absolute value of the argument

Example:
x=abs(-2.6); //result is 2.6

 95

x=abs(2.6); //result is 2.6 as well

The Square Root Function
The square root function works with both integers and doubles and returns a double value
representing the square root of the argument.

Syntax
sqrt(double (or int) value);

Arguments

The argument value can be any number

Return values

The square root as a double

Example:
//computing the distance between point A (xa,ya), and B(xb,yb)
double dist;
float dx = xb – xa;
float dy = yb – ya;
dist = sqrt((dx*dx)+(dy*dy));

The Sine function
The sine function takes the angle in radians as a double and returns the sine of the angle

Syntax
sin(double angle);

Arguments

The argument angle is in radians.

Return values

The sine of the angle as a double

Example:
double theta, sinTheta;
theta = 45;//angle in degrees
sinTheta=sin(theta*3.1415/180); //convert degrees to radians
 //result is 0.71

The Cosine function
The cosine function takes the angle in radians as a double and returns the cosine of the angle

Syntax:
cos(double angle);

Arguments

The argument angle in radians as a double

Return values

The cosine of the angle as a double.

Example:

 96

double theta, cosTheta;
theta = 45;//angle in degrees
cosTheta=cos(theta*3.1415/180); //convert degrees to radians
 //result is 0.71

The Tangent function
The tangent function takes the angle in radians as a double and returns the tangent of the angle.

Syntax
tan(double angle);

Arguments

The argument angle is in radians as a double

Return values

The tangent of the angle as a double number between –infinity and infinity

Example:
double theta, tanTheta;
theta = 45;//angle in degrees
tanTheta=tan(theta*3.1415/180); //convert degrees to radians
 //result is 1

The ArcSine function
The arcsine function returns the arc sine or inverse sine of the specified value in radians. Multiply
the returned value by 57.2974 (or 180/pi) to convert the returned value to degrees.

Syntax
asin(double value);

Arguments

The argument value is a double number between –1.0 and 1.0

Return values

The angle as a double in radians between –pi/2 and pi/2

Example
double theta, sinTheta;
sinTheta = 0.71;//sine of Theta
theta=asin(sinTheta);//theta should be ~ pi/4 or 45 degrees

The ArcCosine function
The arccosine function returns the arc cosine or inverse cosine of the specified value in radians.
Multiply the returned value by 57.2974 (or 180/pi) to convert the returned value to degrees.

Syntax
acos(double value);

Arguments

The argument value is a double number between –1.0 and 1.0

Return values

The angle as a double in radians between 0 and pi

 97

Example:
double theta, cosTheta;
cosTheta = 0.71;//cosine of Theta
theta=acos(cosTheta);//theta should be ~ pi/4 or 45 degrees

The ArcTangent function
The arctangent function returns the arc tangent or inverse tangent of the specified value in
radians. Multiply the returned value by 57.2974 (180/pi) to convert the returned value to degrees.

Syntax
atan(double value);

Arguments

The argument value is the tangent of the angle as a double.

Return values

The angle in radians as a Double between –pi/2 and pi/2

Example:
double theta, tanTheta;
tanTheta = 0.71;//tangent of Theta
theta=acos(tanTheta);//theta should be ~ pi/4 or 45 degrees

The ArcTangent2 function
The arctangent2 function returns the arc tangent or inverse tangent of the specified value in
radians. Multiply the returned value by 57.2974 (180/pi) to convert the returned value to degrees.

Syntax
atan2(X double value, Y double value);

Arguments

X and Y are any numbers as doubles, where X is the length of the opposite side and Y is
the length of the adjacent side of the trigonometric triangle.

Return values

The angle in radians as a double between –pi and pi

Example
rad=atan2(2.0,1.0); //result is 1.1071 radians ~ 63 degrees

Note

By passing the arguments to this function with the respective signs, the true angle can be
obtained (in the appropriate quadrant).

The Line Fit function
The LineFit uses linear regression to fit a line along a set of points.

Syntax
boolean result = LineFit(double xCoord[],double yCoord[],int max,
double abcParams[]);

 98

Arguments

Double xCoord[]: array of x coordinates of the points to be used.

Double yCoord[]: array of y coordinates of the points to be used.

Int max: maximum number of points to use for the computation.

Double abcParams[]: array that will contain the outputs of the function. These outputs
consists of three parameters: a, b, and c. These parameters describe the line by being
inserted in the formula a x + b y + c = 0. The slope of the line is m = - b / a, this slope is
measured from the x axis and it is positive if it is measured clockwise, negative
otherwise.

Return values

Boolean result: this value is set to true if the function was executed with no errors,
otherwise it is set to false.

Example:
//declare variables to be used as the function arguments
double blobXCoord[] = new double[bSelector.NumBlobs];
double blobYCoord[] = new double[bSelector.NumBlobs];
int maxPoints = bSelector.NumBlobs;
double lineOutput[] = new double[3];
boolean b;
//variable to control the loop
int counter = 1;

//loop to populate arrays with data from the blobs
while(counter <= maxPoints)
{
 blobXCoord[counter] = bSelector.BlobPosition.X[counter];
 blobYCoord[counter] = bSelector.BlobPosition.Y[counter];
 counter = counter + 1;
}

//compute line
b = LineFit(blobXCoord, blobYCoord, maxPoints, lineOutput);

//determine if the operation was successful
if(b)
{
 //output the slope of the line
 myScr.String = "Slope= " + (-lineOutput[1]/lineOutput[2]);
}
else
{
 //output the slope of the line
 myScr.String = "Unsuccessful operation";
}

 99

Chapter 7 - Using system memory: DVT Registers
We mentioned before that one of the features that make Scripts very powerful is the ability to
save data directly to the system memory. In the examples used until now to illustrate the syntax
of scripts, we used variables. Variables are declared, initialized, used, and when the Script stops
executing, they disappear and the data in them is lost. So if we wanted to share that data with the
next inspection or with another type of Script, it would not be possible. This chapter explains the
methods used to share data by using the system registers.

 100

Registers as Global Variables
In order to share data, Scripts should have a concept of global variables. Global variables retain
their data as long as the system is powered, and that data can be accessed and modified from
any Script at anytime. Register can be accessed even from an external device that can open an
Ethernet connection using the TCP/IP or Modbus TCP protocols. DVT Registers behave as
global variables. The DVT registers is a set of 16384 8-bit registers that can store any type of
data. The first 12 registers (registers 0 through 11) are reserved for a specific use, so we can
arbitrarily change the values in registers 12 to 16384. We will discuss the commands used to
transfer data from a variable to a register, but first, we will look at some important considerations
about using registers. Registers have a size of 8 bits, so depending on the data type written to
registers is how many register it takes.

Supported data types for register write/read operation

Name Description
DVT

Registers Approximate Range
byte 8-bit unsigned integer 1 0 to 255
short 16-bit signed integer 2 -32E03 to 32E03

int 32-bit signed integer 4 -2E09 to 2E09
long 64-bit signed integer 8 -9E18 to 9E18
float 32-bit signed floating point 4 1E-45 to 3E38 *

double 64-bit signed floating point 8 5E-324 to 2E308 *
String 8 bits/char+1 byte # chars +1 N/A

Table 4: Number of registers needed for each one of the data types that can be saved to registers.

Notice that only those data types included in the table can be saved to registers. This might not
seem to be such an important issue, but if the user is not careful with the size of the variables,
data can be overwritten without warning. The example shown below illustrates how the data in
memory can be easily altered by accident.

 Writing an integer to register 101 will use the registers marked with an X

 0 1 2 3 4 5 6 8 7 8 9

 100 X X X X

 110

 Writing another integer to register 102 will use registers marked

 with a 0, overwriting some of the X registers

 0 1 2 3 4 5 6 8 7 8 9

 100 X 0 0 0 0

 110

 Write the new integer to register 105 instead, it will not alter the data

 101

 0 1 2 3 4 5 6 8 7 8 9

 100 X X X X 0 0 0 0

 110

The user must remember to skip some register in order to avoid altering previously saved data. A
good rule of thumb is to skip ten registers every time. By doing this, the user will not overwrite
basic data types. If the user needs to write Strings, which may take more than 10 registers, the
user could select a different range of registers. For example, use registers starting at register 20
to save basic data types every ten registers. Use registers starting at register 3000 to write
Strings skipping the necessary number of registers to avoid the destruction of data. The
commands to write to and read from system registers are:

RegisterReadByte()
Reads a byte data type from a specified register

Syntax
RegisterReadByte(int regNum);

Arguments

An integer value indicating the register number

Return values

A byte value read from the register number specified by the variable regNum.

Example:
byte b;
b = RegisterReadByte(16); //Reads 1 byte of Register 16

Notes

The byte data type occupies one DVT register.

RegisterReadShort()
Reads a short data type starting at a specific register

Syntax
RegisterReadShort(int regNum);

Arguments

An integer value indicating the register number

Return values

A short data type value starting at register location regNum.

Examples:
short s;
s = RegisterReadShort(100);//Big Endian Representation
s = RegisterReadShort(100,0);//Big Endian Representation
s = RegisterReadShort(100,1);//Little Endian Representation
 //(Byte order reversed)

Notes

 102

This short data type occupies two DVT registers.

RegisterReadInteger()
Reads an integer data starting at a specific register

Syntax
RegisterReadInteger(int regNum);

Arguments

An integer value indicating the register number

Return values

An integer data type value starting at register location regNum.

Examples:
int i;
i = RegisterReadInteger(100);//Big Endian Representation
i = RegisterReadInteger(100,0);//Big Endian Representation
i = RegisterReadInteger(100,1);//Little Endian Representation
 //(Byte order reversed)
i = RegisterReadInteger(100,2);//16 bit Word order reserved

Notes

The integer data type occupies four DVT registers.

RegisterReadLong()
Reads a long data type starting at a specific register

Syntax
RegisterReadLong(int regNum);

Arguments

An integer value indicating the register number

Return values

A long data type value starting at register location regNum.

Examples:
long l;
l = RegisterReadLong(100); //Big Endian Representation
l = RegisterReadLong(100,0); //Big Endian Representation
l = RegisterReadLong(100,1); //Little Endian Representation
 //(Byte order reversed)
l = RegisterReadLong(100,2); //32 bit Word order reversed

Notes

The long data type occupies eight DVT registers.

RegisterReadFloat()
Reads a float data type starting at a specific register

Syntax

 103

RegisterReadFloat(int regNum);

Arguments

An integer value indicating the register number

Return values

A float data type value starting at register location regNum.

Examples:
float f;
f = RegisterReadFloat(100);//Big Endian Representation
f = RegisterReadFloat(100,0);//Big Endian Representation
f = RegisterReadFloat(100,1);//Little Endian Representation
 //(Byte order reversed)
f = RegisterReadFloat(100,2);//16 bit Word order reversed

Notes

The float data type occupies four DVT registers.

RegisterReadDouble()
Reads a double data type starting at a specific register

Syntax
RegisterReadDouble(int regNum);

Arguments

An integer value indicating the register number

Return values

A double data type value starting at register location regNum.

Examples:
double d;
d = RegisterReadDouble(100); //Big Endian Representation
(default)
d = RegisterReadDouble(100,0); //Big Endian Representation
d = RegisterReadDouble(100,1); //Little Endian Representation
 //(Byte order reversed)
d = RegisterReadDouble(100,2); //32 bit Word order reversed

Notes

The double data type occupies eight DVT registers.

RegisterReadString()
Reads a String data type starting at a specific register

Syntax
RegisterReadString(int regNum);

Arguments

An integer value indicating the register number

Return values

A string data type value starting at register location regNum.

 104

Examples:
String MyString;
MyString = RegisterReadString(25);

Notes

The String data type is ended by the null character and it takes one register per character
plus one for the null character.

RegisterWriteByte()
Writes a byte data to a specific register

Syntax
RegisterWriteByte(int regnum, byte b);

Arguments

Int regnum: integer value indicating the register number

Byte b: byte variable to be written to the register

Return values

Int result: result = 0 for success, result = -1 for failure (invalid register number).

Examples:
byte b;
b = 35;
RegisterWriteByte(16,b);

RegisterWriteShort()
Writes a short data type starting at a specific register

Syntax
RegisterWriteShort(int regnum, short s);

Arguments

Int regnum: integer value indicating the register number

Short s: short variable to be written to the register

Return values

Integer result. Result = 0 for success, result = -1 for failure (invalid register number).

Examples:
short a;
a = 234;
RegisterWriteShort(100,a); //Big Endian Representation
RegisterWriteShort(100,a,0); //Big Endian Representation
RegisterWriteShort(100,a,1); //Little Endian Representation
(Byte order reversed)

Notes

The write operation for the short data type takes two DVT registers (starting at regNum).

 105

RegisterWriteInteger()
Writes an integer data type starting at a specific register

Syntax
RegisterWriteInteger(int regnum, int i);

Arguments

Int regnum: integer value indicating the register number

Int i: int variable to be written to the register

Return values

Int result: result = 0 for success, result = -1 for failure (invalid register number).

Examples:
int j;
j = 2345;
RegisterWriteInteger(110,j); //Big Endian Representation
RegisterWriteInteger(110,j,0); //Big Endian Representation
RegisterWriteInteger(110,j,1); //Little Endian Representation
(Bytes order reversed)
RegisterWriteInteger(110,j,2); //16 bit word order reversed

Notes

The int data type occupies four DVT registers (starting at regNum).

RegisterWriteLong()
Writes a long data type starting at a specific register

Syntax
RegisterWriteLong(int regnum, long k);

Arguments

Int regnum: integer value indicating the register number

Long k: long variable to be written to the register

Return values

Integer result. Result = 0 for success, result = -1 for failure (invalid register number).

Examples:
long k;
k = 123456789;
RegisterWriteLong(120,k); //Big Endian Representation
RegisterWriteLong(120,k,0); //Big Endian Representation
RegisterWriteLong(120,k,1); //Little Endian Representation
 //(Byte order reversed)
RegisterWriteLong(120,k,2); //32 bit Word order reversed

Notes

The long data types occupy eight registers (starting at RegNum).

RegisterWriteFloat()
Writes a float data type starting at a specific register

 106

Syntax
RegisterWriteFloat(int regnum, float f);

Arguments

Int regnum: integer value indicating the register number

Float f: float variable to be written to the register

Return values

Integer result. Result = 0 for success, result = -1 for failure (invalid register number).

Examples:
float g;
g = 234.34;
RegisterWriteFloat(130,g); //Big Endian Representation
RegisterWriteFloat(130,g,0); //Big Endian Representation
RegisterWriteFloat(130,g,1); //Little Endian Representation
 //(Byte order reversed)
RegisterWriteFloat(130,g,2); //16 bit Word order reversed

Notes

The float data types occupy four DVT registers (starting at regNum).

RegisterWriteDouble()
Writes a double data type starting at a specific register

Syntax
RegisterWriteDouble(int regnum, double d);

Arguments

Int regnum: integer value indicating the register number

Double d: double variable to be written to the register

Return values

Integer result. Result = 0 for success, result = -1 for failure (invalid register number).

Examples:
double e;
e = 123456.4321;
RegisterWriteDouble(140,e); //Big Endian Representation
RegisterWriteDouble(140,e,0); //Big Endian Representation
RegisterWriteDouble(140,e,1); //Little Endian Representation
 //(Byte order reversed)
RegisterWriteDouble(140,e,2); //32 bit Word order reversed

Notes

The double data types occupy eight DVT registers (starting at regNum).

RegisterWriteString()
Writes a String data type starting at a specific register

Syntax
RegisterWriteString(int regnum, String myString);

 107

Arguments

Int regnum: integer value indicating the register number

String myString: String variable to be written to the register

Return values

Integer result. Result = 0 for success, result = -1 for failure (invalid register number).

