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Abstract

This paper describes a robotic manipulation primitive
called toppling—knocking a part over. We derive the me-
chanical conditions for toppling, express these as con-
straints on robot contact locations and motions, and de-
scribe an application of toppling to minimalist parts feeding
of 3D objects on a conveyor with a 2 joint robot.

1 Introduction

In the spirit of minimalist robotics, we are studying a ma-
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nipulation primitive called toppling. Toppling occurs when
a robot knocks a part over to a new face. This work has
two motivations: (1) it adds to the repertoire of manipula-
tion primitives (which includes grasping, pushing, throw-
ing, tapping, and tumbling; see Lynch and Mason [9] for an
overview) available to a robot in manipulation planning; and
(2) it can be accomplished using very simple, low-degree-of-
freedom robot motions. One natural application for toppling
is reorienting parts on conveyors. Since the conveyor pro-
vides linear motion for the part, the toppling “robot” can in
fact be a fixed overhang (for example, the overhangs above
a bowl feeder track). Thus robot motion is reduced to fixed
automation. When combined with previous work on orient-
ing planar parts on conveyors (Akella et al. [3]; Peshkin and
Sanderson [14]; Brokowski et al. [6]; Wiegley et al. [20]),
toppling permits full 3D parts feeding on a conveyor.

In this paper we study the mechanics of toppling and de-
rive an algorithm for finding the set of contact points on a
part from which it can be toppled to a new face. The re-
sults of this algorithm provide the basis for automatic mo-
tion planning to find a sequence of topples to a desired goal
face, or for finding a sequence of fixed overhangs. Based
on our results, we have constructed the 2JOC, a two joint
robot which can position and orient 3D parts on a moving
conveyor (Figure 1).

This work is inspired by K. Goldberg’s [8] suggestion of
the utility of toppling in minimalist manipulation and parts
feeding. Our mechanics analysis is related to Erdmann’s [7]
work on two-palm nonprehensile manipulation. Erdmann
constructed a planner to find motions for two independent
three degree-of-freedom planar palms manipulating an ob-
ject without grasping it. The planner uses a quasistatic
model of frictional mechanics and finds motions that utilize
a variety of slipping and rolling motions between the object
and the palms. In our work we consider a much simpler set

Figure 1: The 2JOC feeds parts on a conveyor by pushing and
toppling.

of robot motions and focus on the conditions for inducing
toppling of an object on a moving conveyor.

Other related work includes pivoting and tumbling parts
using a robot hand (Brock [5]; Sawasaki et al. [16];
Aiyama et al. [2]; Trinkle [18, 19]). By grasping a part
with a pivoting gripper that allows the part to reorient under
gravity, Rao et al. [15] showed that a 4 DOF SCARA robot
could induce out-of-plane rotations. Zhang and Gupta [21]
recently presented an approach to orienting parts on a con-
veyor by allowing them to fall over steps. Toppling can also
be effected by controlled acceleration of the conveyor. A
similar idea for toppling parts was presented by Singer and
Seering [17].

Our 2JOC robot controls the position and orientation of
parts on a conveyor by pushing and toppling. The motiva-
tions are closely related to those of Bicchi and Sorrentino [4]
who demonstrated control of the position and orientation of
an object by rolling it between two grasping palms. Be-
cause spatial rolling constraints are nonholonomic, the three
degree-of-freedom robot is able to control the object’s po-
sition and orientation. With the 2JOC, the conveyor-plane
position and orientation of a polyhedral part is controlled by
pushing the part over the conveyor, while Marigo et al. [10]
have studied the set of reachable configurations for polyhe-
dra on a planar surface when the parts can only roll about
edges.

In Section 2 we derive the contact conditions for toppling
and the toppling transition directed graph, which indicates
the new resting face once the part has toppled. In Section 3
we describe some applications of toppling to parts feeding,
including the 2JOC. We conclude in Section 4.



2 Toppling

Toppling consists of two phases: rolling (Section 2.1) and
settling (Section 2.2). During rolling the robot pushes the
part up onto a toppling edge, which is perpendicular to the
motion of the conveyor, until the center of mass of the part is
directly above the edge. During settling the part falls under
gravity, lands on a new face, and perhaps continues to roll
onto another face before coming to rest.

