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1 Introduction

Metals loaded beyond the elastic limit deform plastically. It is often the goal in structural
mechanics to model plastic deformations of such metals in a computational setting. Creating
algorithms to model the combined effect of elastic and plastic deformations is not trivial.
However, plasticity for the one dimensional case is a good introduction to the concepts
necessary to construct such algorithms. Hence, this article presents plasticity from a one
dimensional point of view and derives algorithms for a variety of different hardening models.
It is the goal of this article to introduce students to algorithmic plasticity (nonlinear material)
models and also pave the way for future learning in the area of three dimensional plasticity.

One dimensional plasticity is helpful as an introduction and as an intermediate step to-
ward more difficult topics, but it is also practical for bar elements often modeled in structural
analysis software. It is therefore worth noting that the information learned herein is useful
for the implementation of plasticity by modifying a standard linear truss analysis program.
Only small strains are considered.

2 Elastic and plastic behavior

Material testing is often accomplished by tensile tests. Plots of stress versus strain are often
created from tension tests. For many materials the plot of stress versus strain is linear for
stresses below a certain threshold called the yield stress. If the material is loaded beyond this
point the material yields and begins to deform plastically. How the material deforms after
passing the yield point varies from material to material. For instance many materials exhibit
hardening after reaching the yield limit. This hardening is exhibited by increasing resistance
to load after yielding, but this increase in resistance is much less than the resistance provided
by the material before yielding.

If hardening is present the post yield behavior exhibits both increasing elastic strain and
increasing plastic strain. A variety of models are available to try and simulate how the
plastic strain increases with increasing stress. The post yield behavior is often modeled
by specifying how the yield stress evolves with increasing plastic strain. A variety of such
models are shown in Figure 1. In the plots the yield point is shown, σy = 30 ksi, and the
hardening behavior is plotted based on the formulas shown. It is important to note that the
plots are of stress versus plastic strain. When plots of stress versus total strain are created
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Figure 1: Plastic Strain Hardening Models (σy = 30 ksi): (a) No Hardening - Perfect
Plasticity, (b) Linear Hardening, (c) Quadratic Hardening, (d) Voce Hardening, (e) Ramberg
Osgood Hardening, (f) Stress versus total strain with linear hardening.
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based on these models, the post yield behavior will look similar but will be different since
the post yield behavior also accounts for increasing elastic strains. Hence, for example, in
the case of Figure 1(b) the post yield slope is called the plastic modulus. Whereas a plot of
stress versus total strain using linear hardening, Figure 1(f), has a post yield slope that is
called the elasto-plastic modulus and it is not the same as the plastic modulus. Because of
hardening the yield point has increased and as a result more elastic strain exists due to the
higher yield point. Hence, for hardening materials, increase in plastic strain is accompanied
with increase in elastic strain. In later sections the derivation of the elasto-plastic modulus
is illustrated for the models given.

3 Definitions

Basic terminology helpful for understanding the concepts involved in modeling plasticity is
presented in this section. The definitions given are not exhaustive, but provide at least the
basic ideas. Some of the terms are easy to define clearly. Other terms can be defined but are
better understood after working with the material in following sections. The notation used
closely follows that given by Simo and Hughes [6].