Examples:
String MsgString;
MsgString = "Failed to execute!";
RegisterWriteString(25,MsgString);

Notes

String data types occupy one register per string character (starting at regNum) plus one
for the null character.

 108

 109

Chapter 8 – Input/Output Functions
Scripts have the ability to directly access or modify inputs and outputs. This is a very valuable
feature of scripts. In many cases, users need to perform the entire inspection from a background
script. However, the trigger signal does not trigger a background script; a different input must be
used. In situations like these one and many others is where the direct access to I/O lines makes
scripts extremely versatile tools. This chapter describes the different commands available for that
purpose.

 110

Use of I/O commands
Scripts do not directly access the system I/O lines. They access a certain location in memory
where all the system inputs and outputs are saved: the virtual I/O. These can be manually
mapped to the physical I/O from FrameWork by the user or directly accessed via Ethernet by
accessing specific system registers. Figure 14 shows the mapping of the I/O lines.

Figure 14: use of system I/O. All the I/O lines are mapped to system memory (first 11 registers) and any eight of

them can be mapped to the physical I/O. The figure shows eight random I/O assigned to the physical I/O for
illustration purposes only. The inputs and outputs highlighted in white are the ones reserved for scripts.

The figure shows one particular setup in which two lines are dedicated to script I/O. Input 18 and
output 24 are assigned to physical I/O 4 and 7 respectively. This assignment will allow scripts in
the SmartImage Sensor to monitor the physical I/O 4 and to set the value of I/O 7 as needed. Any
of the I/O can be accessed at anytime via Ethernet by reading from or writing to the appropriate
register. Notice that there are 32 virtual inputs and 64 virtual outputs. This is why in order to
access each one; we use 32-bit variables for inputs and 64-bit variables for outputs in
combination with bit manipulation commands. For example, if we wanted to check the status of
input 24, we would assign the status of all 32 inputs to a variable and then mask out the bits we
do not need. For details see bit manipulation.

 111

There are two main types of input/output commands available from scripts: the ones that are
executed and do not pause the execution of the program, and those who cause such delay.
Foreground Scripts are part of an inspection, so they cannot be set to wait for an event or the
results of the inspection will be delayed potentially causing serious timing issues. Thus, the only
I/O commands available from Foreground Scripts are those that access the I/O to instantaneously
get or set states. For Background Scripts both types of function are available, the standard group
and those commands that pause execution waiting for a specific signal. All the commands are
explained in this section.

GetInputs()
This function returns a 32-bit integer value representing the current state of the inputs bits.
SmartImage Sensors have 32 inputs, each one of those inputs are assigned to one of the bits in
this 32-bit variable. Bitwise operations must be used to mask out unnecessary data and extract
only the desired bits. This function is available for both Foreground Scripts and Background
Scripts.

Syntax
int i = GetInputs();

Arguments:

None

Return values

Int i: 32-bit integer value containing the status of the input lines.

Examples:
//the following script checks script input 19 (bit19)
//to determine if an value has been written
//to a certain register, if so, the register is read
int b=1;
byte myData;
if ((GetInputs() & (b<<19))!=0)
{
 myData = RegisterReadByte(20);//read the data
}

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

GetOutputs()
This function returns a 64-bit integer value representing the current state of the outputs bits.
SmartImage Sensors have 64 outputs, each one of those outputs are assigned to one of the bits
in this 64-bit variable. Bitwise operations can be used to mask out unnecessary data and extract
only the desired bits. This function is available for both Foreground Scripts and Background
Scripts.

Syntax
long b = GetOutputs();

Arguments:

None

Return values

Long b: 64-bit integer value containing the status of the output lines.

 112

Examples:
//wait for the busy output to go inactive
//busy output is output 3
long b=1;
while ((GetOutputs() & (b<<3))!=0)
{
 //empty loop
}

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

SetInputs()
This function sets inputs high and low as needed. It takes in two arguments consisting of 32-bit
integer values. One of them represents the bits to set to high and the other one the bits to set to
low. SmartImage Sensors have 32 inputs, each one of those outputs are assigned to one of the
bits in these 32-bit variables. This function is available for both Foreground Scripts and
Background Scripts.

Syntax
SetIntputs(int on, int off);

Arguments:

Int on: represents the inputs to set to high. The bits in this variable that contain a 1 are
the inputs that are set to high.

Int off: represents the inputs to set to low. The bits in this variable that contain a 1 are the
inputs that are set to low.

 If only ON or only OFF bits are used, the other argument should be set to zero.

Examples:
// toggle the digital relearn input bit (input 17)
int b=1;
SetInputs((b<<17),0);
sleep(5);//wait for 5 milliseconds
SetInputs(0, (b<<17));

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

SetOutputs()
This function is use to set outputs either high or low. It takes in two arguments consisting of 64-bit
integer values. One of them represents the bits to set to high and the other one the bits to set to
low. SmartImage Sensors have 64 outputs, each one of those outputs are assigned to one of the
bits in these 64-bit variables. This function is available for both Foreground Scripts and
Background Scripts.

Syntax
SetOutputs(long on, long off);

Arguments:

Long on: represents the outputs to set to high. The bits in this variable that contain a 1
are the outputs that are set to high.

 113

Long off: represents the outputs to set to low. The bits in this variable that contain a 1 are
the outputs that are set to low.

 If only ON or only OFF bits are used, the other argument can be a zero.

Examples:
//Hold both Outputs 24 and 25 active for 10 milliseconds
long b=1;
SetOutputs((b<<24) | (b<<25),0);
sleep(10);
SetOutputs(0, (b<<24) | (b<<25));

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

SetOutputsAfterInspection()
This function can only set outputs high as needed. It takes in one argument consisting of a 64-bit
integer value. It contains the bits indicating the outputs to set to high. SmartImage Sensors have
64 outputs, each one of those outputs is assigned to one of the bits in the 64-bit variable. This
function is available for both Foreground Scripts and Background Scripts.

Syntax
SetOutputsAfterInspection(long on);

Arguments:

Long on: represents the outputs to set to high. The bits in this variable that contain a 1
are the outputs that are set to high.

Examples:
//Set an extra output (output 28) based on the result
//of a measurement SoftSensor called height.
long b=1;
float maxDistanceInPixels = 3.65;
if(height.Distance >= maxDistanceInPixels)
{
 SetOutputsAfterInspection(b<<28);
}

Notes

This function does not set the output immediately, it waits until the inspection is over and
the inspection outputs are made available based on the I/O parameters setting for
inspections. When the inspection outputs are reset based on user preferences (output
pulse width), this output disappears as well (there is no need to reset it manually).

For a complete list of the input/output mapping refer to the Input/Output Map.

WaitOnInput ()
This function is allowed only in Background Scripts. When the Background Script gets to the line
with this function, it blocks (non-busy wait) for at most a user definable number of milliseconds
until the state of the virtual input indicated by the argument is set to active state. If the virtual input
under consideration changes to high, the call returns with a success code and the execution
continues. If the state of the virtual input under consideration does not change during the
specified timeout, the call returns with a ‘timeout’ error code and the execution continues. If the

 114

virtual input under consideration is already at the desired state when the call is made, then it
returns immediately with a success code and the execution continues.

Syntax
WaitOnInput(int inputToWaitOn, int timeout);

Arguments:

Int inputToWaitOn: virtual input to wait on represented by an integer value.

Int timeout: amount of time to wait in milliseconds. Timeout < 0 means wait forever.

Return value

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: function called in a foreground script (JDIGITALIO_FOREGROUND)

Code -12: wait operation timed out (JDIGITALIO_TIMEDOUT)

Code -13: invalid parameters (JDIGITALIO_INVALID_PARAMETER)

Examples:
//Wait for input 31 to be set before reading a register.
//Wait at most 150 milliseconds
int result;
byte value;
result = WaitOnInput(31,150);
if(result == 0)
{
 value = RegisterReadByte(20);
}

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

WaitOnAnyInput ()
This function is allowed only in background scripts. When the Background Script gets to the line
with this function, it blocks (non-busy wait) for at most a user definable number of milliseconds
until the state of ANY virtual input indicated by ActiveBits or InactiveBits becomes active or
inactive respectively. If ANY virtual input under consideration changes to the desired state, the
call returns with a success code and the execution continues. If the state of NONE of the virtual
inputs under consideration changes during the specified timeout, the call returns with a ‘timeout’
error code and the execution continues. If ANY virtual input under consideration is already at the
desired state when the call is made, then it returns immediately with a success code and the
execution continues.

Syntax
WaitOnAnyInput(int activeIn, int inactiveIn, int timeout);

Arguments:

Int activeIn: virtual inputs to wait on represented by a 32-bit integer number. The input
bits specified in this variable are expected to change to high.

Int inactiveIn: virtual inputs to wait on represented by a 32-bit integer number. The input
bits specified in this variable are expected to change to low.

Int timeout: amount of time to wait in milliseconds. Timeout < 0 means wait forever.

 115

Return value

Int result: result=0 for success, Result<0 for error

Error codes

Code -12: wait operation timed out (JDIGITALIO_TIMEDOUT)

Code -11: function called in a foreground script (JDIGITALIO_FOREGROUND)

Code -13: invalid parameters (JDIGITALIO_INVALID_PARAMETER)

Examples:
//Wait for inputs 30 or 31 to be set or inputs
//28 or 29 to be reset before reading a register.
//Wait at most 150 milliseconds
int b=1, result;
byte value;
result = WaitOnAnyInput(b<<31|b<<30, b<<29|b<<28,150);
if(result == 0)
{
 value = RegisterReadByte(20);
}

Note

For a complete list of the input/output mapping refer to the Input/Output Map.

 116

DVT Register and I/O Map

 117

Chapter 9 - Communications
FrameWork contains a number of tools specifically designed for the implementation of
communications with external devices. However, in some cases, users need a more custom
process to be implemented to successfully exchange data with another device (for example when
a specific handshake is needed to successfully communicate with an external device). For those
cases, scripts expand the ability of FrameWork by adding the Socket, and Modbus Objects.
Socket objects are used for TCP/IP communications over Ethernet connections, and Modbus
Objects for using the Modbus TCP protocol over Ethernet connections. This chapter explains the
functionality of the aforementioned objects.

 118

Socket Object
This built-in object can used to perform generic socket read/write operations from a Background
Scripts. The Socket Object has both methods and fields that allow the user to perform these
actions and control some of the most common socket options. A socket object can have two
different ways to establish a connection: as a client or as a server. As a client it only needs to be
created and to connect to a server. As a server, it only needs to wait for a client to establish a
connection to a certain port. After the connection is established in either way, bidirectional
communication is viable. This section summarizes the functionality of the methods and fields and
provides some examples.

Socket()
This is the constructor, it must be called to create and initialize the object.

Syntax
Socket(int type);

Arguments

Int type is an integer indicating the type of socket that should be created as indicated
below:

No argument: creates a TCP socket.

1: creates a UDP socket.

The default value for type is 0.

Return values

Returns an object reference to the object or a null reference if operation failed or the
function is called in a foreground script.

Example
Socket sock;
sock = new Socket();
if(sock == null)
{
 DebugPrint(“Creation of socket failed”);
}

Note

This function only works for Background Scripts.

Connect()
This method is used to establish a connection to a server. It is used only when the socket object
created acts as a client.

Syntax
MySocket.Connect(string IPAddress, int port);

Arguments:

String IPAddress is a string containing the IP Address of the server.

Int Port is an integer value indicating the server port to connect to.

Return values

 119

Int result: this function returns an integer. Result = 0 for success, and Result < 0 for
failure.

Error codes

Code -11: already connected or connection error (SCRIPT_SOCKET_ERROR).

Code -21: Invalid IP address (SCRIPT_SOCKET_INVALID_IP)

Examples:
//create a socket and connect to IP Address 192.168.1.174 using
//port number 5001
Socket sock;
sock = new Socket();
Result = sock.Connect(“192.168.1.174”, 5001);

Bind()
This method is used to associate (‘Bind’) a socket object with a particular TCP port during the set-
up sequence for a server. This method is used only when the socket object acts as a server.

Syntax
MySock.Bind(int port);

Arguments:

Int port: integer value indicating the port number to use.

Return values

Int result: this function returns an integer. Result = 0 for success, and Result < 0 for
failure.

Error codes

Code -11: cannot bind to a connected socket (SCRIPT_SOCKET_ERROR).

Code -12: Failure to bind to port (SCRIPT_SOCKET_ERROR_BIND).

Example:
Socket sock;
sock = new Socket();
int result;
//bind socket to port 1000
result = sock.Bind(1000);

Listen()
This method is used to listen for connections on a socket that has been bound to a specific port.
This method is used only when the socket object acts as a server.

Syntax
MySocket.Listen();

Arguments:

None

Return values

Int result: this function returns an integer. Result = 0 for success, and Result < 0 for
failure.

 120

Error codes

Code -11: Failure to use socket (SCRIPT_SOCKET_ERROR).

Code -13: Failure to listen on that port (SCRIPT_SOCKET_ERROR_LISTEN).

Example:
Socket sock;
sock = new Socket();
int result;
//bind original socket to port 1000
result = sock.Bind(1000);
if(result == 0)
{
 result = sock.Listen();
 //code continues here
}

Accept()
This method is used to accept connections on a socket that has been bound to a specific port.
The result is a new socket that can be used to perform sends() and rcvs() to interchange data
with another device. This method is used only when the socket object acts as a server.

Syntax
MySocket.Accept(NewSocket);

Arguments:

Socket NewSocket: socket object that will handle communications in this port.

Return values

Int result: this function returns an integer. Result = 0 for success, and Result < 0 for
failure.

Error codes

Code -11: socket already connected or socket failed to accept connection
(SCRIPT_SOCKET_ERROR).

Example:
Socket sock;
Socket newSock;
sock = new Socket();
newSock = new Socket();
int result;
//bind original socket to port 5005
result = sock.Bind(5005);
if(result == 0)//if no errors proceed
{
 result = sock.Listen();
 if(result == 0)//if no errors proceed
 {
 result = sock.Accept(newSock);
 //code continues here
 }
}

 121

Recv()
This virtual method receives data into an array of bytes from a connected socket. The amount of
data to be received is determined by the length of the predefined array. It is possible to set a
timeout for this operation using the RecvTO field.

Syntax
MySocket.Recv(byte inData[]);

Arguments:

Byte inData: byte array that is populated as data is received.

Return values

Int result: this function returns an integer. Result >= 0 for success (the actual number
indicates the number of bytes received) and Result < 0 for failure.

Error codes

Code -11: Failed to receive data (SCRIPT_SOCKET_ERROR).

Code -14: Timeout failure (SCRIPT_SOCKET_TIMEOUT).

Examples:
int result;
byte inData[];
inData = new byte[5]; //will receive 5 bytes of data
//assumes socket is created, initialized and connection
//is established
result = MySocket.Recv(inData);

Recv(, ,)
This method populates an array of bytes with data received from another device but instead of
just filling up the array, it receives a limited number of bytes and it can be set to start at a
predefined location in the array.

Syntax
MySocket.Recv(byte inData[], int offset, int len);

Arguments:

Byte inData: byte array that is populated as data is received.

Int offset: index of the array cell where data should start

Int len: maximum number of bytes to receive

Return values

Int result: this function returns an integer. Result >= 0 for success (the actual number
indicates the number of bytes received) and Result < 0 for failure.

Error codes

Code -11: Failed to receive data or invalid arguments used
(SCRIPT_SOCKET_ERROR).

Code -14: Timeout failure (SCRIPT_SOCKET_TIMEOUT).