We define two planes: the toppling plane and the con-
veyor plane. The toppling plane is a plane orthogonal to the
toppling edge. In our analysis of toppling we project the part
onto this plane, and the toppling edge projects to a toppling,
or pivot, vertex. We assume the projection of the part to the
toppling plane is polygonal. The conveyor plane is the plane
of the conveyor, and it is orthogonal to the toppling plane.
All toppling analysis occurs in the toppling plane; the con-
veyor plane is relevant when we include pushing motions in
this plane with the 2JOC.

2.1 Rolling Conditions
The part rests on a horizontal conveyor moving to the right

on the page (Figure 2). We define a frame fixed to the con-
veyor with origin at the pivot vertex of the part (which moves
with the conveyor) with the x-axis aligned with the direction
of motion of the conveyor and the y-axis vertical. The cen-
ter of mass of the part in this frame is at a distance r from
the origin at an angle η. The friction coefficients µc and
µ f correspond to friction between the part and the conveyor
and between the part and the fence, respectively. The cor-
responding friction cone half-angles are αc

� tan
� 1 µc and

α f
� tan

� 1 µ f .
The fence contacts a part edge with one endpoint at

�
x � y �

in the conveyor frame. The angle of the edge is ψ from�
x � y � and the inward-pointing contact normal for the edge

is at ψ � π � 2. The friction cone between the part and the
fence is bounded by the angles of the left friction cone edge
βl

� ψ � π � 2 � α f and the right friction cone edge βr
�

ψ � π � 2 � α f .
The question is, what fence contact points along this edge

will result in the part initially rolling over the pivot vertex?
The key construction is shown in Figure 2. Draw a ver-

tical line through the center of mass, extend the right edge
of the friction cone at the pivot until it intersects this line,
and extend the left edge of the friction cone backward un-
til it intersects this line. This defines a triangle with ver-
tices P1 at

�
r cosη � � r cosη ��� µc � , P2 at

�
0 � 0 � (the pivot), and

P3 at
�
r cosη � � � r cosη ��� µc � in the conveyor frame. If the

fence is rigid, and the contact force the fence applies to the
part makes positive moment about every point in this tri-
angle (i.e., the contact force passes around the triangle in
a counterclockwise fashion), then the only quasistatic solu-
tion is that the part rolls about the pivot vertex.1 To guaran-
tee rolling, every force in the fence friction cone must make
positive moment about every point in the P1P2P3 triangle. In
Figure 2, the fence friction cone shown barely satisfies this
condition.

1We state this without proof. See (Mason [11]) for related examples.
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Figure 2: Notation for rolling.

The contact friction cone in Figure 2 marginally satisfies
the rolling condition, and it is apparent that any higher con-
tact point will also satisfy the condition. We can state this
formally. Parameterize the contact edge by w, so that points
on the contact edge are given by

�
x � y �	� w

�
cosψ � sinψ � ,

w 
�� 0 � wmax  . Then if a contact force (any force with a pos-
itive component in the direction of the inward-pointing con-
tact normal) through

�
x � y ��� w0

�
cosψ � sinψ � makes positive

moment about a point P, it is easy to show that any other
parallel force through

�
x � y ��� w

�
cosψ � sinψ � , w � w0, also

makes positive moment about P. Therefore, if contact at w0
causes rolling, then contact at w � w0 also causes rolling.
Thus the construction of Figure 2 confirms these intuitive
properties of rolling:
� “higher” fence contacts tend to produce rolling, while

lower contacts result in slipping on the conveyor;

� a larger conveyor friction coefficient µc results in a
smaller P1P2P3 triangle, increasing the set of contact
points that produce rolling;

� a center of mass further to the left results in a smaller
P1P2P3 triangle, increasing the set of contact points that
produce rolling.

The construction also shows that the height of the center of
mass plays no role in the quasistatic, dry friction rolling con-
ditions.