Brief definitions of the most important terminology are as follows. Elastic strain, εe, is
any strain that takes place before exceeding the yield stress. However, it is important to
note that, for hardening materials, elastic strain is increasing during post yield also. Hence,
strain that is removed during unloading is a better definition of elastic strain. Plastic strain,
εp, is permanent strain that remains after unloading. Total strain is the sum of elastic strain
and plastic strain, ε = εe + εp. Any time plastic strains are taking place it follows that
plastic flow is taking place. When hardening occurs the value of the yield stress changes.
For this reason, plasticity models use internal hardening variables as a means for keeping
track of accumulated hardening. For isotropic hardening, hardening accumulates if plastic
strain is positive or negative, hence the internal hardening variable keeps track of the total
change in plastic strain. Therefore, the isotropic internal hardening variable α is called the
equivalent plastic strain. A yield condition (a function) is used to mathematically identify
when yielding happens. Often in the literature the yield condition is denoted by f . It
typically includes the current level of stress minus the initial yield stress added to a function
of α which describes the type of hardening. Examples of yield conditions are provided later
in this paper. As plastic strain takes place, α is updated and changes, the yield condition f
is calculated and is either a negative value or a positive value. If it is negative the current
level of stress is below yield and only elastic strains are increasing. If it is positive the
current level of stress is above the yield stress and (with the presence of hardening) elastic
and plastic strains are increasing. However, in actuality f > 0 is not allowed and requires
calculation of the amount of plastic flow and how the hardening level evolves such that f = 0
is achieved. This is accomplished by solving for a consistency parameter γ, which allows a
means for determining the level of plastic flow and hardening such that the condition f = 0
is satisfied. The variable γ is called the consistency parameter because it is deteremined so
that all relevant variables are consistent with the requirement that f = 0 when plastic flow is
taking place. This is a rather involved process and is difficult to describe in words. The whole
process of elastic loading and unloading or elasto-plastic loading and unloading requires a
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careful mathematical description. This has led researchers to use Kuhn-Tucker conditions.
The Kuhn-Tucker conditions are γ ≥ 0, f(σ) ≤ 0, and γf(σ) = 0. These conditions or rules
are used to construct the mathematical algorithms which model the process of plastic flow
(for a more in depth discussion the reader is referred to Simo and Hughes [6]). A consistency
condition is also used and is written as γḟ = 0, if f = 0. The sign function is often used in
the mathematics of plasticity algorithms. The function takes any variable and returns −1 if
the variable is negative and +1 if the variable is positive. Plasticity algorithms are often used
in finite element analysis programs to model nonlinear material behavior. In such cases the
finite element analysis program is incremental in nature. Each new load increment increases
stress levels, strain levels and displacements. Hence, during each of these increments the
plasticity algorithm is used at the element level in the analysis program. At the beginning of
each increment (or load step) it is not known whether the new level of stress causes yielding
(in a particular element) or not. For this reason it is initially assumed that the incremental
stress is elastic. In the plasticity algorithms, the resulting new stress level is termed a trial
stress. This trial stress is plugged into the yield condition f and the rules of the algorithm
are followed as necessary. In the course of the algorithm the correct new stress level is
determined (ie, the trial stress is corrected if the stress increment was not entirely elastic).
In some derivations given in this paper derivatives with respect to time such as dα

dt
= α̇ are

used. However, the type of material models described in this paper are rate independent,
so it may seem odd to take derivatives with respect to time. Hence, in this setting the
interpretation of derivatives with respect to time really mean changes with respect to a load
step or load increment in a finite element analysis program. For example, if the current value
of the internal variable α is αn then during the load increment the variable may increase by an
amount ∆α such that the new value of α is αn+1 = αn+∆α. In this example ∆α is analogous
to α̇. Another way to look at this is to say that (in a rate independent material model) a load
increment is like a time increment. This is the reason derivatives with respect to time are used
in the literature even in rate independent material models. In some theoretical derivations
γ is used to denote the consistency parameter. However, in the plasticity model algorithms
∆γ is used to denote the consistency paramenter. Otherwise, there is no difference between
γ and ∆γ used in this paper. For the 1D plasticity case the algorithmic tangent modulus
is equivalent to the elasto-plastic modulus. In higher dimensions this is not true. For some
plasticity models the yield function is complicated enough that algebraically solving for the
consistency parameter is not possible and hence it must be solved for using Newton-Raphson
iterations. In this process, in order to preserve the second order rate of convergence of the
Newton-Raphson method (which is likely also taking place at the global level of the nonlinear
finite element program) it is necessary to have a consistent variation (or derivative) of stress
with respect to the total strain. To get such a consistent variation it is necessary to take the
derivative of the algorithmic stress with respect to the total strain variable. The algorithmic

tangent modulus is specifically derived by taking the derivative
∂σ

(k)
n+1

∂ε
(k)
n+1

= C
(k)
n+1. This is a

derivative of the algorithmic stress and hence results in the algorithmic tangent modulus,
C
(k)
n+1. How plastic strain evolves in plasticity algorithms is called a flow rule. In this paper

the flow rule takes the form ε̇p = γ df

dσ
= γsign(σ). The isotropic hardening law takes the

form α̇ = ∆α = γ.
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4 1D Plasticity General Isotropic Hardening

The algorithmic pieces of one dimensional plasticity with a general expression for isotropic
hardening is presented next. The derivations and notation closely follows that given by [6].