Examples:
int result, len = 2, offset = 2;
byte inData[];

 122

inData = new byte[5]; //will receive 5 bytes of data
//assumes socket is created, initialized and connection
//is established
result = MySocket.Recv(inData, offset, len);

Send()
This virtual method sends an array of bytes out using a connected socket. The amount of data to
be sent is determined by the length of the predefined array.

Syntax
MySocket.Send(byte inData[]);

Arguments:

Byte inData: byte array that contains the data to be sent.

Return values

Int result: this function returns an integer. Result >= 0 for success (the actual number
indicates the number of bytes sent) and Result < 0 for failure.

Error codes

Code -11: Error using socket or sending data (SCRIPT_SOCKET_ERROR).

Code -14: Timeout failure (SCRIPT_SOCKET_TIMEOUT).

Examples:
int result;
byte outData[];
outData = new byte[5]; //will send 5 bytes of data
//assumes socket is created, initialized and connection
//is established
result = MySocket.Send(outData);

Send(, ,)
This virtual method sends data from an array of bytes out using a connected socket. The amount
of data to be sent is determined by the user.

Syntax
MySocket.Send(byte inData[], int offset, int len);

Arguments:

Byte inData: byte array that contains the data to be sent.

Int offset: index of the array cell where to start sending.

Int len: maximum number of bytes to send. If the end of the array is reached before this
number, the operation stops.

Return values

Int result: this function returns an integer. Result >= 0 for success (the actual number
indicates the number of bytes sent) and Result < 0 for failure.

Error codes

Code -11: Failed to receive data or invalid arguments used
(SCRIPT_SOCKET_ERROR).

Code -14: Timeout failure (SCRIPT_SOCKET_TIMEOUT).

 123

Examples:
int result, len = 2, offset = 2;
byte outData[];
outData = new byte[5]; //will send 5 bytes of data
//assumes socket is created, initialized and connection
//is established
result = MySocket.Send(inData, offset, len);

ConnectTO
This field of s Socket Object is used to set or to read the timeout setting for the connection. The
default value is 5000 milliseconds (5 sec.).

Syntax
MySocketObject.ConnectTO;

Arguments:

None

Return values

The connection timeout setting

Example:
Socket Sock;
Sock = new Socket();
int getConnectTimeout;
getConnectTimeout = Sock.ConnectTO;//this line returns the value
Sock.ConnectTO = 3500;//this line sets it to 3.5 seconds

SendTO
This field of Socket Objects is used to set or to read the timeout setting for the process of sending
data. The default value is 1000 milliseconds (1 sec.)

Syntax
MySocketObject.SendTO;

Arguments:

None

Return values

The timeout setting for sending data

Example:
Socket Sock;
Sock = new Socket();
int getSendTimeout;
getSendTimeout = Sock.SendTO;//this line returns the value
Sock.SendTO = 3500;//this line sets it to 3.5 seconds

RecvTO
This field of Socket Objects is used to set or to read the timeout setting for the process of
receiving data. The default value is 1000 milliseconds (1 sec.)

Syntax

 124

MySocketObject.RecvTO;

Arguments:

None

Return values

The timeout setting for receiving data

Example:
Socket Sock;
Sock = new Socket();
int getRecvTimeout;
getRecvTimeout = Sock.RecvTO;//this line returns the value
Sock.RecvTO = 3500;//this line sets it to 3.5 seconds

RecvFrom()
This virtual method receives a specified number of bytes into an array from a UDP socket. The
data is placed in the array starting at a specified offset.

Syntax
MySocketObject.RecvFrom(byte b[], int offset, int len);

Arguments:

b[]: byte array to receive the data into.

offset: index to start from in b[].

len: maximum number of bytes to receive.

Return values

int result: Result >= 0 for success, actual number of bytes received. Result < 0 for error.

Error codes

Code -11: Error using socket or sending data (SCRIPT_SOCKET_ERROR).

Code -14: Timeout failure (SCRIPT_SOCKET_TIMEOUT).

Example:
// Create byte array to hold data
byte data[] = new byte[10];
// Create UDP socket
Socket UdpSocket = new Socket(1);
// Bind to UDP pot 50000
UdpSocket.Bind(50000);
// Set Receve timeout to 1 second
UdpSocket.RecvTO = 1000;
// Receive data sent to UDP port 50000
UdpSocket.Recv(data,0,data.length);

SendTo()
This virtual method sends a specified number of bytes from an array out from a UDP socket. The
data is obtained from the array starting at a specified offset.

Syntax

 125

MySocketObject.SendTo(String IpAddr, int UDPport, byte b[], int
offset, int len);

Arguments:

IpAddr[]: string with the IP address of the target in “xxx.xxx.xxx.xxx” format.

UDPport: UDP port to send the data to in the target node.

b[]: Byte array to send data from.

offset: index to start from in b[].

len: maximum amount of data to send. If the end of the array is reached before len bytes
are sent, the operation stops.

Return values

int result: Result >= 0 for success, actual number of bytes sent. Result < 0 for error.

Error codes

Code -11: Failure to use socket (SCRIPT_SOCKET_ERROR).

Example:
// Create byte array to hold data
String data = "DVT";
// Create UDP socket
Socket UdpSocket = new Socket(1);
// Set Send Timeout to 1 second
UdpSocket.SendTO = 1000;
// Send to target IP and UDP port
UdpSocket.SendTo("192.168.0.1", 50000, data.toByteArray(), 0,
data.length());

Modbus Object
This built-in object can be used to perform single Modbus transfers of data from a Background
Script. The new ‘MBtransfer’ type in script has both ‘methods’ and fields that allow the user to
perform these actions and control some of the most common transfer parameters. Regular
Modbus transfers can be implemented directly from the FrameWork user interface without using
scripts; however, those transfers use a certain polling rate whereas the ones implemented via
Modbus objects can be set to transfer data when certain events occur. This gives the user more
control over the timing of the data transfer. The commands are explained here, an example is
provided in a later chapter, for more information read the DVT integration notes available for
download from the DVT website.

MBTransfer()
This is the constructor, it must be called to create and initialize the object.

Syntax
MyTransfer = MBTransfer();

Arguments:

None

Example:
MBtransfer MyTx;
MyTx = new MBTransfer();
//at this point the object has been created and initialized

 126

Note

Note that the first statement uses MBtransfer (lowercase t) whereas the second
statement uses MBTransfer() (uppercase t) that is because one is the declaration and the
other one consists of the constructor

Connect()
This method initiates a Modbus connection to the slave IP indicated by a string passed as the
argument. This connection remains open until the close() method is called.

Syntax
MyMbObject.Connect(String IP);

Arguments:

String IP: a string containing the IP address to connect to

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: failure to open socket.(MBM_SOCKET_ERROR)

Code -11: socket already open (MBM_SCRIPT_SOCKET_OPEN)

Code -13: indicates IP contained an invalid IP address (MBM_SCRIPT_INVALID_IP)

Example:
int result;
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");

Close()
This method closes the Modbus connection associated with the Modbus transfer object.

Syntax
MyMbObject.Close();

Arguments:

None

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket already closed (MBM_SOCKET_ERROR)

Example:
int result;
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 //execute transfers here

 127

 result = MyTx.Close();
}

Note

Only use this function to close a socket before connecting to a new device. Sockets close
automatically when the execution of the script ends.

Read()
This method performs a single Modbus read (FC= Read Multiple Regs) via the connection
associated to the Modbus transfer object.

Syntax
MyTx.Read(int MasterReg, int SlaveReg, int NumRegs, int SendTO);

Arguments:

Int MasterReg: Modbus Register number in the MASTER (system containing the
Background Script). Indicates where to start placing the data read.

Int SlaveReg: Modbus Register number of where to start reading the data from in the
SLAVE.

Int NumRegs: Number of Modbus registers to read.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Read 5 modbus regs from the slave’s Modbus reg #1000 into the
master’s modbus reg #500. Wait for response at most 1500
milliseconds
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.Read(500,1000,5,1500);
}

Notes

 128

Modbus registers are 16-bit long and DVT registers are 8-bit long. Transferring n Modbus
registers into a SmartImage Sensor means that 2n registers will receive data. Likewise,
transferring n DVT registers means transferring n/2 Modbus registers.

Write()
This method performs a single Modbus write (FC= Write Multiple Regs) via the connection
associated to the Modbus transfer object.

Syntax
MyTx.Write(int MasterReg, int SlaveReg, int NumRegs, int SendTO);

Arguments:

Int MasterReg: Modbus Register number in the MASTER (system containing the
Background Script). Indicates where to start reading the data to be transferred.

Int SlaveReg: Modbus Register number of where to start writing the data.

Int NumRegs: Number of Modbus registers to write.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Write 4 modbus regs from the master’s Modbus reg #100 into the
slave’s modbus reg #200. Wait for response at most 1000
milliseconds
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.Write(100,200,4,1000);
}

Notes

Modbus registers are 16-bit long and DVT registers are 8-bit long. Transferring n Modbus
registers into a SmartImage Sensor means that 2n registers will receive data. Likewise,
transferring n DVT registers means transferring n/2 Modbus registers.

 129

ReadCoils()
This method performs a single Modbus read coils (FC= 1) via the connection associated to the
Modbus transfer object.

Syntax
MyTx.ReadCoils(int MCoil, int SCoil, int NCoils, int SendTO);

Arguments:

Int MCoil: Modbus Coil number in the MASTER (system containing the Background
Script). Indicates where to start placing the data read.

Int SCoil: Modbus Coil number of where to start reading the data (in the SLAVE).

Int NCoils: Number of Modbus coils to read.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Read 5 modbus coils from the slave starting at coil #2 into the
master’s modbus coils starting at coil #1. Wait for response at
most 1500 milliseconds
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.ReadCoils(1,2,5,1500);
}

Notes

Coil numbers are according to the Modbus TCP protocol. The documentation for the
slave device should indicate the physical address that Modbus Coils are mapped to. In
the Modicon 984 Coils are mapped to the 0-10000 address range. In order to simplify
data manipulation, SmartImage Sensors support the use of coils. When the user writes to
a number of coils in the registers, individual bits are accessed. See the register map at
the end of this section for a reference on how to refer to individual bits by coil numbers.

 130

WriteCoil()
This method performs a single Modbus write coil request (FC= 5) via the connection associated
to the Modbus transfer object.

Syntax
MyTx.WriteCoil(int slaveCoil, int coilState, int SendTO);

Arguments:

Int slaveCoil: Modbus Coil number in the SLAVE. Indicates which coil to write to.

Int coilState: desired state for the coil: 0 turns coil OFF, 1 turn coil ON.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
// Turn ON coil 5 in the slave with a timeout of 1.5 seconds
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.WriteCoil(5,1,1500);
}

Notes

Coil numbers are according to the Modbus TCP protocol. The documentation for the
slave device should indicate the physical address that Modbus Coils are mapped to. In
the Modicon 984 Coils are mapped to the 0-10000 address range. In order to simplify
data manipulation, SmartImage Sensors support the use of coils. When the user writes to
a number of coils in the registers, individual bits are accessed. See the register map at
the end of this section for a reference on how to refer to individual bits by coil numbers.

ReadInputDiscretes()
This method performs a single Modbus read input discretes request (FC= 2) via the connection
associated to the Modbus transfer object.

Syntax
MyTx.ReadInputDiscretes (int mDiscr, int sDiscr, int nBits, int
SendTO);

 131

Arguments:

Int mDiscr: Modbus Input Discrete number in the MASTER (system containing the
Background Script). Indicates where to start placing the data read.

Int sDiscr: Modbus Input Discrete number of where to start reading the data (in the
SLAVE).

Int nBits: Number of Modbus Input Discretes to read.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Read 5 Modbus Input Discretes from the slave, starting at Input
Discrete #2. Write them into the master starting at the master’s
Input Discrete #1. Wait for response at most 1500 milliseconds.
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.ReadInputDiscretes(1,2,5,1500);
}

Notes

Input Discrete numbers are according to the Modbus TCP protocol. The documentation
for the slave device should indicate the physical address that Modbus Input Discretes are
mapped to. For example, in the Modicon 984, Input Discretes are mapped to the 10001-
20000 address range.

ReadInputRegs()
This method performs a single Modbus read input registers request (FC= 4) via the connection
associated to the Modbus transfer object.

Syntax
MyTx.ReadInputRegs (int mReg, int sReg, int nRegs, int SendTO);

Arguments:

 132

Int mReg: Modbus register number in the MASTER (system containing the Background
Script). Indicates where to start placing the incoming data.

Int sReg: Modbus register number of where to start reading the data (in the SLAVE).

Int nRegs: number of Modbus registers to read.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Read 5 Modbus Input Registers from the slave’s Reg #100 into the
master’s Modbus Reg #50. Wait for response at most 1500
milliseconds
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.ReadInputRegs(50,100,5,1500);
}

Notes

For this function code, the slave’s Input Registers are accessed (input registers are
mapped starting at starting at address 30001 in a Modicon 984). Modbus registers are
16-bit long and DVT registers are 8-bit long. Transferring n Modbus registers into a
SmartImage Sensor means that 2n registers will receive data. Likewise, transferring n
DVT registers means transferring n/2 Modbus registers.

WriteRegister()
This method performs a single Modbus write single register request (FC= 6) via the connection
associated to the Modbus transfer object.

Syntax
MyTx.WriteRegister(int mReg, int sReg, int SendTO);

Arguments:

Int mReg: Modbus Register number in the MASTER (system containing the Background
Script). This is the register that contains the data to be written to the SLAVE.

 133

Int sReg: Modbus Register number to write on the SLAVE.

Int SendTO: max time in milliseconds to wait for a reply before assuming an error
occurred:

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Write a single modbus register (master’s modbus reg#100) into the
slave’s modbus reg #200. Wait for response at most 1000
milliseconds.
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.WriteRegister(100,200,1000);
}

Notes

For this function code, the slave’s holding registers are accessed (holding registers are
mapped starting at starting at address 40001 in a Modicon 984). Modbus registers are
16-bit long and DVT registers are 8-bit long. Transferring 1 Modbus register into a
SmartImage Sensor means that 2 DVT registers will receive data. Likewise, transferring 2
DVT registers means transferring 1 Modbus register.

ReadStatus()
This method performs a Modbus Read Exception Status request (FC =7) via the connection
associated to the Modbus transfer object

Syntax
MyTx.ReadStatus(int mReg, int sentTO);

Arguments:

Int mReg: Modbus Register number in the MASTER (system containing the BG script.)
Indicates where to place the status data.

Int sendTO: maximum time in milliseconds to wait for a reply before assuming an error
occurred.

Return values

 134

Int result: result=0 for success, Result<0 for error

Error codes

Code -1: socket error occurred (MBM_SOCKET_ERROR).

Code -2: received response with wrong length (MBM_BAD_DATA_LENGTH).

Code -3: received response with bad header (MBM_BAD_HEADER).

Code -4: received response with bad word count (MBM_BAD_WORD_COUNT).

Code -5: received response with bad FC - error response (MBM_BAD_CMD).

Code -6: invalid Modbus address specified (MBM_ADDR_OUT_OF_RANGE).

Code -7:system Out of Memory (MBM_OUT_OF_MEMORY).

Example:
/*
Read the status from a slave and place data in the master’s
modbus register #100. Wait for response at most 1500
milliseconds.
*/
MBtransfer MyTx;
MyTx = new MBTransfer();
result = MyTx.Connect("192.168.0.40");
if(result == 0)
{
 result = MyTx.ReadStatus (100,1500);
}

Notes

Status data is 1 byte in length and it is placed in the LSB of the Modbus register (which
contains two bytes). Slave devices generally map 8 coils to the status and send this data
in response to a read status function code. Consult the documentation of each slave for
details. Modbus registers are 16-bit long and DVT registers are 8-bit long. Transferring 1
Modbus register into a SmartImage Sensor means that 2 DVT registers will receive data.
Likewise, transferring 2 DVT registers means transferring 1 Modbus register. In this case,
only the lowest 8 bits of the Modbus register contain data, so the actual status data
occupies bits 0 to 7 of the DVT register 201 after execution of the command above.