The analysis of Figure 2 only addresses the instantaneous
initial condition for rolling. As the part rolls, it may be-
come wedged or begin slipping on the conveyor. To analyze



conveyor motion

Figure 3: The part on the left becomes wedged or begins slipping
with a fence of fixed height. The fence on the right lifts up to
maintain a constant contact point on the part, allowing it to topple
over.

the gross motion of the part after it begins rolling, we con-
sider two models of the motion of the fence. In the first
model, the fence “complies” to the shape of the part in a
position-controlled manner, so that the contact point on the
part remains constant during rolling. In the second model,
the fence remains motionless. The first model is easier to
analyze, and it increases the set of parts that can be toppled.
The second model requires no motion by the fence.

2.1.1 Position-Controlled Fence
To simplify analysis and to be able to topple parts that

might otherwise slip or become wedged, we raise or lower
the fence so the contact point on the part remains constant
as the part rolls. The velocity of the conveyor is known, and
given the geometry and initial position of the part, the fence
can simply “comply” to the shape of the part in a position-
controlled manner. The fence maintains contact until the
angle η to the center of mass becomes greater than π � 2. The
part then falls to a new stable edge. See Figure 3.2

The goal is to find contact points that maintain the rolling
condition as the center of mass rolls from its initial angle ηi
to its final angle η f

� π � 2, at which point the part topples
over. As the part rolls, the fence friction cone moves in the
conveyor frame. (The P1P2P3 triangle also shrinks.) As a re-
sult, a contact that causes rolling at ηi may not cause rolling
as η increases—the part may begin to slide or wedge. So, for
a given pivot vertex and contact edge, we must find w0 such
that all contact points w � w0 result in rolling at all angles
η 
 � ηi � η f  .

Consider the top triangle vertex P1, at�
r cosη � � r cosη � � µc � . At η � ηi the contact edge is at

an angle ψ from the vertex at
�
x � y � . Consider the right edge

of the fence contact friction cone, at an angle βr . We would
like to find the function w1r

�
η � which gives the edge contact

point where the right edge of the friction cone passes
exactly through P1. We define w

�
1r to be the maximum value

of w1r
�
η � for η 
 � ηi � η f  . Then the positive moment rolling

condition for the triangle vertex P1 and the right edge of
the friction cone is satisfied for all contact points w � w

�
1r.

(Similarly we can define w
�
1l for vertex P1 and the left edge

2If the next clockwise edge contacts the conveyor before η reaches π
�
2,

that edge is unstable. In this case the next vertex clockwise on the part’s
convex hull becomes the pivot vertex. For simplicity, we will ignore this
case.

of the friction cone; for vertex P2 we have w
�
2r � w

�
2l, and for

vertex P3 we have w
�
3r � w

�
3l .)

The line of the contact edge during rolling can be ex-
pressed as a function of the angle η and the contact parame-
ter w:

�
xcos∆η � y sin∆η � wcos

�
ψ � ∆η � �

x sin∆η � ycos∆η � w sin
�
ψ � ∆η ��� � (1)

where ∆η � η � ηi is the amount of rolling the part has un-
dergone. The contact force is at an angle βr � ∆η, and the
line of action of the force through the triangle vertex P1 can
be parameterized by v:
�
r cosη � vcos

�
βr � ∆η � � � r cosη � � µc � v sin

�
βr � ∆η �����

(2)
We solve for the contact point that provides a force through
P1 by equating (1) and (2) and solving for w:

w1r
�
η � � �

2µcycosβr � r cosλ � r cosν � 2µcx sinβr

� µcr sinλ � µcr sinν ��� 2µc sin
�
βr � ψ � � (3)

where λ � βr � ηi and ν � βr � 2η � ηi . A necessary condi-
tion for w1r

�
η � to reach its maximum is dw1r

�
η ��� dη � 0:

dw1r
�
η �

dη
� 2µcr cosν � 2r sinν

2µc sin
�
βr � ψ �

� 0 � (4)

Solving (4) for η, we get η1r
� �

tan
� 1 � � µc � � βr � ηi ��� 2.