4.1 Derivation of Elasto-Plastic Tangent Modulus

As usual the modulus of elasticity is E, the equivalent plastic strain is α and the total strain
is defined as

ε = εp + εe. (4.1)

Stress is linear elastic when f < 0 and is calculated as

σ = Eεe = E(ε− εp) (4.2)

Kinematic hardening is neglected and the flow rule is assumed as

ε̇p = γsign(σ). (4.3)

The yield condition is defined as follows:

f(σ) = |σ| −G(α) (4.4)

,where G(α) is a yield stress function which includes the type of isotropic hardening, which
is possibly a function of α. The customary Kuhn-Tucker conditions apply (γ ≥ 0, f(σ) ≤ 0,
and γf(σ) = 0). If f(σ) is to be zero the consistency condition requires that γḟ(σ) = 0.
Hence, when γ > 0, ḟ = 0 so that by the chain rule

ḟ =
∂f

∂σ

∂σ

∂t
+

∂f

∂G

∂G

∂α

∂α

∂t
= 0. (4.5)

Inserting each partial derivative into the above formula gives

ḟ = sign(σ)σ̇ + (−1)
∂G

∂α
α̇ = 0. (4.6)

Recall that α̇ = γ, σ̇ = E(ε̇ − ε̇p) and ε̇p = γsign(σ). Substituting this information into
(4.6) yields

ḟ = sign(σ)E(ε̇− γsign(σ))− ∂G

∂α
γ = 0. (4.7)

Recognizing that (sign(σ))2 = 1 and solving for γ gives

γ =
sign(σ)Eε̇

E + ∂G
∂α

. (4.8)

With the above results in hand the elasto-plastic tangent modulus, Cep = dσ
dε
, is found as

follows. Observe that σ̇ = dσ
dε
ε̇. Then using (4.2), (4.3) and (4.8) yields

σ̇ = E(ε̇− ε̇p) = E(ε̇− γsign(σ)) = E(ε̇− (sign(σ))2Eε̇

E + ∂G
∂α

). (4.9)
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Upon simplification the stress rate becomes

σ̇ =

[

E − E2

E + ∂G
∂α

]

ε̇ =
E ∂G

∂α

E + ∂G
∂α

ε̇. (4.10)

By inspection of (4.10) the elasto-plastic tangent modulus is

Cep =
E ∂G

∂α

E + ∂G
∂α

. (4.11)

4.2 Development of algorithmic ingredients for 1D plasticity with
general isotropic hardening

Consider now the algorithmic ingredients for a 1D plasticity problem. Suppose that a strain
increment is provided so that a new total strain, ε, is given. From this information a trial
value of the yield condition, f trial

n+1 , is calculated. If f trial
n+1 ≤ 0 the strain is elastic and the

solution is trivial. If on the other hand f trial
n+1 > 0 then a plastic step has occurred. For a

plastic step, the problem is to find σn+1, αn+1 such that f(σn+1, αn+1) = 0 and ∆γ > 0.
Having this information then allows calculation of εpn+1, which is the new total plastic strain.
To derive an algorithm for a typical plastic step first express σn+1 as a function of σtrial

n+1 and
∆γ as follows:

σn+1 = E(εn+1 − εpn+1)

= E(εn+1 − εpn)− E(εpn+1 − εpn)

= E(εn+1 − εpn)− Eε̇pn+1

= σtrial
n+1 − E∆γsign(σn+1).

(4.12)

Assuming that the correct value of ∆γ > 0 can be found for the current plastic step, all the
quantities are calculated as

σn+1 = σtrial
n+1 −∆γEsign(σn+1) (4.13a)

εpn+1 = εpn +∆γsign(σn+1) (4.13b)

αn+1 = αn +∆γ (4.13c)

fn+1 ≡ |σn+1| −G(αn+1) = 0. (4.13d)

The set of equations (4.13) are solved in terms of the trial elastic state (see Figure 2) as
follows:

|σn+1|sign(σn+1) = |σtrial
n+1 |sign(σtrial

n+1 )−∆γEsign(σn+1) (4.14)

,which is rearranged to give

[|σn+1|+∆γE]sign(σn+1) = |σtrial
n+1 |sign(σtrial

n+1 ). (4.15)

Now, since ∆γ and E are greater than zero, for the above equation to be valid the following
two conditions must be true

sign(σn+1) = sign(σtrial
n+1 ) (4.16a)

|σn+1|+∆γE = |σtrial
n+1 |. (4.16b)
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It remains to find the consistency parameter ∆γ > 0 from the discrete consistency condition
(4.13)d. Hence, using (4.16)b and (4.13)d yields

fn+1 = |σtrial
n+1 | −∆γE −G(αn+1)

= |σtrial
n+1 | −∆γE −G(αn+1)−G(αn) +G(αn)

= |σtrial
n+1 | −G(αn)−∆γE −G(αn+1) +G(αn)

= f trial
n+1 −∆γE −G(αn+1) +G(αn) = 0.