 135

Mapping DVT Registers to Modbus Coils

 136

 137

Chapter 10 – OEM Functions
FrameWork includes a number of commands that are used for the interaction of SmartImage
Sensors with specific external devices. They provide a way to share data with them using simple
script commands. This chapter illustrates the three types of OEM functions that scripts use.

 138

FrameWork includes specific drivers to that can be used to share data with external devices. The
three types of commands that are explained here are: AB functions (used to communicate with
Allen Bradley devices using the Ethernet/IP protocol), Fanuc functions (used to exchange data
with Fanuc robots) and Motoman functions (which exchange data with Motoman robots). The
syntax and basic use of the commands are explained here. For more specification on the setup
please see the DVT integration notes.

Allen Bradley Functions
The Allen Bradley (or AB) functions are used in conjunction with the Ethernet/IP protocol. To
transfer information between SmartImage Sensors and Allen Bradley products using the
aforementioned protocol.

AB_RegisterReadDINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterReadDINT() function allows the user to read from individual
registers in the DINTS block of memory.

Syntax
 value = AB_RegisterReadDINT (int index);

Arguments

Int index: index in the DINTS data block. The range for this parameter is determined by
the data type and the size of the data block. In this case (32-bit signed integer) the valid
range goes from 0 to 63 indices.

Return values

int value. Value stored at the specified index in the DINTS data block.

Error codes:

Code -1: Index was out of range

Example
int value;
 value = AB_RegisterReadDINT(0);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterReadINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to
transfer information between the DVT SmartImage Sensor and an Allen Bradley system
running EtherNet/IP. The AB_RegisterReadINT() function allows the user to read from
individual registers in the INTS block of memory.

Syntax
 value = AB_RegisterReadINT (int index);

Arguments

 139

Int index: index in the INTS data block. The range for this parameter is determined by
the data type and the size of the data block. In this case (16-bit signed integer) the valid
range goes from 0 to 127 indices.

Return values

Short value. Value stored at the specified index in the INTS data block.

Error codes:

Code -1: Index was out of range

Example
short value;
value = AB_RegisterReadINT(0);

Note

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterReadREAL()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterReadREAL() function allows the user to read from individual
registers in the REALS block of memory.

Syntax
 value = AB_RegisterReadREAL (int index);

Arguments

Int index: index in the REALS data block. The range for this parameter is determined by
the data type and the size of the data block. In this case (32-bit floating point) the valid
range goes from 0 to 63 indices.

Return values

float value. Value stored at the specified index in the REALS data block.

Error codes:

Code -1: Index was out of range

Example
float value;
 value = AB_RegisterReadREAL(0);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterReadSINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterReadSINT() function allows the user to read from individual
registers in the SINTS block of memory.

 140

Syntax
bit value = AB_RegisterReadSINT (int index);

Arguments

Int index: index in the SINTS data block. The range for this parameter is determined by
the data type and the size of the data block. In this case (8-bit signed integer) the valid
range goes from 0 to 255 indices.

Return values

byte value. Value stored at the specified index in the SINTS data block.

Error codes:

Code -1: Index was out of range

Example
int value;
 value = AB_RegisterReadSINT(0);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterReadString()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterReadString() function allows the user to read data from the SINTS
block of memory.

Syntax
 str = AB_RegisterReadString (int index);

Arguments

Int index: index in the SINTS data block. The range for this parameter is determined by
the data type and the size of the data block. In this case (8-bit signed integer) the valid
range goes from 0 to 255 indices.

Return values

String str. Value stored at the specified index in the SINTS data block.

Error codes:

Code -1: Index was out of range

Example
String str;
 str = AB_RegisterReadString(0);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

 141

AB_RegisterWriteINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterWriteINT() function allows the user to write to individual registers in
the INTS block of memory.

Syntax
 result = AB_RegisterWriteINT (int index, short value);

Arguments

Int index: index in the INTS data block.

Short value: value to write at the specified index.

Notes

The ranges for the index and value parameters are determined by the data type and the
size of the data block.

Return values

int result. result = 0 for success, result < 0 if error occurred

Error codes:

Code -1: Index was out of range

Example
int result;
 result = AB_RegisterWriteINT(0, 150);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterWriteDINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterWriteDINT() function allows the user to write to individual registers
in the DINTS block of memory.

Syntax
 result = AB_RegisterWriteDINT (int index, int value);

Arguments

Int index: index in the DINTS data block.

Int value: value to write at the specified index.

Notes

The ranges for the index and value parameters are determined by the data type and the
size of the data block.

Return values

int result. result = 0 for success. result < 0 for error

Error codes:

 142

Code -1: Index was out of range

Example
int result;
 result = AB_RegisterWriteDINT(0, FeatCount.NumFeatures);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterWriteREAL()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterWriteREAL() function allows the user to write to individual registers
in the REALS block of memory.

Syntax

 result = AB_RegisterWriteREAL (int index, float value);

Arguments

Int index: index in the REALS data block.

Float value: value to write at the specified index.

Notes

The ranges for the index and value parameters are determined by the data type and the
size of the data block.

Return values

int result. result = 0 for success, result < 0 if error occurred.

Error codes:

Code -1: Index was out of range

Example
int result;
 result = AB_RegisterWriteREAL(0, Meas.Distance);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterWriteSINT()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterWriteSINT() function allows the user to write to individual registers
in the SINTS block of memory.

Syntax
 result = AB_RegisterWriteSINT (int index, byte value);

Arguments

 143

Int index: index in the SINTS data block.

Byte value: value to write at the specified index.

Notes

The ranges for the index and value parameters are determined by the data type and the
size of the data block.

Return values

int result. result = 0 for success, result < 0 if error occurred.

Error codes:

Code -1: Index was out of range

Example
int result;
 result = AB_RegisterWriteSINT(0, Gen.NumBlobs);

Notes

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

AB_RegisterWriteString()
The AB_Register functions are used in conjunction with the EtherNet/IP protocol to transfer
information between the DVT SmartImage Sensor and an Allen Bradley system running
EtherNet/IP. The AB_RegisterWriteString() function allows the user to write to individual registers
in the SINTS block of memory.

Syntax
result = AB_RegisterWriteString (int index, String str);

Arguments

Int index: index in the SINTS data block.

String str: value to write at the specified index.

Notes

The ranges for the index and value parameters are determined by the data type and the
size of the data block.

Return values

int result. result = 0 for success, result < 0 if error occurred.

Error codes:

Code -1: Index was out of range

Example
int result;
 result = AB_RegisterWriteString(0, Reader.String);

Note

When this function is executed, data is updated only in registers within the DVT system.
Communication with the Allen Bradley device only occurs when initiated by a MSG
instruction from the PLC.

 144

Motoman Functions
DVT Scripts offer a number of functions to send data to Motoman robots. The commands used
are explained below. For a complete description of this procedure (including physical
connections) see the DVT integration notes.

MotoWriteByte()
This function writes a byte variable to the Motoman controller

Syntax
result = MotoWriteByte(byte varNum, byte Value);

Arguments

byte varNum specifies the variable number to use

byte Value specifies the value to transfer

Return values

0 = success

-1 = invalid Index or varNum (MR_INVALID_INDEX)

-2 = write error (MR_WRITE_ERROR)

-3 = other error (GENERAL_ERROR)

Example:
int result;
byte b;
b = 225;
Result = MotoWriteByte(15,b);

Notes

The Byte variable type includes values from 0 to 25, and the varNum parameter must be
a number from 0 to 39.

MotoWriteInt()
This function writes an integer Motoman data type variable(equivalent to short DVT script data
type)

Syntax
result = MotoWriteInt(byte VarNum, short Value);

Arguments

byte varNum specifies the variable number to use

short Value specifies the value to transfer

Return values

0 = success

-1 = invalid Index or varNum (MR_INVALID_INDEX)

-2 = write error (MR_WRITE_ERROR)

-3 = other error (GENERAL_ERROR)

Example:

 145

int result;
short s;
s = 26;
result = MotoWriteInt(15,s);

Notes

This function writes a DVT short variable type to a Motoman Integer variable type (both
variables are integer data types of 16 bits) ranging from –32,768 to 32,767.The varNum
parameter must be a number from 0 to 39.

MotoWriteDouble()
This function writes a Double precision integer Motoman data type variable (equivalent to int
DVT script data type)

Syntax
result = MotoWriteDouble(byte varNum, int Value);

Arguments

byte varNum specifies the variable number to use

int Value specifies the value to transfer

Return values

0 = success

-1 = invalid Index or varNum (MR_INVALID_INDEX)

-2 = write error (MR_WRITE_ERROR)

-3 = other error (GENERAL_ERROR)

Example:
int i, result;
i = 2500;
result = MotoWriteDouble(25,i);

Notes

This function writes a DVT Integer variable type to a Motoman Double Precision integer
double variable type. The varNum parameter must be a number from 0 to 39.

MotoWriteReal()
This function writes a Real Motoman data type variable (equivalent to float DVT script data
type)

Syntax
result = MotoWriteReal(byte varNum, float Value);

Arguments

byte varNum specifies the variable number to use

float Value specifies the value to transfer

Return values

0 = success

-1 = invalid Index or varNum (MR_INVALID_INDEX)

 146

-2 = write error (MR_WRITE_ERROR)

-3 = other error (GENERAL_ERROR)

Example:
float f;
int Result;
f = 3256.258;
Result = MotoWriteReal(29,f);

Notes

This function writes a DVT Float variable type to a Motoman Real variable type. The
varNum parameter must be a number from 0 to 39.

MotoWritePvar()
This function writes a Pvar Motoman data type variable (equivalent to six float DVT script data
type variables)

Syntax
MotoWritePvar(byte varNum,float x, float y, float z,float
thetax, float thetay,float thetaz);

Arguments

byte varNum specifies the variable number to use

float x specifies the x position

float y specifies the y position

float z specifies the z position

float thetax specifies the x angle

float thetay specifies the y angle

float thetaz specifies the z angle

Return values

0 = success

-1 = invalid Index or varNum (MR_INVALID_INDEX)

-2 = write error (MR_WRITE_ERROR)

-3 = other error (GENERAL_ERROR)

Example:

float x,y,tx;
int Result;
x = 123;
y = 256.36;
tx =1.235;
Result = MotoWritePvar(9,x,y,0,tx,0,0);

Notes

This function writes a series of DVT Float variable types to a Motoman P variable having
a format of (x, y, z, tx, ty, tz) were each element is a Motoman Real data type. The
varNum parameter must be a number from 0 to 127.

 147

Fanuc Functions
DVT SmartImage Sensors can implement Fanuc’s Sensor Interface Protocol. This Protocol can
be used to transfer information between Fanuc’s Robot controllers (RJ-2/RJ-3) and other sensing
devices such as DVT SmartImage Sensors. The information is transferred through a point-to-
point serial connection (RS-232C). Using special function calls in DVT’s script tool, information
from the inspections (e.g. position of an object or number of objects found) is placed into the
registers were the RJ-2/RJ-3 can access them with the SEND[] and REC[] Teach Pendant
commands. The functions supported by DVT scripts are included below. For a complete
reference including physical connections, refer to the DVT integration notes.

FanucSetup()

Syntax
FanucSetup(int regsToSend, int posRegsToSend)

Arguments:

int regsToSend specifies the number of general registers to send during the
communication session. The valid range is 0-255. The range is defined by the number of
general registers in the Fanuc RJ-2 controller.

int posRegsToSend specifies the number of position registers to send during the
communication session. The valid range is 0-10.

Return values

Int result. Result = 0 for success, result < 0 or result > 0 for error.

Example:
FanucSetup(1,1);
This instruction tells driver to send 1 data register and 1 position register. The contents
of general register 1 in the DVT sensor are sent to the controller’s general register 1.
Position register 1 in the DVT sensor is then sent to the position register indicated by the
SENS_IF$ parameter in the controller.

Notes

Registers are sent in ascending order only. For instance: FanucSetup(5,0) will cause
the driver to send general registers 1-5.

FanucWriteReg()

Syntax
FanucWriteReg(int regNum, int value);

Arguments:

int regNum specifies the address of the Fanuc general register where value will be
placed. It also specifies the address of the general register in the controller where the
data will be sent during the communication session. The valid range is 0-255. The range
is defined by the number of general registers in the Fanuc RJ-2 controller.

int value specifies the data. It may be a literal number or a value from the sensors. The
valid range is + 8388607 to -8388608. Internally, the Fanuc Controller stores general
registers in signed 3-byte numbers. This is why the range is smaller than the valid range
for a DVT 4-byte Integer.

Return values

Int result: result = 0 for success, result < 0 or result > 0 for error.

 148

Example:
FanucWriteReg(1,1267);
This command writes 1267 to Fanuc’s general register #1 in DVT’s registers. During the
comm. session, the value 1267 is written to Fanuc’s general register #1 on the RJ-2
controller.

FanucWritePReg()

Syntax
FanucWritePReg(int pRegNum, double x, double y, double z, double
tx, double ty, double tz);

Arguments:

int pRegNum specifies the address of the Fanuc position register where the data will be
placed. The Valid range is 0-10.

double x, y, and z specify the position data. They may be literals or values from the
sensors. The units for these values must be mm. The valid range for positions is
+83886.07 mm to –83886.08 mm. Internally, the Fanuc Controller stores each element
of a position register as a scaled, signed, 3-byte number. This explains the range and
units requirement.

doubles tx,ty,tz specify the rotation. They may be literals or values from the sensors.
The units for these values are radians. The valid range for these angles is + 83.8607 rad
to –83.88608 rad. Internally, the Fanuc Controller stores each element of a position
register as a scaled, signed, 3-byte number. This explains the range and units
requirement.

Return values

Int result: result = 0 for success, result < 0 or result > 0 for error. Errors may occur for
invalid index passed or passing out-of-range register numbers.

Examples:
FanucWritePReg(1,1.0,2.0,0,0,0,PI/4);
FanucWritePReg(1, sel.BlobTransformedPoint.X[1],
sel.BlobTransformedPoint.Y[1],0,0,0
(SoftSensor.BlobAngle[1])*(PI/180));
Writes the position to Fanuc’s Position register #1 in DVT’s registers. During the comm.
session, it is sent to a position register defined by $SENS_IS on the RJ-2 controller.

Notes

The variables z, tx, and ty are currently forced to zero.

This function only works if the inspection mode is ON (inspections are running).

 149

Chapter 11 – Working with Images
Scripts offer extra options to work with images. They contain two main groups of function for that
purpose: the imaging functions and the Image Object. Imaging functions are functions that can be
called at anytime to get specific data from the image or to mark the image. These functions must
be used in Foreground Scripts only. They are designed to allow the user to perform special
marking in the image. Using these functions users can draw points and lines in the image. Image
objects are exclusive of Background Scripts, they have a number of built-in methods that allow
the preprocessing of the image before the SoftSensors analyze it. Image objects are used to
control the flow of inspections by determining when to acquire an image and which product to use
to inspect it. This chapter discusses both imaging functions and Image objects.

 150

Imaging Functions
Imaging functions provide three types of functionality to Foreground Scripts: image marking,
access to image ID and access to intensity levels of pixels in the image.

Image(,)
The Image(,) function returns the intensity value of the specified coordinate position. The value
returned will be a number between 0 and 255.

