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Abstract

Current computational techniques based on standard finite element methods to simulate

large deformations associated with collapse limit states have several limitations. These

limitations are primarily due to the nature of collapse which typically involves very large

displacements and rotations. The use of modern finite element procedures to solve such

problems can lead to inaccurate results or prevent completion of the computer analysis

altogether. To overcome these limitations, a meshfree analysis using moving least squares

(MLS) basis functions and continuous blending is developed using nodal integration with

stabilization for two-dimensional continua. The primary focus of this work is to develop a

framework that allows meshfree methodology to be embedded into a finite element-based

formulation (or vice-versa) and thereby enabling the simulation of large-deformation struc-

tural response to complex loads. Provision is made to consider inelastic material behavior

using J2 elasto-plasticity with isotropic and or kinematic forms of hardening.

The meshfree analysis is first developed for small strains, small displacements and rota-

tions and applied to representative plane stress problems to validate the methodology. The

formulation is then applied to frames comprising beam-columns of I-shaped cross-section

and numerically simulated responses are compared to experimental results. Next, with the

ultimate goal of improving structural collapse simulation, the meshfree method is extended

to large displacements and rotations by incorporating a co-rotational formulation within

a small-strain framework. Furthermore, the analysis is implemented by using the recently

developed maximum-entropy basis functions which allow for easier imposition of essential

boundary conditions. Versions of the implementation allow for either load or displacement
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control for both geometric and material nonlinear analysis. The meshfree co-rotational

formulation is applied to various benchmark problems for validation. Finally, the mesh-

free co-rotational formulation is applied to collapse type problems that include stiffness

softening, cyclic loading and the development of catenary action. Results are compared

to advanced finite element or experimental results. Preliminary findings indicate that a

meshfree co-rotational analysis is a feasible alternative to finite element simulations for

large deformation problems in structural engineering. Further research is warranted to ex-

tend the method to more complex material behavior, finite strains and three-dimensional

continua.
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Chapter 1

Introduction

Design of structural systems must take into account all feasible design loads that the struc-

ture must resist during its lifetime of service. In modern times, however, structural en-

gineers recognize that additional considerations beyond traditional design loads, involving

exceptional and extreme events, are becoming a necessary part of design. In particular,

an understanding of structural behavior during partial or complete collapse is sometimes

needed to assess the overall integrity of the structural design under extreme loading sce-

narios. Structural behavior during collapse is generally quite complex and much research

is still needed in this area. Obviously, it is possible to construct model structures in a

laboratory, induce loading that leads to collapse and record the observed behavior. While

collapse tests of typical members, connections and partial frames are feasible, the testing of

a range of such subassemblies or complete structures is often cost intensive. An alternative

is to construct computer models that are sufficiently sophisticated to simulate structural

collapse. Inevitably some laboratory testing is necessary to validate and calibrate computer

models. Current computational techniques to simulate collapse of structures have several

limitations. These limitations are primarily due to the nature of collapse which typically
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involves very large displacements and rotations and the associated limitations in existing

computational approaches to solve such problems.

Modern methods in structural computation have evolved from finite-element based al-

gorithms (Zienkiewicz and Taylor [98]). Most structural engineering problems are readily

solved using finite element methods (FEM), which require the discretization of the spatial

domain into a collection of elements. However, large-deformation problems, such as those

resulting from extreme loads and leading to partial or total collapse, are unwieldy and

difficult to solve with traditional mesh-based methods.

These large deformation problems in mesh-based (FE) methods usually require remesh-

ing and mapping state variables to the new mesh - a process that is computationally de-

manding and prone to numerical errors (Lee and Bathe [51]). Also, since finite element

formulations require preservation of the continuum, separation (or breaking) of elements

is difficult to simulate unless the entire element is removed or remeshing is done. In the

absence of remeshing, large mesh distortions drastically reduce the solution accuracy or

impede meaningful computations altogether because the Jacobian in a severely distorted

element can become zero or negative. At the limit state of failure, there also arise issues

related to material softening that require complex algorithms to avoid mesh sensitivity

(Simo et al. [79] and Crisfield and Willis [30]). The advent of meshfree (or element-free)

methods can be attributed in large part to the issues and problems encountered in stan-

dard finite element formulations. Many of problems discussed above can be averted in

meshfree methods since they are formulated to be sufficiently independent of a mesh and

large distortions do not adversely affect the construction of the numerical approximation.