(4.17)

The last line of (4.17) is often a nonlinear equation in terms of ∆γ and must be solved by a
Newton-Raphson procedure. Once ∆γ is known using (4.16)a in (4.13)abc gives

σn+1 = σtrial
n+1 −∆γEsign(σtrial

n+1 ) (4.18a)

εpn+1 = εpn +∆γsign(σtrial
n+1 ) (4.18b)

αn+1 = αn +∆γ. (4.18c)

Note also that (4.18)a may be rewritten as

σn+1 =

[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1 . (4.19)
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4.3 The Algorithmic Tangent Modulus

Before summarizing the algorithm, the consistent or algorithmic tangent modulus is derived.
The algorithmic tangent modulus is

C
(k)
n+1 =

∂σ
(k)
n+1

∂ε
(k)
n+1

. (4.20)

In the following derivation the superscript k is omitted. Some preliminary results are ob-
tained for the derivation. First, differentiate the trial stress σtrial

n+1 to get

∂σtrial
n+1

∂εn+1

= E. (4.21)

Next, obtain ∂(∆γ)
∂εn+1

by realizing that (4.8) implies the following:

γ

ε̇
=

sign(σ)E

E + ∂G
∂α

⇒ ∂(∆γ)

∂εn+1

=
sign(σtrial

n+1 )E

E + ∂G
∂αn+1

. (4.22)

The above observation that leads to (4.22) is not rigorous and is not the standard way to
obtain it (however, it is easier than the rigorous approach, below, and seems to also work
in higher dimensions). A more rigorous approach described in [6] is to start with the scalar
consistency condition. For example, use the first line of (4.17) set equal to zero, rearrange

the equation, use implicit differentiation with the chain rule as needed and solve for ∂(∆γ)
∂εn+1

as
follows:

|σtrial
n+1 | −∆γE −G(αn+1) = 0 (4.23)

∂(∆γ)

∂εn+1

E +
∂G

∂αn+1

∂αn+1

∂(∆γ)

∂(∆γ)

∂εn+1

=
∂|σtrial

n+1 |
∂εn+1

(4.24)

∂(∆γ)

∂εn+1

E +
∂G

∂αn+1

(1)
∂(∆γ)

∂εn+1

= sign(σtrial
n+1 )E (4.25)

∂(∆γ)

∂εn+1

(E +
∂G

∂αn+1

) = sign(σtrial
n+1 )E (4.26)

∂(∆γ)

∂εn+1

=
sign(σtrial

n+1 )E

E + ∂G
∂αn+1

(4.27)

Now, with the above results, differentiate (4.18)a with respect to εn+1 to get

∂σn+1

∂εn+1

=

[

1− ∆γE

|σtrial
n+1 |

]

∂σtrial
n+1

∂εn+1

+
∂(−∆γE

|σtrial
n+1 |)

∂εn+1

σtrial
n+1 . (4.28)

To simplify (4.28), by using (4.21) and (4.22), find

∂(−∆γE

|σtrial
n+1 |)

∂εn+1

=
∂(−∆γ)

∂εn+1

E

|σtrial
n+1 |

+ (−∆γE)

(

∂|σtrial
n+1 |−1

∂εn+1

)

=
−E2

E + ∂G
∂αn+1

sign(σtrial
n+1 )

|σtrial
n+1 |

+ (−∆γE)

( −1

|σtrial
n+1 |2

)

sign(σtrial
n+1 )E.

(4.29)
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Substitute the result of (4.29) into (4.28) and use (4.22) to obtain

∂σn+1

∂εn+1

=

[

1− ∆γE

|σtrial
n+1 |

]

E − E2sign(σtrial
n+1 )σ

trial
n+1

(E + ∂G
∂αn+1

)|σtrial
n+1 |

+
∆γE2sign(σtrial

n+1 )σ
trial
n+1

|σtrial
n+1 |2

= E − ∆γE2

|σtrial
n+1 |

− E2|σtrial
n+1 |

(E + ∂G
∂αn+1

)|σtrial
n+1 |

+
∆γE2|σtrial

n+1 |
|σtrial

n+1 |2

= E − ∆γE2

|σtrial
n+1 |

− E2

E + ∂G
∂αn+1

+
∆γE2

|σtrial
n+1 |

=
E ∂G

∂αn+1

E + ∂G
∂αn+1

=
E ∂G

∂α

E + ∂G
∂α

.

(4.30)

Therefore, in the 1D case, the algorithmic tangent modulus is equivalent to the elasto-
plastic tangent modulus, that is

Cep = C
(k)
n+1 =

∂σ
(k)
n+1

∂ε
(k)
n+1

=
E ∂G

∂α

E + ∂G
∂α

. (4.31)

In higher dimensions they are not equivalent.