Syntax
Image(int row, int col);

Arguments:

Int row: indicates the X-coordinate of the pixel to be scanned.

Int col: indicates the Y-coordinate of the pixel to be scanned.

Return values

Boolean result: result = intensity level of the pixel at the specified coordinate position.

Examples:
//Get the intensity level of the first blob centroid
int x,y,b1_intensity;
x=blobSensor.BlobPosition.X[1];
y=blobSensor.BlobPosition.Y[1];
b1_intensity=Image(x,y);

Notes

This command retrieves the intensity level of a single pixel every time it is called.

MarkImage(, ,)
The MarkImage(, ,) function allows for the marking of single pixels of the image sent to the
Sampled image display. Any pixel in the image can be marked with a corresponding intensity
value between 0 and 255 except for the values from 1 through 7 which represent the following
specific colors:

Intensity Value Color Intensity Value Color

1 Dark Blue 5 Light Blue

2 Red 6 Yellow

3 Purple 7 Brown

4 Green

Syntax
MarkImage(int row, int col, int value);

Arguments:

Int row: indicates the X-coordinate of the pixel to be marked.

Int col: indicates the Y-coordinate of the pixel to be marked.

Int value: represents the intensity level to use.

 151

Return values

Boolean result: result = true for success, result = false for errors (function called from a
background script or index out of range)

Examples:
//Mark the position of the first blob centroid with a yellow dot
int x,y,v;
x=blobSensor.BlobPosition.X[1];
y=blobSensor.BlobPosition.Y[1];
v=6;
MarkImage(x,y,v);

Notes

This command marks a single pixel every time it is called.

MarkImage(, , , ,)
The MarkImage(, , , ,) function allows for the marking of a line of pixels in the image sent to the
Sampled image display. The line can be marked with a corresponding intensity value between 0
and 255 except for the values from 1 through 7 which represent the following specific colors:

Intensity Value Color Intensity Value Color

1 Dark Blue 5 Light Blue

2 Red 6 Yellow

3 Purple 7 Brown

4 Green

Syntax
MarkImage(int x0, int y0, int x1, int y1, int value);

Arguments:

Int x0: indicates the X-coordinate of the starting point of the line.

Int y0: indicates the Y-coordinate of the starting point of the line.

Int x1: indicates the X-coordinate of the ending point of the line.

Int y1: indicates the Y-coordinate of the ending point of the line.

Int value: represents the intensity level to use.

Return values

Boolean result: result = true for success, result = false for errors (function called from a
background script or index out of range)

Examples:
//Draw a line from the center of blob 1 to the center
//of blob 2 (blobs found by the blobSensor SoftSensor)in red
int x0,x1,y0,y1;
int value = 2;
x0=blobSensor.BlobPosition.X[1];
y0=blobSensor.BlobPosition.Y[1];
x1=blobSensor.BlobPosition.X[2];
y1=blobSensor.BlobPosition.Y[2];
MarkImage(x0,y0,x1,y1,value);

 152

Notes

This command marks a single line every time it is called.

MarkImage(, , [], [],)
The MarkImage(, , [], [],) function allows for the marking of a polygonal line of pixel in the image
sent to the Sampled image display. The line, which is given by a set of corner points, can be
marked with a corresponding intensity value between 0 and 255 except for the values from 1
through 7 which represent the following specific colors:

Intensity Value Color Intensity Value Color

1 Dark Blue 5 Light Blue

2 Red 6 Yellow

3 Purple 7 Brown

4 Green

The coordinates of the corner points (given by the arrays) are relative to the position indicated by
the first two arguments (x and y coordinates of an offset). This allows users to move the entire
marking by simply changing the x and y values of the offset. If the coordinates of the offset are
(0,0) the coordinates in the array are absolute (actual pixel coordinates).

Syntax
MarkImage(int x0, int y0, int x[], int y[], int value);

Arguments:

Int x0: indicates the X-coordinate of the point from where the coordinates in the array of
points are measured.

Int y0: indicates the Y-coordinate of the point from where the coordinates in the array of
points are measured.

Int x[]: array of X-coordinate of the corner points of the line. These coordinates are
relative to the point with coordinates (x0, y0).

Int y[]: array of Y-coordinate of the corner points of the line. These coordinates are
relative to the point with coordinates (x0, y0).

Int value: represents the intensity level to use.

Return values

Boolean result: result = true for success, result = false for errors (function called from a
background script or index out of range)

Examples:
//Draw a red line through the center of the first four blobs
//found by the blobSensor SoftSensor.
int x0 = 0,y0 = 0, x[], y[],value = 2;
x = new int[4];
y = new int[4];
for(int i = 1; i<5; i=i+1)
{
 x[i] = blobSensor.BlobPosition.X[i];
 y[i] = blobSensor.BlobPosition.Y[i];
}
MarkImage(x0,y0,x,y,value); //the

 153

Notes

This command marks a single polygonal line every time it is called.

If the sizes of the arrays are different, the function uses the size of the smallest array
ignoring any extra data from the longer array.

MarkImagePoints(, , [], [],)
The MarkImage(, , [], [],) function allows for the marking of a number of pixels in the image sent
to the Sampled image display. Each pixel, determined by its X and Y coordinates, can be marked
with a corresponding intensity value between 0 and 255 except for the values from 1 through 7
which represent the following specific colors:

Intensity Value Color Intensity Value Color

1 Dark Blue 5 Light Blue

2 Red 6 Yellow

3 Purple 7 Brown

4 Green

The coordinates of the corner points (given by the arrays) are relative to the position indicated by
the first two arguments (x and y coordinates of an offset). This allows users to move the entire
marking by simply changing the x and y values of the offset. If the coordinates of the offset are
(0,0) the coordinates in the array are absolute (actual pixel coordinates).

Syntax
MarkImagePoints(int x0, int y0, int x[], int y[], int value);

Arguments:

Int x0: indicates the X-coordinate of the point from where the coordinates in the array of
points are measured.

Int y0: indicates the Y-coordinate of the point from where the coordinates in the array of
points are measured.

Int x[]: array of X-coordinate of the pixels to be marked. These coordinates are relative to
the point with coordinates (x0, y0).

Int y[]: array of Y-coordinate of the pixels to be marked. These coordinates are relative to
the point with coordinates (x0, y0).

Int value: represents the intensity level to use.

Return values

Boolean result: result = true for success, result = false for errors (function called from a
background script or index out of range)

Examples:
//Mark a red dot in the center of four blobs
int x0 = 0,y0 = 0, x[], y[],value = 2;
x = new int[4];
y = new int[4];
for(int i = 1; i<5; i=i+1)
{
 x[i] = blobSensor.BlobPosition.X[i];
 y[i] = blobSensor.BlobPosition.Y[i];

 154

}
MarkImagePoints(0,0,x,y,value);

Notes

This command marks a set of pixels every time it is called.

If the size of the arrays are different, the function uses the size of the smallest array
ignoring any extra data from the longer array.

Window Object
The Window Object is used to pass as an argument to several methods of the image object. A
Window Object defines a reduced area of the image. When an Image Object is used, some
methods can be called to act on the image or just a reduced area of it. When the option is a
reduced area of the image, a Window Object is passed as an argument to specify the area to be
affected by the Image Object method.

Window()
This method is used to initialize the Window Object

Syntax
MyWinObject = new Window(int x1, int y1, int x2, int y2);

Arguments

Int x1: the x-coordinate of the upper left corner of the window

Int y1: the y-coordinate of the upper left corner of the window

Int x2: the x-coordinate of the lower right corner of the window

Int y2: the y-coordinate of the lower right corner of the window

Examples

Create a window from pixel (100,100) to pixel (540,380)

//first method: using variables. This is the best method
//regarding good programming practice
int x1, x2, y1, y2;
x1 = 100;
y1 = 100;
x2 = 540;
y2 = 380;
Window MyWin;
MyWin = new Window(x1, y1, x2, y2);

//second method:declare and initialize the window
//with hard coded values
Window new MyWindow;
MyWindow = Window(100,100,540,380);

Note

The sole purpose of this object is to pass the region of the image as an argument to
Image Object functions.

Image Object
The Image Object is used in background scripts to give the user more control over the inspection
application. It can be used to

 155

control the flow of an inspection

preprocess the image before performing an inspection

perform multiple inspections on the same image

acquire and perform multiple inspections to achieve on overall result.

Since the inspection flow is controlled in the background script the user has a high degree of
flexibility in what can be achieved. However, with this flexibility come some complexities. The
user must control some or all of the elements associated with an inspection in the Background
Script. This may include monitoring an input as a trigger, setting outputs manually from
Background Script, using registers to pass data between the inspection and the background
script, etc.

Focusing just on the image object and its methods, the steps for using an image object are

Declare the image object

Construct the image object

Set the properties of the image object

Acquire an image

Preprocess the image

Inspect the image with a product

Send the image to a Sample Image Display.

In its simplest form the code for using an image object looks like this. This piece of code assumes
there is a product called "SampleProduct" in the system.

Image img;
Product P;
P=GetProduct("SampleProduct");
img = new Image();
img.ExposureTime=3000;
img.Acquire();
img.Inspect(P);
img.Save();

Since the above code would be executed in a background script, it would only get executed once
when the script is started. In order to make it take multiple inspects we would need to include it in
a loop. This is the basic use of the Image Object. This section discusses all the fields and
methods of the Image Object. For more examples see the Examples chapter of this guide.

Image Object Fields
Image Objects have a number of fields associated with them. A field allows the user to monitor or
in some cases change the parameters associated with the image. The available fields are:

ID: Read-Only. Integer value - unique id number for each image.

ExposureTime: int Exposure time in microseconds.

AntiBloomingEnabled: Boolean indicates whether anti-blooming is enabled.

IlluminationEnabled: Boolean indicates whether illumination is enabled during acquisition.

Gain: int digitizing gain, a number from 0 to 240. This internal gain number relates to the
value in the user interface by the equation (user interface gain) = 255/(255 - internal
gain).

AfterSyncDelay: int delay in milliseconds between the call to acquire and the beginning of
acquire. Equivalent to the user interface parameter delay after trigger.

 156

X1: int x coordinate of upper left corner of acquisition window.

Y1: int y coordinate of upper left corner of acquisition window.

X2: int x coordinate of lower right corner of acquisition window.

Y2: int y coordinate of lower right corner of acquisition window.

DigitizingRate: provides access to the different digitizing times allowed by SmartImage
Sensors. Some SmartImage Sensors use CCDs that allow for different levels of digitizing
times. When that is the case, there are three different digitizing times. Assigning a 1 to
this parameter would choose the one that gives the highest image quality. Assigning a 7
would select the fastest one whereas assigning a 3 would select the standard one. The
SmartImage Sensors with different digitizing times are the Legend 520, Legend 530,
Legend 540, Legend IS (intelligent scanner) and the Legend SC (SpectroCam).

ActiveStrobes: this field allows detailed control of the strobe options from script. It is an int
bitfield indicating the desired strobe option. Setting one, some or all of the first 5 bits
indicates the option. The functionality of the bits is as follows:

Bit 0 (LSB) Strobe1

Bit 1 Strobe2

Bit 2 Strobe3

Bit 3 Integrated Light Strobe

Bit 5 Integrated Light Continuous

Example:
Image img;
img = new Image();
String str;
int tmp;
DebugPrint("Digitizing Rate: "+img.DigitizingRate);
DebugPrint("Gain: "+ img.Gain);
DebugPrint("AfterSyncDelay: "+img.AfterSyncDelay);
DebugPrint("ExposureTime: "+img.ExposureTime);
//check illumination
if(img.IlluminationEnabled)
{
 DebugPrint("Illumination enabled");
}else
{
 DebugPrint("Illumination disabled");
}
//check antiblooming
if(img.AntiBloomingEnabled)
{
 DebugPrint("Antiblooming enabled!");
}else
{
 DebugPrint("Antiblooming disabled");
}
//change Window Parameters
img.X1 = 100;
img.Y1 = 100;
img.X2 = 300;
img.Y2 = 300;

 157

DebugPrint("Window corners (100,100,300,300): " + img.X1 + ", "+
img.Y1 + ", "+ img.X2 + ", "+ img.Y2);
//check and change digitizing rate
img.DigitizingRate = 3;
DebugPrint("DigTime: " + img.DigitizingRate);
//set bits 0 and 2 of the ActiveStrobes field
img.ActiveStrobes = (1 << 0) | (1 << 2);

Image()
This is the constructor and must be called to create and initialize the object. At this point all the
image acquisition parameters are initialized with the parameters corresponding to the ‘none’
product. However, there is NO association between the image object and any product.

Syntax
MyImageObject = new Image();

Arguments:

None

Return values

A reference to the image object or null if used in Foreground Scripts.

Examples:
Image MyImg;
MyImg = new Image();

Acquire()
This method causes the system to acquire an image with the image acquisition parameters
currently contained in the image object. This does NOT perform an inspection. The acquired
image can be then be accessed and manipulated in the system. This method should only be
called when the system is in external trigger.

Syntax
MyImg.Acquire();

Arguments:

None

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -16: Indicates that the image is already in the Save Queue waiting to be sent out,
so another image cannot be acquired in this image object (JIMG_IN_SAVED_Q).

Code -18: problem acquiring an image (JIMG_ACQUISITION_ERROR)

Examples:
int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

 158

Save()
This method causes the system to place the image contained in the Image object into the save
queue. This queue contains the images to be sent out the Background channels for display in UI,
SmartLink and ActiveX. The image will be sent out when the system has time. If the save queue
is full, then the image is not sent. After a call to this method the image object can be used to
acquire another image because the image object is released.

Syntax
MyImg.Save();

Arguments:

None

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Code -12: No more memory for images (JIMAGE_OUT_OF_MEMORY)

Code -13: Imaging error or resource conflict (JIMAGE_NO_IMAGE)

Code -16: Indicates that the image is already in the Save Queue waiting to be sent out,
so another image cannot be acquired in this image object (JIMG_IN_SAVED_Q).

Code -17: Image not available (JIMAGE_IN_CAPTURE_QUEUE)

Code -18: problem acquiring an image (JIMG_ACQUISITION_ERROR)

Examples:
int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
if (result == 0)
{
 MyImg.Save();
}

Negate()
This method can be used to negate the whole image before it is inspected. When the image is
negated, the intensity values of every pixel are irreversibly changed. The new intensity value of
each pixel is determined by subtracting its current intensity from 255. The resulting image is a
negative of the original.

Syntax
MyImg.Negate();

Arguments:

None

Return values

Int result: result=0 for success, Result<0 for error

Error codes

 159

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Code -16: Indicates that the image is already in the Save Queue waiting to be sent out,
so another image cannot be acquired in this image object (JIMG_IN_SAVED_Q).

Example:
int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
if(result >= 0)
{
 MyImg.Negate();
}

Negate(Window)
This method can be used to negate a specific window of the image before it is inspected. When
the window is negated, the intensity values of every pixel inside that window are irreversibly
changed. The new intensity value of each pixel is determined by subtracting its current intensity
from 255. The resulting image is a negative of the original.

Syntax
MyImg.Negate(Window Win);

Arguments:

Window Win: a Window Object specifying the window to be used for the operation.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
Window Win;
Win = new Window(50,125,250,375);
if(result >= 0)
{
 MyImg.Negate(Win);
}

Add()
This method can be used to add two images before they are inspected. When two images are
added, the intensity level of every pixel in one image is added to the intensity level of the
corresponding pixel in the other image. When the resulting intensity value exceeds 255 it is set to
255.