Then w
�
1r must occur at either ηi, η f , or η1r . To find w

�
1r , we

need only evaluate (3) at a discrete set of angles.
Similarly for the bottom triangle vertex P3 , we get

w3r
�
η � � �

2µcycosβr � r cosλ � r cosν � 2µcx sinβr

� µcr sinλ � µcr sinν ��� 2µc sin
�
βr � ψ � � (5)

dw3r
�
η �

dη
� 2µcr cosν � 2r sinν

2µc sin
�
βr � ψ �

� 0 � (6)

and η3r
� �

tan
� 1 � µc � � βr � ηi ��� 2. For the triangle vertex

P2 (the pivot point):

w2r
� ycosβr � x sinβr

sin
�
βr � ψ � � (7)

and w2r (hence w
�
2r) is independent of η.

Substituting βl for βr in the equations above, we find
w
�
1l � w

�
2l � w

�
3l . Define w

�
max to be the maximum of the six val-

ues w
��
1 � 2 � 3 �

�
r� l � . If w

�
max is greater than wmax defining the end

of the edge segment, then there are no toppling contacts on
this edge. Otherwise, the range of toppling contacts is given
by the range

�
max

�
0 � w �

max � � wmax � .
We have implemented an algorithm in Lisp which, for

each stable resting configuration of the polygon, finds the
topplingcontacts on each edge. An example is shown in Fig-
ure 5. As expected, increasing conveyor friction increases
the range of toppling contacts.

This analysis ensures that any force inside the fence fric-
tion cone causes rolling, and is therefore conservative. In-
stead, we could simply verify that, at all times, there exists
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Figure 4: Notation for settling analysis.

a contact force inside the fence friction cone that produces
rolling. The fence could move such that it barely slips on the
part as it moves; the contact point is not quite maintained.
This allows the fence to choose a force at the edge of its
friction cone. Therefore, the rolling analysis does not have
to be satisfied for all possible forces in the friction cone, but
just for the chosen edge of the friction cone.

2.1.2 Fixed Fence
If the fence remains a fixed height as the part moves on

the conveyor, we must find a range of fence heights y that
guarantees toppling. To do that we again equate (1) and (2)
for a particular contact edge, but now solve for y

�
η � instead

of w
�
η � . There is no closed-form solution to dy

�
η ��� dη � 0,

however, so the minimum y value that ensures toppling must
be determined numerically.

The following conditions must also be satisfied: the fence
cannot lose contact with the part as it rolls, and rolling must
continue if the fence switches contact to a new edge during
rolling (the part cannot wedge in a concavity or begin to
slip).

2.2 Settling
When the center of mass passes the vertical with respect

to the pivot point, the part begins to free fall. The part may
simply come to rest on the next edge, or it may continue past
this edge and come to rest on a subsequent edge.

The part falls like a pendulum, as shown in Figure 4, until
impacting at the next vertex clockwise of the pivot vertex on
the part’s convex hull. The pre-impact linear velocity of the
part’s center of mass is

�
ẋ
� � ẏ � � , and the angular velocity is

η̇ � , given by

η̇ � �
�

2mg
�
h0 � h1 �
Ip

�

where m is the mass of the part, g is the gravitational con-
stant, and h0 and h1 are the height of the center of mass
above the conveyor at the beginning and end of the free fall,
respectively. Ip is the inertia of the part about the pivot,
where Ip

� m
�
ρ2 � h2

0 � , and ρ is the radius of gyration of
inertia of the part measured about its center of mass. The
vector from the center of mass to the impact vertex is

�
rx � ry � .

To determine the settling edge, we assume a perfectly
plastic impact between the impact vertex and the conveyor.

This places three constraints on the post-impact velocity.
The first two are kinematic, and the third indicates that the
impulse passes through the impact point:

ẋ � � ryη̇ �
ẏ � � � rxη̇ �

rx
�
ẏ � � ẏ

� � � ry
�
ẋ � � ẋ

� � � ρ2 � η̇ � � η̇ � � �
Solving yields

η̇ � � ρ2η̇ � � ryẋ
� � rxẏ

�
ρ2 � r2

x � r2
y

�

The pendulum now begins a new free fall stage about the
new impact vertex with this initial angular velocity. The part
has settled when the post-impact velocity causes immediate
re-impact with the previous vertex on successive impacts.