4.4 Summary of results

With all of the above in hand it is possible to summarize the algorithm for 1D plasticity
with general isotropic hardening. The algorithm is summarized in Box 4.1.

5 Examples of different types of isotropic hardening

Using the results of section 4.4, different types of hardening functions used to create the
yield stress function G(α) are examined. The different cases presented below provide a
broad sampling of hardening models used for materials. These cases also demonstrate the
actual implementation of the plasticity algorithm of Box 4.1. The yield stress function
and its derivative are susbtituted into the algorithm for general isotropic hardening at the
appropriate locations. These algorithms advance the solution variables from their current
values at step n to their values at step n+1. The resulting algorithm is summarized in a box
for each case given below. After observing the variety of examples given below it is hoped
that the reader can then tackle any case.

5.1 Perfect Plasticity (no hardening)

For this case there is no hardening. The yield stress function is G(α) = σy and therefore
∂G
∂α

= 0. The algorithm is summarized in Box 5.1. Note that the variable α is not needed
for this case of perfect plasticity. In this case, in step 4 of the algorithm, the consistency
parameter, ∆γ, is directly solved for algebraically.
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1. Start with stored known variables {εn, εpn, αn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

f trial
n+1 = |σtrial

n+1 | −G(αn)

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γE −G(αn+1) +G(αn) = 0, solve for ∆γ.

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

αn+1 = αn +∆γ

Cep =
E ∂G

∂α

E+ ∂G

∂α

EXIT the algorithm

Box 4.1: 1D Plasticity Algorithm With General Isotropic Hardening
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1. Start with stored known variables {εn, εpn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

f trial
n+1 = |σtrial

n+1 | − σy

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γE = 0, solve for ∆γ.

⇒ ∆γ =
f trial
n+1

E

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

Cep = 0

EXIT the algorithm

Box 5.1: 1D Plasticity Algorithm With No Hardening (Perfect Plasticity)
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5.2 Linear Hardening

Linear hardening is a fairly simple and common form. The yield stress function is G(α) =
σy +Kα and therefore ∂G

∂α
= K. The algorithm is summarized in Box 5.2. The consistency

parameter, ∆γ, is solved for using the last line of (4.17) as follows:

f trial
n+1 −∆γE − (σy +Kαn+1) + (σy +Kαn)

= f trial
n+1 −∆γE − σy −Kαn+1 + σy +Kαn

= f trial
n+1 −∆γE −K(αn+1 − αn)

= f trial
n+1 −∆γE −K(∆γ) = 0.

(5.1)

From the last line of equation (5.1)

∆γ =
f trial
n+1

E +K
, (5.2)

which is indicated in step 4 of the algorithm given in Box 5.2.

5.3 Quadratic Hardening

The following case does not seem to be common or practical. However, it is an interesting
case as an academic exercise. The yield stress function is G(α) = σy + E(α − Qα2) and
therefore ∂G

∂α
= E(1 − 2Qα). The algorithm is summarized in Box 5.3. The consistency

parameter, ∆γ, is solved for using the last line of (4.17) as follows:

f trial
n+1 −∆γE −G(αn+1) +G(αn) = 0. (5.3)

Substitution of G into (5.3), some lengthy algebra and use of the relation ∆γ = αn+1 − αn

results in
f trial
n+1 −∆γE − E∆γ + 2αnEQ∆γ + EQ(∆γ)2 = 0. (5.4)

Finally, rearranging and collecting like terms gives

a(∆γ)2 + b∆γ + c = 0

a = QE

b = 2αnQE − 2E

c = f trial
n+1 .

(5.5)

Equation (5.5) is solved by using the quadratic equation

∆γ =
−b±

√
b2 − 4ac

2a
(5.6)

from which the positive root is chosen as the value for ∆γ.

5.4 Exponential Hardening

Voce [7] proposed an exponential form of hardening. This assumes that the hardening
eventually reaches a specified saturation (or maximum) stress. In this case the yield stress
function becomes G(α) = σy + (σu − σy)(1− e−δα) and therefore ∂G

∂α
= (σu − σy)δe

−δα.
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1. Start with stored known variables {εn, εpn, αn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

f trial
n+1 = |σtrial

n+1 | − (σy +Kαn)

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

∆γ =
f trial
n+1

E+K

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

αn+1 = αn +∆γ

Cep =
EK
E+k

EXIT the algorithm

Box 5.2: 1D Plasticity Algorithm With Linear Isotropic Hardening [6]
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1. Start with stored known variables {εn, εpn, αn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

f trial
n+1 = |σtrial

n+1 | − (σy + E(αn −Qα2
n))