Syntax
MyImg.Add(Image AnotherImage);

Arguments:

 160

Image AnotherImage: Image to be added to the image MyImg.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Image AnotherImage;
AnotherImage = new Image();
result = AnotherImage.Acquire();

result = MyImg.Add(AnotherImage);

Add(,Window)
This method can be used to add specific areas of two images before they are inspected. When
two images are added, the intensity level of every pixel in one image is added to the intensity
level of the corresponding pixel in the other image. When the resulting intensity value exceeds
255 it is set to 255.

Syntax
MyImg.Add(Image AnotherImage, Window Win);

Arguments:

Image AnotherImage: Image to be added to the image MyImg.

Window Win: the actual region of the image that is added

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Image AnotherImage;
AnotherImage = new Image();
result = AnotherImage.Acquire();

Window Win;
Win = new Window(100,100,250,360);

result = MyImg.Add(AnotherImage, Win);

 161

Subtract()
This method can be used to subtract one image from another over the entire image window. The
intensity values are irreversibly changed in the image from which another one is being subtracted.
The new intensity value of each pixel in the base image is determined by subtracting the intensity
of the corresponding pixel in the second image from its current intensity. If the resulting value is
negative it is clamped at 0. The intensity values in the second image (image being subtracted)
are unchanged.

Syntax
MyImg.Subtract(Image AnotherImage);

Arguments:

Image AnotherImage: Image to be subtracted from the image MyImg.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Image AnotherImage;
AnotherImage = new Image();
result = AnotherImage.Acquire();

result = MyImg.Subtract(AnotherImage);

Subtract(,Window)
This method can be used to subtract one image from another over a specific area instead of the
entire image window. The intensity values in the affected region are irreversibly changed in the
image from which another one is being subtracted. The new intensity value of each pixel in the
base image is determined by subtracting the intensity of the corresponding pixel in the second
image from its current intensity. If the resulting value is negative it is clamped at 0. The intensity
values in the second image (image being subtracted) are unchanged.

Syntax
MyImg.Subtract(Image AnotherImage, Window Win);

Arguments:

Image AnotherImage: Image to be subtracted from the image MyImg.

Window Win: the actual region of the image that is added

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

 162

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Image AnotherImage;
AnotherImage = new Image();
result = AnotherImage.Acquire();

Window Win;
Win = new Window(100,100,250,360);

result = MyImg.Subtract(AnotherImage, Win);

Erode(, , ,)
This method can be used to binarize and subsequently erode light areas of the whole image
before inspection. The intensity values are irreversibly changed. Before erosion the image is first
binarized according to a threshold. Based on that, the Erosion operation is applied (a certain
number of pixels is removed from the edges of light objects to shrink their size).

Syntax
MyImg.Erode(int size, int threshold, int low, int high);

Arguments:

Int size: the number of pixels for the Erosion operation (the number of pixels taken away
from the edges of light objects)

Int threshold: intensity level used to binarize the image. Pixels with intensity levels above
this will be classified as light pixels, those with intensity level below this will be classified
as dark pixels. Acceptable values range from 0 to 255.

Int low: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Dark pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Int high: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Light pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
//binarize the image with a threshold level of 125, then mark

 163

//light pixels in white (intensity value of 255) and dark pixels
//in light gray (intensity level of 150. After that Erode the
//light pixel areas 5 pixels.
result = MyImg.Erode(5, 125, 150, 255);

Notes

This definition of Erosion is slightly different from the one used in blob tools. In this case
the Erosion is always applied to light areas, so if we wanted to expand dark objects we
should still use Erosion because it will shrink light areas thus expanding dark areas.

Erode(Window, , , ,)
This method can be used to binarize and subsequently erode light areas of a specific window of
the image before inspection. The intensity values are irreversibly changed. Before erosion the
window is first binarized according to a threshold. Based on that, the Erosion operation is applied
(a certain number of pixels is removed from the edges of light objects to shrink their size).

Syntax
MyImg.Erode(Window win, int size, int threshold, int low, int
high);

Arguments:

Window Win: a window object specifying the region of the image where to apply the
erosion.

Int size: the number of pixels for the Erosion operation (the number of pixels taken away
from the edges of light objects)

Int threshold: intensity level used to binarize the image. Pixels with intensity levels above
this will be classified as light pixels, those with intensity level below this will be classified
as dark pixels. Acceptable values range from 0 to 255.

Int low: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Dark pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Int high: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Light pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Window Win;
Win = new Window(150, 150, 360, 220);
//binarize the image with a threshold level of 125, then mark

 164

//light pixels in white (intensity value of 255) and dark pixels
//in light gray (intensity level of 150. After that Erode the
//light pixel areas 5 pixels.
result = MyImg.Erode(Win, 5, 125, 150, 255);

Notes

This definition of Erosion is slightly different from the one used in blob tools. In this case
the Erosion is always applied to light areas, so if we wanted to expand dark objects we
should still use Erosion because it will shrink light areas thus expanding dark areas.

Dilate(, , ,)
This method can be used to binarize and subsequently dilate light areas of the whole image
before inspection. The intensity values are irreversibly changed. Before dilation the image is first
binarized according to a threshold. Based on that, the dilation operation is applied (a certain
number of pixels is added to the edges of light objects to expand their size).

Syntax
MyImg.Dilate(int size, int threshold, int low, int high);

Arguments:

Int size: the number of pixels for the Dilation operation (the number of pixels added to the
edges of light objects)

Int threshold: intensity level used to binarize the image. Pixels with intensity levels above
this will be classified as light pixels, those with intensity level below this will be classified
as dark pixels. Acceptable values range from 0 to 255.

Int low: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Dark pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Int high: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Light pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
//binarize the image with a threshold level of 125, then mark
//light pixels in white (intensity value of 255) and dark pixels
//in light gray (intensity level of 150. After that Dilate the
//light pixel areas 5 pixels.
result = MyImg.Dilate(5, 125, 150, 255);

Notes

 165

This definition of Dilation is slightly different from the one used in blob tools. In this case
the Dilation is always applied to light areas, so if we wanted to shrink dark objects we
should still use Dilation because it will expand light areas thus shrinking dark areas.

Dilate(Window, , , ,)
This method can be used to binarize and subsequently dilate light areas of a specific area of the
image before inspection. The intensity values in that area are irreversibly changed. Before dilation
the area of the image is first binarized according to a threshold. Based on that, the dilation
operation is applied (a certain number of pixels is added to the edges of light objects to expand
their size).

Syntax
MyImg.Dilate(Window Win, int size, int threshold, int low, int
high);

Arguments:

Window Win: window object specifying the area where the operation is to be applied.

Int size: the number of pixels for the Dilation operation (the number of pixels added to the
edges of light objects)

Int threshold: intensity level used to binarize the image. Pixels with intensity levels above
this will be classified as light pixels, those with intensity level below this will be classified
as dark pixels. Acceptable values range from 0 to 255.

Int low: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Dark pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Int high: After applying the threshold, the image is divided in two groups of pixels: dark
and light pixels. Light pixels are assigned this intensity level. This is like grayscale image
marking but the user chooses the marking grayscale values. Acceptable values range
from 0 to 255.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Window Win;
Win = new Window(50,50,260,380);
//binarize the image with a threshold level of 125, then mark
//light pixels in white (intensity value of 255) and dark pixels
//in light gray (intensity level of 150. After that Dilate the
//light pixel areas 5 pixels.
result = MyImg.Dilate(Win,5, 125, 150, 255);

Notes

 166

This definition of Dilation is slightly different from the one used in blob tools. In this case
the Dilation is always applied to light areas, so if we wanted to shrink dark objects we
should still use Dilation because it will expand light areas thus shrinking dark areas.

Filter(double filter[])
This method can be used to apply a 3X3 convolution filter to the whole image before inspection.
The intensity values are irreversibly changed. A filter is an array with nine values that correspond
to the coefficients of a user-defined filter. These coefficients are limited to a range of ± 1024.0 for
speed of execution. In this case, the filter coefficients are floating point numbers (doubles).

Syntax
MyImg.Filter(double myFilter[]);

Arguments:

Double myFilter[]: array containing the coefficients for the convolution filter.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

//create an edge enhancement filter
//the 3x3 matrix defining the filter should look like this:
// |-2.5 -2.5 -2.5|
// |-2.5 21 -2.5|
// |-2.5 -2.5 -2.5|
//so we need to create an array of 9 elements and populate
//it with a 1/9 in every cell.
double MyFilter[] = new double[9];
//Create filter - Laplace Edge enhancement
MyFilter[1] = -2.5;
MyFilter[2] = -2.5;
MyFilter[3] = -2.5;
MyFilter[4] = -2.5;
MyFilter[5] = 21;
MyFilter[6] = -2.5;
MyFilter[7] = -2.5;
MyFilter[8] = -2.5;
MyFilter[9] = -2.5;

DebugPrint("Cell 5= " + MyFilter[5]);
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

//filter the image now
result = MyImg.Filter(MyFilter);

Notes

 167

In order to translate a 1D array into a 2D matrix, the elements are taken in order from the
array to populate the first row of the matrix, then the second row and then the third row.

Filter(int filter[])
This method can be used to apply a 3X3 convolution filter to the whole image before inspection.
The intensity values are irreversibly changed. A filter is an array with nine values that correspond
to the coefficients of a user-defined filter. These coefficients are limited to a range of ± 1024.0 for
speed of execution. In this case, the filter coefficients are integers.

Syntax
MyImg.Filter(int myFilter[]);

Arguments:

Int myFilter[]: array containing the coefficients for the convolution filter.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

//create a Laplace Edge enhancement filter
//the 3x3 matrix defining the filter should look like this:
// |-2 0 -2|
// |0 8 0|
// |-2 0 -2|
//so we need to create an array of 9 elements and populate
//it with the corresponding coefficients.
int MyFilter[] = new int[9];
//Create filter - Laplace Edge enhancement
MyFilter[1] = -2;
MyFilter[2] = 0;
MyFilter[3] = -2;
MyFilter[4] = 0;
MyFilter[5] = 8;
MyFilter[6] = 0;
MyFilter[7] = -2;
MyFilter[8] = 0;
MyFilter[9] = -2;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

//filter the image now
result = MyImg.Filter(MyFilter);

Notes

In order to translate a 1D array into a 2D matrix, the elements are taken in order from the
array to populate the first row of the matrix, then the second row and then the third row.

 168

Filter(Window, double filter[])
This method can be used to apply a 3X3 convolution filter to a specific area of the image before
inspection. The intensity values are irreversibly changed. A filter is an array with nine values that
correspond to the coefficients of a user-defined filter. These coefficients are limited to a range of
± 1024.0 for speed of execution.

Syntax
MyImg.Filter(Window Win, double myFilter[]);

Arguments:

Window Win: window object specifying the area of the image where the operation is to
take place.

Double myFilter[]: array containing the coefficients for the convolution filter.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

//create an edge enhancement filter
//the 3x3 matrix defining the filter should look like this:
// |-2.5 -2.5 -2.5|
// |-2.5 21 -2.5|
// |-2.5 -2.5 -2.5|
//so we need to create an array of 9 elements and populate
//it with a 1/9 in every cell.
double MyFilter[] = new double[9];
//Create filter - Laplace Edge enhancement
MyFilter[1] = -2.5;
MyFilter[2] = -2.5;
MyFilter[3] = -2.5;
MyFilter[4] = -2.5;
MyFilter[5] = 21;
MyFilter[6] = -2.5;
MyFilter[7] = -2.5;
MyFilter[8] = -2.5;
MyFilter[9] = -2.5;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Window Win;
Win = new Window(150,150,360,220);
//filter the image now
result = MyImg.Filter(Win, MyFilter);

Notes

In order to translate a 1D array into a 2D matrix, the elements are taken in order from the
array to populate the first row of the matrix, then the second row and then the third row.

 169

Filter(Window, int filter[])
This method can be used to apply a 3X3 convolution filter to a specific area of the image before
inspection. The intensity values are irreversibly changed. A filter is an array with nine values that
correspond to the coefficients of a user-defined filter. In this case the filter coefficients are integer
values.

Syntax
MyImg.Filter(Window Win, int myFilter[]);

Arguments:

Window Win: window object specifying the area of the image where the operation is to
take place.

Int myFilter[]: array containing the coefficients for the convolution filter.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Example:
int result;

//create a Laplace Edge enhancement filter
//the 3x3 matrix defining the filter should look like this:
// |-2 0 -2|
// |0 8 0|
// |-2 0 -2|
//so we need to create an array of 9 elements and populate
//it with the corresponding coefficients.
int MyFilter[] = new int[9];
//Create filter - Laplace Edge enhancement
MyFilter[1] = -2;
MyFilter[2] = 0;
MyFilter[3] = -2;
MyFilter[4] = 0;
MyFilter[5] = 8;
MyFilter[6] = 0;
MyFilter[7] = -2;
MyFilter[8] = 0;
MyFilter[9] = -2;

Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

Window Win;
Win = new Window(150,150,360,220);
//filter the image now
result = MyImg.Filter(Win, MyFilter);

Notes

In order to translate a 1D array into a 2D matrix, the elements are taken in order from the
array to populate the first row of the matrix, then the second row and then the third row.

 170

Map()
This method can be used to perform preprocessing on the whole image before it is inspected.
The intensity values are irreversibly changed according to a passed-in intensity Map. The new
intensity value of each pixel is determined by performing a look-up into the map array using the
current intensity value as an index. That is, the argument is an array with 256 cells. Each index in
the array corresponds to a current intensity level in the image. The content of each cell
corresponds to what the new intensity level should be.

Syntax
MyImg.Map(byte myMap[]);

Arguments:

Byte myMap: 256-cell array containing the new intensity levels.

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Examples:
//declare array
byte MyMap[] = new byte[256];
int i;
//initialize array: first 240 intensity levels remain unchanged
for(i = 0; i < 240; i=i+1)
MyMap[i+1] = i;
//the last 15 leves are set to 125 (used to minimize glare)
for(; i<= 255 ; i=i+1)
MyMap[i+1] = 125;

int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

MyImg.Map(MyMap); // changes all values with intensity
 // above 240 to 125;

Map(, Window)
This method can be used to perform preprocessing on a specific area of the image before it is
inspected. The intensity values are irreversibly changed according to a passed-in intensity Map.
The new intensity value of each pixel is determined by performing a look-up into the map array
using the current intensity value as an index. That is, the argument is an array with 256 cells.
Each index in the array corresponds to a current intensity level in the image. The content of each
cell corresponds to what the new intensity level should be.

Syntax
MyImg.Map(byte myMap[], Window Win);

Arguments:

Byte myMap: 256-cell array containing the new intensity levels.

Window Win: window object specifying the area where the operation is to take place.

 171

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Examples:
//declare array
byte MyMap[] = new byte[256];
int i;
//initialize array: first 240 intensity levels remain unchanged
for(i = 0; i < 240; i=i+1)
MyMap[i+1] = i;
//the last 15 leves are set to 125 (used to minimize glare)
for(; i<= 255 ; i=i+1)
MyMap[i+1] = 125;

Window Win;
Win = new Window(50,50,550,400);

int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();

MyImg.Map(MyMap, Win); // changes all values with intensity
 // above 240 to 125;

Threshold(, , , ,)
This method can be used to threshold the whole image before it is inspected. The intensity values
are irreversibly changed according to the parameters passed. The method allows for two different
threshold levels, resulting in 3 different groups of pixels: above thresholds, between thresholds,
and below thresholds. The threshold levels are specified using a level and a range. The upper
threshold is the selected level plus the range, while the lower threshold is the selected level
minus the range.

Syntax
MyImg.Threshold(int low, int high, int mid, int level, int
range);

Arguments:

Int low: the new intensity level assigned to pixels below thresholds.

Int high: the new intensity level assigned to pixels above thresholds.