2.3 Toppling Transition Directed Graph
With the rolling conditions and the settling analysis, we

can construct the toppling transition directed graph for a
planar part. Each node of the graph corresponds to a stable
resting edge for the part. From each node there is a single arc
that leads to the node the part reaches after toppling. This arc
is tagged with the contact points on the part (in the case of
a position-controlled fence) or the fence heights (in the case
of fixed fences) that result in toppling. If no fence contacts
can result in toppling from this node, the arc is eliminated.
Increasing conveyor friction µc can result in the addition of
arcs to the graph. Figure 5 shows an example for a position-
controlled fence.

Finding a fence plan amounts to searching this graph for
a sequence of actions leading from the start node to the goal
node.

3 Applications

3.1 Sensorless Parts Feeding
A sequence of stationary fences over a conveyor can be

used to reduce uncertainty in the orientation of a part in the
toppling plane. This is similar to the work of Zhang and
Gupta [21], who showed that uncertainty in the orientation
of a part can be reduced by having the part fall over a se-
ries of steps on the conveyor. These sensorless strategies for
reducing uncertainty in the toppling plane can be combined
with sensorless approaches to conveyor-plane parts feeding
(Akella et al. [3]; Peshkin and Sanderson [14]; Brokowski et
al. [6]; Wiegley et al. [20]) to construct sensorless 3D parts
feeding devices on conveyors.

An example sequence of fixed fences is shown in Figure 6.
The part is a 3-4-5 triangle, with edges labeled as shown in
Figure 6 and vertices at

� � 2 � � 0 � 5 � , � 1 � � 0 � 5 � , and
�
1 � 3 � 5 �

with respect to an origin at the center of mass. The friction
coefficients are µ f

� 0 and µc
� tan30 � � 0 � 577. A fixed-

height peg at a height y above the conveyor, 3 � 467 � y �
3 � 881, causes a triangle at rest on edge 1 to topple to rest on
edge 3, while a triangle at rest on edges 2 or 3 passes un-
der the peg. (If y � 4, the triangle passes under the peg; if
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Figure 5: Toppling contacts for a position-controlled fence and two different conveyor friction coefficients µc. The toppling contacts are
indicated by heavy lines. As we increase µc, the ranges of toppling contacts increase. The arrows indicate a toppling transition directed
graph. In the case µc � 0 � 5, there is a single resting configuration from which the part cannot be toppled. The fence would have to contact
the bottom edge of the part to cause toppling.

1

2
3

Figure 6: A sequence of fixed-height pegs that eliminates uncertainty in the part’s toppling-plane orientation. At each peg, the part either
passes underneath it or topples to a new edge.

Figure 7: The 1JOC positions and orients parts in the conveyor plane by pushing.
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Figure 8: The toppling transition directed graph for a 3x2x1 uniform mass rectangular prism where µ f � 0 and 0 � 333 � µc
�

1 � 0. Each
node corresponds to a support face. The solid arrows correspond to transitions with feasible toppling contacts; the dotted transitions are
unachievable. For µc � 1 � 5, all transitions are possible.

y � 3 � 881, the peg loses contact with the triangle before it
has finished rolling.) A peg at 2 � 361 � y � 2 � 698 causes the
triangle to topple from edge 2 to edge 1. No peg location
will cause toppling from edge 3 to edge 2. Combining these
constraints, we find that three fixed-height pegs are neces-
sary and sufficient to bring this triangle to a unique resting
edge at the end of the sequence.

In general, fixed-height fences cannot remove all
toppling-plane uncertainty. These fences are analogous to
the overhangs used to topple parts in bowl feeders.

3.2 2JOC

The 1JOC (1 Joint Over Conveyor) [3] performs parts
feeding in the conveyor plane by using a single revolute
robot joint to push parts on the conveyor (Figure 7). By com-
bining part motion on the conveyor with a series of pushing
motions, we have shown that it is possible for the 1JOC to
take any polygonal part from any configuration on the con-
veyor (upstream of the robot) to a single desired configu-
ration in the conveyor plane. We have also demonstrated a
sensorless variant of the 1JOC.