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Use the positive result of ∆γ = −b±
√
b2−4ac
2a

a = QE, b = 2αnQE − 2E, c = f trial
n+1

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

αn+1 = αn +∆γ

Cep =
2Qαn+1E−E

2Qαn+1−2

EXIT the algorithm

Box 5.3: 1D Plasticity Algorithm With Quadratic Isotropic Hardening
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1. Start with stored known variables {εn, εpn, αn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

C = σu − σy

f trial
n+1 = |σtrial

n+1 | − (σy + C(1− e−δαn))

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γE−G(αn+1)+G(αn) = 0, solve for ∆γ by

using Newton-Raphson iterations (see Box 5.5)

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

αn+1 = αn +∆γ

Cep =
ECδe−δαn+1

E+Cδe−δαn+1

EXIT the algorithm

Box 5.4: 1D Plasticity Algorithm With Exponential Isotropic Hardening
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1. Set ∆γ = 0

2. Calculate R, where R = f trial
n+1 −∆γE −G(αn +∆γ) +G(αn),

and G(α) = σy + C(1− e−δα)

3. Initialize variables

set maxiter = 10

set k = 0, (the iteration counter)

set tol = 10−5

set dg = 0

4. WHILE |R| > tol and k < maxiter
dR
d∆γ

= −E − Cδe−δ(αn+∆γ))

dg = −
[

dR
d∆γ

]−1

R

Update ∆γ = ∆γ + dg

Recalculate R = f trial
n+1 −∆γE −G(αn +∆γ) +G(αn)

Update k = k + 1

END WHILE

5. END Newton-Raphson iterations

Box 5.5: Newton-Raphson iterations for exponential hardening algorithm
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5.5 Ramberg-Osgood Hardening

A very common material hardening model for metals is the Ramberg-Osgood [5] model, the
form of the equation used here is given by Kojic and Bathe [3]. The yield stress function is
G(α) = σy + Cαm and therefore ∂G

∂α
= mCαm−1.

1. Start with stored known variables {εn, εpn, αn}.

2. An increment of strain gives εn+1 = εn +∆εn.

3. Calculate the elastic trial stress, the trial value for the yield func-
tion and check for yielding.

σtrial
n+1 = E(εn+1 − εpn)

εp trial
n+1 = εpn

αtrial
n+1 = αn

f trial
n+1 = |σtrial

n+1 | − (σy + Cαm
n )

If f trial
n+1 ≤ 0 then the load step is elastic

set σn+1 = σtrial
n+1

set Cep = E

EXIT the algorithm

Else f trial
n+1 > 0 and hence the load step is elasto-plastic

continue at step 4

4. Elasto-plastic step

Using f trial
n+1 −∆γE−G(αn+1)+G(αn) = 0, solve for ∆γ by

using Newton-Raphson iterations (see Box 5.7)

σn+1 =
[

1− ∆γE

|σtrial
n+1 |

]

σtrial
n+1

εpn+1 = εpn +∆γsign(σtrial
n+1 )

αn+1 = αn +∆γ

Cep =
EmCαm−1

n+1

E+mCαm−1
n+1

EXIT the algorithm

Box 5.6: 1D Plasticity Algorithm With Ramberg-Osgood Isotropic Hardening
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1. Set ∆γ = 0

2. Calculate R, where R = f trial
n+1 −∆γE −G(αn +∆γ) +G(αn),

and G(α) = σy + Cαm

3. Initialize variables

set maxiter = 10

set k = 0 (the iteration counter)

set tol = 10−5

set dg = 0

4. WHILE |R| > tol and k < maxiter
dR
d∆γ

= −E −mC(αn +∆γ)m−1

dg = −
[

dR
d∆γ

]−1

R

Update ∆γ = ∆γ + dg

Recalculate R = f trial
n+1 −∆γE −G(αn +∆γ) +G(αn)

Update k = k + 1

END WHILE

5. END Newton-Raphson iterations

Box 5.7: Newton-Raphson iterations for Ramberg-Osgood hardening algorithm
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6 Computer Implementation and Results

A truss program is implemented in MATLAB which includes the possibility of plastic defor-
mations. Only small strains are considered in the implemented program. Several examples
are provided. In all cases only isotropic hardening is considered.