Int mid: the new intensity level assigned to pixels between thresholds.

Int level: intensity level used to determine the thresholds

Int range: intensity range used to determine the thresholds.

 Upper threshold: level + range

 Lower threshold: level - range

Return values

 172

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Examples:
int result;
Image MyImg;
MyImg = new Image();
result = MyImg.Acquire();
//threshold the image at levels 100 and 200, this will require
//a level of 150 and a range of 50. Mark the resulting
//groups of pixels with intensity levels 10, 50, and 90
MyImg.Threshold(10,90,50,150,50);

Note

Intensity levels range from 0 (black) to 255 (white).

Threshold(Window, , , , ,)
This method can be used to threshold a specific area of the image before it is inspected. The
intensity values in that area are irreversibly changed according to the parameters passed. The
method allows for two different threshold levels, resulting in 3 different groups of pixels: above
thresholds, between thresholds, and below thresholds. The threshold levels are specified using a
level and a range. The upper threshold is the selected level plus the range, while the lower
threshold is the selected level minus the range.

Syntax
MyImg.Threshold(Window Win, int low, int high, int mid, int
level, int range);

Arguments:

Window Win: window object specifying the area of the image where the operation is to be
applied.

Int Low: the new intensity level assigned to pixels below thresholds.

Int high: the new intensity level assigned to pixels above thresholds.

Int mid: the new intensity level assigned to pixels between thresholds.

Int level: intensity level used to determine the thresholds

Int range: intensity range used to determine the thresholds.

 Upper threshold: level + range

 Lower threshold: level - range

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: Image has not been acquired yet (JIMAGE_INVALID_PARAMETER)

Examples:
int result;
Image new MyImg;
MyImg = Image();

 173

Window Win;
Win = new Window(50,50,550,400);

result = MyImg.Acquire();
//threshold the image at levels 100 and 200, this will require
//a level of 150 and a range of 50. Mark the resulting
//groups of pixels with intensity levels 10, 50, and 90
MyImg.Threshold(Win, 10,90,50,150,50);

Note

Intensity levels range from 0 (black) to 255 (white).

Inspect()
This method causes the system to Inspect the image using a predefined inspection product. This
Method should only be called when the system is in external trigger.

Syntax
MyImg.Inspect(Product P);

Arguments:

Product P: product object representing the inspection product to be used.

Return values

Int result: result contains the inspection result as follows:

 Result = -1 for PASS

 16 <= result <= 31 for FAIL

 32 <= result <= 47 for WARN

otherwise it returns an error code

Error codes

Code -11: image not acquired (JIMAGE_INVALID_PARAMETER)

Code -16: cannot inspect an image sent to the save queue
(JIMAGE_IN_SAVED_QUEUE)

Examples:
//inspect the same image with 2 different products
int result;
Image MyImg;
Product P1;
Product P2;
MyImg = new Image();
MyImg.Acquire();
P1 = GetProduct(“test”);
P2 = GetProduct(“test2”);
result = MyImg.Inspect(P1);
sleep(250);//pause for 250 msec to read outputs
result = MyImg.Inspect(P2);

SetWindow(Window win)
This function is used to set a new acquisition window for a particular image object

 174

Sytnax
MyImageObject.SetWindow(Window Win);

Arguments

Window Win: a window object that needs to be previously initialized

Return values

Int result: this value is returned only if the operation is successful, in which case its value
is 0.

Example
Image Img;
Img = new Image();
Window Win;
Win = new Window(10,10,630,470);
Img.SetWindow(Win);
Img.Acquire();

GetWindow()
This function is used to access the acquisition window of a particular image object

Sytnax
MyImageObject.GetWindow();

Arguments

None

Return values

This method returns a window object when it is a successful operation, otherwise it
returns null.

Example
Image Img;
Img = new Image();
Window Win;
Win = new Window(10,10,630,470);
Window MyWin;
MyWin = Img.GetWindow();

Clear()
This function is used to clear the image contained in the image object. An error will be raised
unless the Acquire() Method is called first.

Sytnax
MyImageObject.Clear();

Arguments

None

Return values

Int result: result=0 for success, Result<0 for error

Error codes

 175

Code -11: image not acquired (JIMAGE_INVALID_PARAMETER)

Example
Image img = new Image();
int res = img.Acquire();
res = img.Clear();

Copy()
This function is used to copy a region from one image object to another. An image must be
acquired into both objects for this method to be successful.

Sytnax
MyImageObject.Copy(Image Src, Window win, int x0, int y0);

Arguments

Src: the image object we wish to copy from.

win: defines a window in Src that we wish to copy.

x0,y0: define the absolute position of the origin for the data in the destination image
(where we want the data to be copied to).

Return values

Int result: result=0 for success, Result<0 for error

Error codes

Code -11: image not acquired (JIMAGE_INVALID_PARAMETER)

Example
Image img_dest = new Image();
Image img_src = new Image();
Window w = new Window(0,0,100,100);
int res = img_dest.Acquire();
res = img_dest.Clear();
res = img_src.Acquire();
res = img_dest.Copy(img_src,w,0,0);

 176

 177

Chapter 12 – Flash Object
The Flash Object is a recent addition to FrameWork that allows users to back up data to the
SmartImage Sensor flash memory. Data saved to flash memory can be restored after the power
is cycled. Common applications for this functionality are saving data from the registers to flash
memory and restoring it on power-up, saving the last product used to flash memory and selecting
it on power-up. This chapter describes the methods associated with the Flash Object and
provides some basic examples on how to use them.

 178

Flash()
This method is the constructor for the Flash Object. After the declaration of the Flash Object, this
method must be called to properly initialize it.

Syntax
MyFlashObject = new Flash();

Return Values

This method returns a Flash object when the operation is successful, otherwise it returns
null.

Example
Flash MyFlashObject;
MyFlashObject = new Flash();

SaveRegs()
This method is used to save a block of registers to flash memory so they are available when the
power is cycled. Only one block of registers can be stored to flash. It is recommended that after
restoring registers flash memory is reclaimed. To reclaim the used flash memory you must
manually click on the Reclaim Flash button in the Product Management dialog.

Syntax
MyFlashObject.SaveRegs(int firstReg, int lastReg);

Arguments

Int firstReg: integer value indicating the first register of the block to be saved.

Int lastReg: integer value indicating the last register of the block to be saved.

Return values

int Result. Result=0 for success, Result<0 for error.

Example
Flash F;
F = new Flash();
//save 51 registers to flash
F.SaveRegs(100,150);

Error codes

Code -11: Invalid parameters (SCRIPT_FLASH_ERROR)

Notes

Every time that SaveRegisters is used, blocks of 512 bytes are used. Thus, even if only a
few registers need to be saved, the system will still use 512 bytes of flash memory. This
increases significantly the amount of flash memory being used.

Flash memory has a limited lifetime depending on the number of times it has been used
and reclaimed, so these features should be used with caution.

RestoreRegs ()
This method is used to restore a block of registers that have been saved to flash memory. This
method would be used in a background script that is configured to run at startup to restore a
block of registers that were previously stored with the SaveRegs Method. In this case it is not
necessary to indicate to which registers to restore the data, the system already know it. It is

 179

recommended that after restoring registers flash memory is reclaimed. To reclaim the used flash
memory you must manually click on the Reclaim Flash button in the Product Management dialog.

Syntax
MyFlashObject.RestoreRegs();

Arguments

None.

Return values

int Result. Result=0 for success, Result<0 for error.

Error codes

Code -11: Corrupt data (SCRIPT_FLASH_ERROR)

Example
//The following background script when run at power up
//will restore the registers saved by the SaveRegs Method
//before the system was powered down
Flash f;
f = new Flash();
f.RestoreRegs();

Notes

Every time that SaveRegisters is used, blocks of 512 bytes are used. Thus, even if only a
few registers need to be saved, the system will still use 512 bytes of flash memory. This
increases significantly the amount of flash memory being used.

Flash memory has a limited lifetime depending on the number of times it has been used
and reclaimed, so these features should be used with caution.

 180

 181

Chapter 13 – Script Examples
This chapter contains complete and fully documented examples for users to utilize in their
applications or simply practice some scripting.

 182

Extracting and using blob data
class myScript
{
 public void inspect()
 {
 //this script will compute the total area
 //of the blobs. It needs to cycle through
 //all the blobs and get the area from each.

 int totalArea = 0;

 //establish a loop to cycle through all the blobs
 //regardless of the number of blobs found.
 //This loop will be executed exactly once
 //per blob found.
 for(int i = 0; i < myBlobSelector.NumBlobs; i++)
 {
 totalArea += myBlobSelector.BlobArea[i];
 }

 //assign the value to the script string to display it
 //in the result table
 this.String = "Total Area = " + totalArea + " pixels.";
 }
}

 183

Extracting Detailed Information from a Measurement SoftSensor.
class myScript
{
 public void inspect()
 {
 //this script reads the edge points found by a
 //measurement softsensor fitting a line along
 //a horizontal edge, and determines the position
 //of the top point of the edge.

 int topPtIndex = 0;

 //assign a large number to yTop to begin the
 //process of checking every point
 float xTop, yTop = 479;

 //cycle through all the points to find the one with
 //the lowest Y coordinate
 for(int i = 0; i < topEdge.NumEdgePoints; i++)
 {
 //only update data if the point is higher than
 //the highest one so far
 if(topEdge.EdgePoint.Y[i] < yTop)
 {
 topPtIndex = i;
 yTop = topEdge.EdgePoint.Y[i];
 xTop = topEdge.EdgePoint.X[i];
 }
 }

 if(topPtIndex == 0)
 {
 this.String = "Error, point not found";
 }
 else
 {
 this.String = "Top point: "+"("+xTop+","+yTop+")";
 }
 }
}

 184

Image Object Example: Preprocessing an image
This Background Script example determines a number of windows and it performs different
processing operations in those windows. Most of the functionality of the image object is used.

class myScript
{
 public static void main()
 {
 //this example creates 8 windows inside the image and
 //performs a different operation in each one to
 //illustrate the functionality of the image object

 while(true)
 {
 int res,i,time;
 //declare and construct 2 image objects
 Image img1;
 Image img2;
 img1 = new Image();
 img2 = new Image();

 //declare 8 Window objects, one for each operation
 Window WinAdd, WinSub, WinNeg, WinThres;
 Window WinMap, WinFilt, WinErode, WinDilate;

 //------- Define Windows --------------------------

 //construct the windows of specific sizes
 //the numbers were chosen to end up with
 //eight different well defined windows

 WinAdd = new Window(32,32,152,224);
 WinSub = new Window(184,32,304,224);
 WinNeg = new Window(336,32,456,224);
 WinThres = new Window(488,32,608,224);
 WinMap = new Window(32,256,152,448);
 WinFilt = new Window(184,256,304,448);
 WinErode = new Window(336,256,456,448);
 WinDilate = new Window(488,256,608,448);

 // ------ Acquire image 1 and debugprint timing ---

 DebugPrint("----------- ");
 time= clock();
 res=img1.Acquire();
 DebugPrint("Acquire: " + res + " time: " +(clock()-time));

 // ------ Acquire image 2 and debugprint timing ---

 time= clock();
 res=img2.Acquire();
 DebugPrint("Acquire: " + res + " time: " +(clock()-time));
 sleep(1000);//this simply pauses the execution

 185

 // Add a specific window of image 2 to image 1 -----------

 time= clock();
 res = img1.Add(img2,WinAdd);
 DebugPrint("Addition: " + res + " time: " +(clock()-time));

 // Subtract a specific window of image 2 from image 1 ----

 time= clock();
 res = img1.Subtract(img2,WinSub);
 DebugPrint("Subtraction: "+res+" time: "+(clock()-time));

 // ------ Negate image1 specifying window ----------------

 time= clock();
 res = img1.Negate(WinNeg);
 DebugPrint("Negation: "+res+" time: "+(clock()-time));

 // ------ Threshold image 1 specifying window ------------

 time= clock();
 res = img1.Threshold(WinThres, 50, 125, 200, 125, 25);
 DebugPrint("Thresholding: "+res+" time: "+(clock()-time));

 // ------ Map image 1 specifying window ------------------

 byte MyMap[] = new byte[256];
 for(i = 0; i < 125; i++)
 MyMap[i] = 255-i;
 for(; i< 255 ; i++)
 MyMap[i] = 50;

 time= clock();
 res = img1.Map(MyMap, WinMap);
 DebugPrint("Mapping: " + res + " time: " +(clock()-time));

 // ------ Filter image 1 specifying window ---------------

 //Create filter - Laplace Edge enhancement
 int MyFilter[] = new int[9];
 MyFilter[0] = -2;
 MyFilter[1] = 0;
 MyFilter[2] = -2;
 MyFilter[3] = 0;
 MyFilter[4] = 4;
 MyFilter[5] = 0;
 MyFilter[6] = -2;
 MyFilter[7] = 0;
 MyFilter[8] = -2;
 time= clock();
 res = img1.Filter(WinFilt, MyFilter);
 DebugPrint("Filtering: "+res+" time: "+(clock()-time));

 // ------ Erode image 1 specifying window ----------------
 time= clock();
 res = img1.Erode(WinErode, 3, 125, 50, 200);
 DebugPrint("Erosion " + res + " time: " +(clock()-time));

 186

 // ------ Dilate image 1 specifying window ---------------
 time= clock();
 res = img1.Dilate(WinDilate, 3, 125, 50, 200);
 DebugPrint("Dilation " + res + " time: " +(clock()-time));

 // ------ Send image out ---------------------------------
 time= clock();
 res = img1.Save();
 DebugPrint("Save " + res + " time: " +(clock()-time));
 DebugPrint("----------- ");

 sleep(1000);//pause execution to see images

 } // closes while(true)
 }
}

 187

Establishing communications with Socket Object as a server
This example turns the SmartImage sensor into a terminal server. After you upload this script into
the SmartImage sensor, open a telnet program (like Hyperterminal) and connect to the
SmartImage sensor on port 5005. Only one command, exit, is currently implemented (more can
be added by adding more if-then branches).

class myScript
{
 public static void main()
 {
 //declare socket objects to use and the necessary variables
 Socket sock;
 Socket newSock;

 int Result;
 int i;

 byte out[] = new byte[6];
 byte in[] = new byte[15];
 byte exit[] = new byte[4];

 boolean connection = true;

 //initialize the array to send out using ASCII codes
 out[0]=10;
 out[1]=13;
 out[2]=68;
 out[3]=86;
 out[4]=84;
 out[5]=62;

 //construct socket objects
 sock = new Socket();
 newSock = new Socket();

 //bind to a port and listen in that port. DebugPrint the
 //outputs
 Result = sock.Bind(5005);
 DebugPrint ("Bind Result: " + Result);
 Result = sock.Listen();
 DebugPrint ("Listen Result: " + Result);

 //wait for the response and when succesful, assign it to
 //the other socket for communications
 do
 {
 Result=sock.Accept(newSock);
 } while(Result!=0);

 //enter a loop to handle the data exchange
 while(connection)
 {
 //send out the preformatted array with the DVT prompt
 Result=newSock.Send(out);

 188

 DebugPrint ("Terminal Send Result: " + Result);
 DebugPrint("Before Recv");

 //reset the array used for receiving data to 0
 i=0;
 while(i<15)
 {
 in[i]=0;
 i++;
 }

 //receive
 i=-1;
 do
 {
 //if the last read timed out then do not increment
 if (Result!=-14)
 {
 i++;
 }
 Result = newSock.Recv(in,i,1);
 //keep reading until a LF ASCII character is found.
 } while(in[i]!=10 || Result==-14);

 DebugPrint("AfterRecv");