We have augmented the 1JOC with a prismatic joint that
allows the fence to move vertically, as in Figure 1. We call
this system the 2JOC. The goal is to combine toppling with
the ability of the 1JOC to perform conveyor-plane feeding,
resulting in full 3D parts feeding on a conveyor.

For example, consider the 3x2x1 uniform mass rectangu-
lar block of Figure 8. Set µ f

� 0 and µc
� 0 � 5. With these

values, the toppling transition directed graph is shown. The
part can be toppled from face A to face B when the edge AB
(adjacent to faces A and B) is perpendicular to the motion of
the conveyor and furthest upstream on the conveyor. Then
the spatial toppling problem reduces to the planar problem
above, with edge AB acting as the pivot vertex. During top-
pling, the fence uses its vertical prismatic motion to maintain
a constant contact point on the part, but does not rotate in the
conveyor plane. By sequencing 1JOC pushing and toppling,
we can control the 3D configuration of the part.

If µ f
� 0 � µc � 1 � 5 for the block of Figure 8, then any

topple is possible; any face is reachable from any other face
by toppling. In fact, for any rectangular prism with µ f

� 0,
there exists a µcrit

c such that this property holds for all µc �
µcrit

c . This property, coupled with the 1JOC feeding property,

Figure 9: The experimental 2JOC.

indicates that any rectangular prism can be taken from any
initial 3D configuration on the conveyor to a desired goal
configuration, provided µc is sufficiently high.

Although the analysis in this paper is sufficient to analyze
the 2JOC manipulating rectangular prisms, a number of is-
sues remain for more general 3D parts. Determining which
face a part will settle on is one major issue. Another is de-
termining the full 3D force-balance conditions for rolling; in
some cases, the part may undergo conveyor-plane rotation
during the rolling phase of toppling. Another mechanics is-
sue is studying the effect of out-of-plane forces in pushing
(Mason and Salisbury [12]; Mayeda and Wakatsuki [13]),
which are not considered in the 1JOC. We must also address
automatic planning, and the existence of feasible plans as a
function of the part geometry, center of mass, and µc and µ f .

We have recently finished construction of a 2JOC un-
der computer control (Figure 9), and we have implemented
some simple 2JOC plans on rectangular prisms (see [1] for
a description and video). Current work is toward automatic
planning and execution given a general 3D part description,
a goal state, and initial conditions from sensory data.



3.3 Feeding Efficiency
The Adept Flex Feeder uses a system of conveyor belts

to present parts in randomized orientations to an overhead
vision system. If a part in the visual field is in a graspable
configuration, i.e., it is resting on the desired face, then a
SCARA robot grasps the part and places it in a pallet. The
conveyor remains motionless until all graspable parts in the
visual field have been processed. It then advances, bringing
new parts into the visual field.

When the robot moves to grasp a part, it could “bump”
other parts on the way, causing them to topple onto the de-
sired face (Goldberg [8]). The part could then be processed
in the next step. This makes dual use of the robot’s motion
(processing a part and preparing to process a part) which
could improve the overall throughput of the system. The
idea of knocking a part over to put it into a graspable config-
uration is similar to letting gravity reorient a part in a pivot
grasp (Brock [5]; Rao et al. [15]).

4 Conclusions

Toppling is a mechanically simple manipulation primi-
tive that can increase the dexterity of a simple minimalist
robot. In this paper we have used a quasistatic analysis to
reduce the toppling conditions to geometric contact condi-
tions for a fixed-height fence or a one degree-of-freedom
position-controlled robot operating above a conveyor. We
have shown that toppling can be used in conjunction with
pushing to allow a two joint robot to manipulate 3D parts
on a conveyor. Remaining work includes deriving toppling
transition directed graphs for 3D parts using impact simu-
lation for the settling phase, and automatic motion planning
and implementation on the 2JOC for 3D parts which are not
rectangular prisms.
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