6.1 Outline of Computer Algorithm – Displacement Control

The following implicit algorithm uses Newton-Raphson iterations within each specified dis-
placement increment to enforce global equilibrium for the truss structure (see Clarke and
Hancock [1] and McGuire et al [4] for displacement control details). The specified displace-
ment increments are prescribed at a structure dof chosen by the user. Typically this is the
structure dof of maximum displacement in the chosen dof direction. In the algorithm pre-
sented, equal size displacement increments are used. The reader is encouraged to note the
specific locations where the 1D plasticity routines are introduced into the algorithm. With-
out the introduction of the plasticity algorithms the computer program would be linear. The
algorithm proceeds as follows:

1. Define/initialize variables

• Dmax = the user specified maximum displacement at dof q

• ninc = the user specified number of displacement increments to reach Dmax

• ∆ūq = Dmax/ninc = the specified incremental displacement at dof q

• F = the total vector of externally applied global nodal forces

• Fn+1 = the current externally applied global nodal force vector

• λn+1 = the current load ratio, that is λn+1F = Fn + dF = Fn + dλn+1F = Fn+1,
the load ratio starts out equal to zero

• N = the vector of truss axial forces, axial force in truss element i is Ni

• u = the vector of global nodal displacements, initially u = 0

• x = the vector of nodal x coordinates in the undeformed configuration

• y = the vector of nodal y coordinates in the undeformed configuration

• L = the vector of truss element lengths based on the current u. L for truss element
i is Li =

√

((x2 + ux2)− (x1 + ux1))2 + ((y2 + uy2)− (y1 + uy1))2. The original

element lengths are saved in a vector Lo, where Loi =
√

(x2 − x1)2 + (y2 − y1)2.
The subscripts 1 and 2 refer to node 1 and 2 respectively for a given truss element.

• c and s = the vectors of cosines and sines for each truss element angle based on
the undeformed truss.

• K = KM, the assembled global tangent stiffness matrix, where KM is the mate-
rial stiffness which evolves as plastic deformations accumulate in individual truss
elements in the truss.
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• Ks = the modified global tangent stiffness matrix to account for supports. Rows
and columns associated with zero displacement dofs are set to zero and the di-
agonal position is set to 1. Other (more efficient) schemes are possible, but this
proves simple to implement

• σ
n+1 = the vector of element axial stresses

• εn+1 = ε
elast
n+1 + ε

p
n+1= the vector of total axial strain values for each element i,

where ε = 1
Lo

L2−L2
o

L+Lo
. Note that this form of calculating strain is better conditioned

for numerical calculations and is recommended by Crisfield [2].

• ε
p
n+1 = the vector of total axial plastic strain values for each element i

• C
n+1
ep = the vector of elasto-plastic moduli for each truss element i

• α
n+1 = the vector of equivalent plastic strain variables αn+1

i for each truss ele-
ment i

2. Start Loop over load increments (for n = 0 to ninc− 1).

(a) Calculate global stiffness matrix K based on Lo, c, s and current value of Cep.

(b) Modify K to account for supports and get Ks.

(c) Calculate the incremental load ratio dλn+1. The incremental load ratio is calcu-
lated as follows. Calculate a displacement vector based on the current stiffness,
that is û = K−1

s F. Take from û the displacement in the direction of dof q, that
is ûq. Then dλn+1 = ∆ūq/ûq. Update load ratio λn+1 = λn + dλn+1.

(d) Calculate the incremental force vector dF = dλn+1F.

(e) Solve for the incremental global nodal displacements du = K−1
s dF

(f) Update global nodal displacements, un+1 = un + du

(g) Update εi =
1
Lo

L2−L2
o

L+Lo
for each element i and store in εn+1, note L here is based

on un+1.

(h) Use chosen plasticity algorithm here to update ε
p
n+1, σ

n+1, αn+1 and C
n+1
ep

(i) Calculate the vector of new internal truss element axial forces Nn+1. For truss
element i the axial force is Nn+1

i = σn+1
i Ai.

(j) Construct the vector of internal global forces Fn+1
int based on Nn+1.

(k) Calculate the residual R = λn+1F−Fn+1
int and modify the residual to account for

the required supports.

(l) Calculate the norm of the residual R =
√
R •R

(m) Iterate for equilibrium if necessary. Set up iteration variables.