 /*The String function converts an array of Bytes to a
 String.
 This should only be used if your array only contains
 printable ASCII characters*/
 DebugPrint("The recieved string is "+String(in));

 //output bytes to debug window
 i=0;
 while(i<15)
 {
 DebugPrint("Char at "+i+" is "+ in[i]);
 if(in[i]==13)
 {
 i = 15;
 }
 i++;
 }

 //setup array to exit
 i=0;
 while(i<4)
 {
 exit[i]=in[i];
 i++;
 }

 DebugPrint ("Terminal Receive result: " + String(exit));

 //compare string to exiting command
 if(String(exit).compareTo("exit")==0)
 {

 189

 sock.Close();
 newSock.Close();
 connection = false;
 }

 sleep (100);
 }
 }
}

 190

This page intentionally left blank

 191

Appendix A – ASCII Table of Characters

Basic table of characters (0 to 127)

 192

Extended table of characters (values 128 to 255)

 193

Index

Algorithm

Components.. 21

Conditional Expressions ... 22

Control Structures... 23

Data Manipulation Instructions .. 21

Data Structures ... 21

Design... 20

Allen Bradley Functions... 137

And operator... 44

ASCII Table ... 190

Bit Manipulation... 45

Bit operators

AND ... 46

Left Shift... 48

NOT.. 47

OR .. 46

Right Shift ...48, 49

XOR ... 47

charAt() .. 28

clock()... 49

compareTo() ... 29

Data Types

Basic Types .. 25

Strings... 28

DebugPrint() ... 50

do/while Loops ... 37

DoubleToString() ... 32

equal operator ... 41

Examples

 194

Establishing communications with Socket Object as a Server ... 186

Extracting and using blob data ... 181

Extracting Detailed Information from a Measurement SoftSensor .. 182

Image Object – Preprocessing an image... 183

Fanuc Functions ... 146

Flash Object.. 176

Flash()... 177

RestoreRegs() ... 177

SaveRegs().. 177

for Loops .. 37

GetImageID.. 52

GetInputs().. 110

GetOutputs() ... 110

Greater Than operator... 42

Greater Than or Equal operator .. 43

I/O commands .. 109

I/O map... 109

If Statements... 35

Image Object .. 153

Acquire() .. 156

Add(,Window)... 158

Add() .. 158

Dilate(, , ,)... 162

Dilate(Window, , , ,) .. 163

Erode(, , ,)... 160

Erode(Window, , , ,) .. 161

Fields .. 154

Filter(double filter[]) ... 164

Filter(int filter[]) .. 165

Filter(Window, double filter[]).. 166

Filter(Window, int filter[]) .. 167

GetWindow()...172, 173

Image() ... 155

Inspect().. 171

 195

Map(, Window) ... 169

Map() .. 168

Negate() .. 157

Negate(Window) .. 157

Save() ... 156

SetWindow(Window Win) ... 172

Subtract(,Window) .. 160

Subtract() .. 159

Threshold(, , , ,) .. 170

Threshold(Window, , , , ,).. 170

Imaging Functions .. 149

MarkImage(, ,).. 149

MarkImage(, , , ,).. 149

MarkImage(, , [], [],)... 150

MarkImagePoints(, , [], [],)... 151

indexOf() .. 29

Input Commands

GetInputs().. 110

SetInputs() .. 111

Input/Output Map ..115, 134

Introduction to Scripts .. 12

A closer look .. 15

length() ... 29

Less Than operator ... 42

Less Than or Equal operator... 42

Loops.. 37

Math Functions

Absolute Value ... 93

ArcCosine ... 95

ArcSine... 95

ArcTangent ... 96

ArcTangent2 ... 96

Cosine... 94

LineFit .. 96

power .. 93

 196

Sine... 94

Square Root .. 94

Tangent ... 95

Math Operators

Addition (+) .. 86

Assignment (=) ... 85

Division (/) ... 87

Multiplication (*).. 87

Subtraction (-)... 86

Mathematical Operators and Functions .. 85

Memory

Registers ... 98

Miscellanous Functions

clock()... 49

DebugPrint() ... 50

GetImageID() ... 52

SetMatchString() .. 51

sleep() ... 50

Modbus Coils in DVT Registers ...115, 134

Modbus Object ... 124

Close() .. 125

Connect() .. 125

MBTransfer .. 124

Read() ... 126

ReadCoils()... 128

ReadInputDiscretes() .. 129

ReadInputRegs()... 130

ReadStatus() ... 132

Write() .. 127

WriteCoil() ... 129

WriteRegister() ... 131

Motoman Functions.. 143

Not Equal operator ... 44

Not operator...43, 87, 88, 89, 90, 91, 92, 93

Objects

 197

Modbus... 124

Product.. 77

Sensor ... 69

Socket ... 117

OEM Functions

AB_RegisterReadDINT()... 137

AB_RegisterReadINT().. 137

AB_RegisterReadREAL() .. 138

AB_RegisterReadSINT().. 138

AB_RegisterReadString()... 139

AB_RegisterWriteDINT() .. 140

AB_RegisterWriteINT()... 140

AB_RegisterWriteREAL() ... 141

AB_RegisterWriteSINT()... 141

AB_RegisterWriteString().. 142

Allen Bradley ... 137

Fanuc .. 146

FanucSetup() .. 146

FanucWritePReg() .. 147

FanucWriteReg() .. 146

Motoman .. 143

MotoWriteByte() .. 143

MotoWriteDouble().. 144

MotoWriteInt() ... 143

MotoWritePvar() .. 145

MotoWriteReal() .. 144

Operators .. 41

! 43, 87, 88, 89, 90, 91, 92, 93

!= 44

&&.. 44

|| 44

< 42

<= ... 42

== ... 41

> 42

>= ... 43

Bit Manipulation... 45

 198

Math ... 85

Or operator ... 44

Output Commands

GetOutputs() ... 110

SetOutputs().. 111

SetOutputsAfterInspection()... 112

WaitOnAnyInput () .. 113

WaitOnInput() .. 112

Product data.. 75

Product Manipulation

Next() ... 79

Product Object.. 77

GetFirstProduct().. 79

GetProduct() ... 78

GetProductById() ... 78

ID() ... 79

Inspect().. 80

Name .. 82

Select().. 80

Stats() ... 81

Product Parameters

GetExposure() .. 76

GetGain().. 77

SetExposure() ... 76

SetGain() .. 77

SetWindow() .. 75

RegisterReadByte() .. 100

RegisterReadDouble() .. 102

RegisterReadFloat().. 101

RegisterReadInteger()... 101

RegisterReadLong() ... 101

RegisterReadShort() ... 100

RegisterReadString() .. 102

Registers ... 98

RegisterWriteByte() ... 103

 199

RegisterWriteDouble() ... 105

RegisterWriteFloat()... 104

RegisterWriteInteger().. 104

RegisterWriteLong()... 104

RegisterWriteShort() .. 103

RegisterWriteString() ... 105

Scripts

Background .. 16

basic syntax .. 34

Comments... 34

Creating .. 16

Data Manipulation .. 25

Foreground ... 16

Key Words.. 34

Syntax... 19

Timing .. 19

Types .. 15

What they are.. 15

Sensor Object ... 69

GetSensorById()... 69

GetSensorByName()..68, 69

SetMatchString() .. 70

SetParams() .. 70

Stats() ... 71

SetInputs() .. 111

SetMatchString... 51

SetOutputs().. 111

SetOutputsAfterInspection()... 112

sleep() ... 50

Socket Object ... 117

Accept() .. 119

Bind() ... 118

Connect() .. 117

ConnectTO ... 122

Listen() ... 118

Recv(, ,) .. 120

 200

Recv() ... 120

RecvTO .. 122

Send(, ,) .. 121

Send() ... 121

SendTO... 122

Socket() .. 117

SoftSensor data... 55

SoftSensor Parameters

Blob Tools .. 62

Color Monitoring.. 66

EdgeCount .. 57

FeatureCount .. 58

Intensity .. 57

Math Tools ... 61

Measurement .. 58

ObjectFind .. 65

Pixel Counting .. 65

Readers ... 61

Rotation .. 56

Script SoftSensor (Foreground Script) ... 67

Segmentation .. 66

TemplateMatch... 64

Translation.. 55

String

charAt() .. 28

compareTo() ... 29

Concatenation ... 86

DoubleToString() ... 32

indexOf() .. 29

length() ... 29

Special Characters .. 32

String().. 31

substring()... 30

toByteArray() ... 31

toFloat() .. 30

toInteger() ... 31

String() ... 31

 201

substring()... 30

toByteArray() ... 31

toFloat() .. 30

toInteger()... 31

WaitOnAnyInput () .. 113

WaitOnInput() .. 112

while Loops .. 37

Why Scripts? .. 13

Window Object... 152

Window().. 152

	Table of Contents
	Chapter 1 – Introduction to DVT Scripts
	Why Scripts?
	A closer look at Scripts
	What are scripts?
	Types of Scripts
	Background Scripts
	Foreground Scripts

	Creating Scripts
	Timing

	Designing a Script
	Designing an algorithm
	Algorithm Components
	Data Structures
	Data Manipulation Instructions
	Conditional Expressions
	User-defined Functions
	Control Structures

	Chapter 2 - Data Types and Manipulation
	Basic Data and Manipulation
	Arrays
	Strings
	charAt()
	compareTo()
	indexOf()
	length()
	substring()
	toFloat()
	toInteger()
	String()
	toByteArray()
	DoubleToString()
	Special Characters

	Chapter 3 - Basic Script Syntax
	
	Comments
	Key Words and Reserved Words

	Conditional Expressions and Control Structures
	If Statements
	Loops

	User-defined Functions
	Comparison operators
	The equal operator (==)
	The less-than-or-equal-to operator (<=)
	The less-than operator(<)
	The greater-than operator(>)
	The greater-than-or-equal-to operator (>=)
	The not operator (!)
	The not-equal operator (!=)
	The or operator (||)
	The and operator (&&)

	Bit Manipulation
	Bits and Bytes
	The bitwise OR operator
	The bitwise AND operator
	The bitwise XOR operator
	The bitwise NOT operator
	The Signed Left Shift operator
	The Signed Right Shift operator
	The Unsigned Right Shift operator

	Miscellaneous Functions
	The clock() function
	The sleep() function
	The DebugPrint() function
	SetMatchString()
	GetImageID()

	Chapter 4 – Accessing SoftSensor data
	Syntax for Basic SoftSensor Data Extraction
	Translation SoftSensor Parameters
	Rotation SoftSensor Parameters
	Intensity SoftSensor Parameters
	EdgeCount SoftSensors
	FeatureCount SoftSensors
	Measurement SoftSensors
	Math Tools
	Readers
	Blob Tools
	TemplateMatch SoftSensor
	ObjectFind SoftSensor
	Pixel Counting SoftSensor
	Color Monitoring SoftSensor
	Segmentation SoftSensor
	Script SoftSensor (Foreground Script)
	Spectrograph SoftSensor

	Advanced Functionality: Sensor Object
	GetSensorByName()
	GetSensorById()
	SetMatchString()
	SetParams()
	Stats()

	Chapter 5 - Accessing Product Data
	Syntax for Basic Product Data Extraction
	SetWindow()
	GetExposure()
	SetExposure()
	GetGain()
	SetGain()

	Advanced Functionality: Product Object
	GetProduct()
	GetProductById()
	GetInspectProduct()
	GetFirstProduct()
	Next()
	ID()
	Select()
	Inspect()
	Stats()
	Name

	Chapter 6 - Mathematical computations
	Mathematical Operators and Functions
	The assignment operator (=)
	The addition operator (+)
	The subtraction operator (-)
	The multiplication operator (*)
	The division operator (/)
	The increment operator (++)
	The decrement operator (--)
	The addition assignment operator (+=)
	The subtraction assignment operator (-=)
	The multiplication assignment operator (*=)
	The division assignment operator (/=)
	The modulus assignment operator (%=)
	The bitwise AND assignment operator (&=)
	The bitwise OR assignment operator (|=)
	The bitwise XOR assignment operator (^=)
	The signed left shift assignment operator (<<=)
	The signed right shift assignment operator (>>=)
	The unsigned right shift assignment operator (>>>=)
	The power function
	The Absolute Value function
	The Square Root Function
	The Sine function
	The Cosine function
	The Tangent function
	The ArcSine function
	The ArcCosine function
	The ArcTangent function
	The ArcTangent2 function
	The Line Fit function

	Chapter 7 - Using system memory: DVT Registers
	Registers as Global Variables
	RegisterReadByte()
	RegisterReadShort()
	RegisterReadInteger()
	RegisterReadLong()
	RegisterReadFloat()
	RegisterReadDouble()
	RegisterReadString()
	RegisterWriteByte()
	RegisterWriteShort()
	RegisterWriteInteger()
	RegisterWriteLong()
	RegisterWriteFloat()
	RegisterWriteDouble()
	RegisterWriteString()

	Chapter 8 – Input/Output Functions
	Use of I/O commands
	GetInputs()
	GetOutputs()
	SetInputs()
	SetOutputs()
	SetOutputsAfterInspection()
	WaitOnInput ()
	WaitOnAnyInput ()
	DVT Register and I/O Map

	Chapter 9 - Communications
	Socket Object
	Socket()
	Connect()
	Bind()
	Listen()
	Accept()
	Recv()
	Recv(, ,)
	Send()
	Send(, ,)
	ConnectTO
	SendTO
	RecvTO
	RecvFrom()
	SendTo()

	Modbus Object
	MBTransfer()
	Connect()
	Close()
	Read()
	Write()
	ReadCoils()
	WriteCoil()
	ReadInputDiscretes()
	ReadInputRegs()
	WriteRegister()
	ReadStatus()
	Mapping DVT Registers to Modbus Coils

	Chapter 10 – OEM Functions
	Allen Bradley Functions
	AB_RegisterReadDINT()
	AB_RegisterReadINT()
	AB_RegisterReadREAL()
	AB_RegisterReadSINT()
	AB_RegisterReadString()
	AB_RegisterWriteINT()
	AB_RegisterWriteDINT()
	AB_RegisterWriteREAL()
	AB_RegisterWriteSINT()
	AB_RegisterWriteString()

	Motoman Functions
	MotoWriteByte()
	MotoWriteInt()
	MotoWriteDouble()
	MotoWriteReal()
	MotoWritePvar()

	Fanuc Functions
	FanucSetup()
	FanucWriteReg()
	FanucWritePReg()

	Chapter 11 – Working with Images
	Imaging Functions
	Image(,)
	MarkImage(, ,)
	MarkImage(, , , ,)
	MarkImage(, , [], [],)
	MarkImagePoints(, , [], [],)

	Window Object
	Window()

	Image Object
	Image Object Fields
	Image()
	Acquire()
	Save()
	Negate()
	Negate(Window)
	Add()
	Add(,Window)
	Subtract()
	Subtract(,Window)
	Erode(, , ,)
	Erode(Window, , , ,)
	Dilate(, , ,)
	Dilate(Window, , , ,)
	Filter(double filter[])
	Filter(int filter[])
	Filter(Window, double filter[])
	Filter(Window, int filter[])
	Map()
	Map(, Window)
	Threshold(, , , ,)
	Threshold(Window, , , , ,)
	Inspect()
	SetWindow(Window win)
	GetWindow()
	Clear()
	Copy()

	Chapter 12 – Flash Object
	
	Flash()
	SaveRegs()
	RestoreRegs ()

	Chapter 13 – Script Examples
	
	Extracting and using blob data
	Extracting Detailed Information from a Measurement SoftSensor.
	Image Object Example: Preprocessing an image
	Establishing communications with Socket Object as a server

	Appendix A – ASCII Table of Characters
	Index