• Iteration variable = k = 0

• tolerance = 10−6

• maxiter = 100

• δu = 0

• δλ = 0
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• Save ε
p
n+1 and α

n+1 as εpon+1 and α
n+1
o

(n) Start Iterations while R > tolerance and k < maxiter

i. Calculate the new global stiffness K based on Lo, c, s and current value of
Cep.

ii. Modify the global stiffness to account for supports which gives Ks

iii. Calculate the load ratio correction δλk+1. The load ratio correction is calcu-
lated as follows. Calculate ŭ = K−1

s R and û = K−1
s F. From ŭ and û extract

the component of displacement in the direction of dof q, that is ŭq and ûq.
Then δλk+1 = δλk − ŭq/ûq.

iv. Calculate the correction to un+1, which is δuk+1 = δuk+K−1
s [R− (ŭq/ûq)F],

but note that un+1 is not updated until all iterations are completed

v. Update εi = 1
Lo

L2−L2
o

L+Lo
for each element i and store in εn+1, note L here is

based on un+1 + δuk+1.

vi. Reset εpn+1 and α
n+1 to ε

p
on+1 and α

n+1
o (see Crisfield [2], pages 154 to 156,

for discussion of why this is done).

vii. Use chosen plasticity algorithm here to update ε
p
n+1, σ

n+1, αn+1 and C
n+1
ep .

viii. Calculate the vector of new internal truss element axial forces Nk+1
n+1. For

truss element i the axial force is (Nk+1
n+1)i = σn+1

k+1Ai.

ix. Construct the vector of internal global forces Fn+1
int based on Nk+1

n+1.

x. Calculate the residual R = (λn+1 + δλk+1)F− Fn+1
int and modify the residual

to account for the required supports.

xi. R =
√
R •R

xii. Update iterations counter k = k + 1

(o) End of while loop iterations

3. Update variables to their final value for the current increment

• λn+1
final = λn+1

(0) + δλk

• un+1
final = un+1

(0) + δu(k)

4. End Loop over load increments

6.2 Single Truss Element - Monotonic Loading

A single truss element is pin supported at one end and is roller supported at the other end
(Figure 3). The resulting truss element is monotonically loaded in tension along its axis
in the direction of its only free displacement degree of freedom. The example element has
L = 60 in., A = 1.0 in.2 and E = 29x103 ksi. A plot of load versus displacement is provided
for three different plasticity models. In all cases the yield stress is taken as σy = 36 ksi. For
linear isotropic hardening the plastic modulus K = 500 ksi. For the Ramberg Osgood [3]
[5] model, C = 10.7 ksi and m = 0.2. For the Voce [7] model, σy = 36 ksi, σu = 58 ksi,
C = σu − σy and δ = 160. The nonlinear analysis is achieved by a displacement control
procedure. A maximum displacement of 0.5 inches is specified and is achieved by a series of
100 equal displacement increments. The results are presented in Figure 4.
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Figure 3: Single truss element loaded in tension.
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Figure 4: Single truss element monotonically loaded in tension with various 1D plasticity
models.
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Figure 5: Single truss element cyclically loaded - Linear Isotropic Hardening

6.3 Single Truss Element - Cyclic Loading

A single truss element is pin supported at one end and is roller supported at the other
end (Figure 3). The resulting truss element is cyclically loaded in tension and compression
along its axis in the direction of its only free displacement degree of freedom. The example
element has L = 60 in., A = 1.0 in.2 and E = 29x103 ksi. A plot of load versus displacement
is provided for a linear isotropic hardening plasticity model. The yield stress is taken as
σy = 36 ksi. The plastic modulus is K = 500 ksi. The implicit nonlinear analysis with
Newton-Raphson iterations for equilibrium at the global level is achieved by a displacement
control procedure for the cycles of displacement shown in Figure 5.

6.4 Cantilever Truss - Monotonic Loading

A cantilever truss is supported in the x direction at the bottom left node. It is pin supported
at the top left node. The truss has 81 members and 42 nodes. The truss is 10 inches long
and 0.5 inches tall. Each member has a cross-sectional area of 0.1 in.2 and a modulus of
elasticity of E = 29x103 ksi. The truss is loaded(implicit nonlinear analysis) at its right end
monotonically by a displacement control scheme to a maximum displacement of 0.7 inches
in 200 equal increments. All truss members are modeled with the model by Voce [7]. A
plot of load versus displacement is provided in Figure 6. The truss model is shown with its
deflected shape in Figure 7.
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Figure 6: Cantilever Tip Load Versus Free End Vertical Displacement
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Figure 7: Original and Deflected Shape of Cantilever Truss
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7 Conclusions

Plasticity models are often used in finite element analysis programs in order to account
for nonlinear material behavior. In truss programs 1D plasticity is necessary to model
element behavior when plastic material behavior is possible. The present paper describes
the relevant terminology and provides numerous derivations and examples of 1D isotropic
hardening plasticity models. An algorithm is provided which describes how such models are
incorporated into a finite element truss program. Numerical results are provided for a single
bar element undergoing monotonic loading and also a case for cyclic loading. Numerical
results are also provided for the case of a cantilevered truss loaded to the point at which
some members are beyond yielding. This introductory paper provides information germaine
toward taking the next step into 3D plasticity models.
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