In particular, collapse evaluation of frame structures is an open problem requiring large

deformation analysis and inelastic material modeling. Meshfree methods are well-suited

for such problems and are likely to yield new insights into such phenomenon. Over the
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past decade, meshfree and particle methods (Belytschko et al. [16], Li and Liu [53], Fries

and Matthies [36] and Atluri and Shen [7]) have come to the forefront for the solution of

fracture (material separation) and large deformation problems. This class of methods has

been demonstrated to be in many instances more flexible and superior to finite element

methods. For example, the modeling of large inelastic deformations, material softening,

and failure phenomena that are prevalent in large-scale structural systems are particularly

amenable to meshfree computations. The focus of this research effort is to develop a novel

computational approach for the modeling and analysis of structural systems to eventually

enable collapse simulation.

1.1 Dissertation objectives and classes of problems consid-

ered

Although the current research does not conclude with the complete collapse simulation of a

structure, it is intended to explore new technologies to eventually attain that goal. Hence,

it is the objective of this dissertation to explore the feasibility of using meshfree methods

for simulations of large scale structural systems undergoing large displacements and large

rotations, with the intent of advancing future research in structural collapse simulation.

The objectives of the study are as follows:

1. The primary objective of the research is to advance computational simulation method-

ology in structural engineering so as to improve current capabilities in collapse and

failure analysis of structures.

2. Explore meshfree methods as an alternative to finite element methods.

3. Explore the feasibility of using meshfree methods for simulations of large scale frame
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structures for small strains, displacements and rotations.

4. Use meshfree methods in a co-rotational formulation and by so doing extend analysis

capabilities to large displacements and rotations but with small strains.

5. The previous two objectives shall include consideration of material nonlinearity. While

the present work will be limited to simple J2 elasto-plasticity with kinematic and

isotropic hardening, extending the methodology to more general classes of materially

nonlinear problems should be facilitated.

6. The developed methodology will be implemented in a special purpose computer pro-

gram and computer simulations will be compared to benchmark analytical solutions,

to results obtained from other finite element based software, and to experimental

results available in the literature.

The following classes of problems will be considered:

(a) Simulations with both load and displacement control.

(b) Small strains, displacements and rotations for linear elastic materials.

(c) Small strains, displacements and rotations for J2 elasto-plasticity with linear

hardening and/or exponential hardening.

(d) Small strains, large displacements and rotations with linear elastic materials

(e) Small strains, large displacements and rotations with J2 elasto-plasticity.

(f) Cyclic loading of structures for some of the above classes of problems.

(g) Loading of structures with constant axial load applied first, followed by a non-

linear analysis using displacement control.

7. Discuss the results obtained and identify advantages and issues/concerns with the

methodology.
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8. Draw conclusions on the current research effort and provide future research directions.

1.2 Original Contributions

As part of this dissertation a variety of items are considered original work. A search of

the literature did not provide any indication that the items listed in this section are found

elsewhere. The items listed below are given starting with the most significant original work.

1. Although co-rotational formulations using finite elements are quite common, a co-

rotational formulation in a meshfree setting for a continuum does not appear in the

literature. Specifically, a variationally consistent meshfree co-rotational formulation

for 2D continuum type problems is developed and implemented as part of this dis-

sertation. The formulation is similar to that developed by Crisfield and Moita [28].

The primary differences being the use of meshfree maximum-entropy basis functions,

the generalization of the approach to n node neighbors, rather than just 4 nodes of

a typical quadrilateral element, the choice of using each node’s Voronoi cell centroid

to enforce zero spin in order to determine the co-rotating frame angle of rotation, the

consideration of both elastic and inelastic problems, the use of nodal integration by

Chen et al. [20] and the inclusion of the stabilization technique of Puso et al. [72]

in order to avoid locking and spurious modes. The co-rotational formulation as ap-

plied allows solution of problems with large displacements and rotations but with

restriction to small strains.

2. A new methodology is presented for modeling beams for the case of plane stress

with consideration of non-uniform thickness in the two-dimensional domain. Specifi-

cally, steel frames comprised of beams with I-shaped cross-section are modeled. The

methodology is implemented for small strain small displacement problems using mov-
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ing least squares (MLS) basis functions with the method of continuous blending to al-

low the enforcement of essential boundary conditions. The methodology is also imple-

mented for small strain large displacement problems using the meshfree co-rotational

formulation using maximum-entropy basis functions. In both cases, application of

these techniques and basis functions to planar frame type problems is new.

3. An analytical solution for elasto-plastic cantilever beams of rectangular and I-shaped

cross-section loaded at their free end is derived in Appendix B. The presented deriva-

tion is independent of work by others. However, some similarities of approach are

found in the works by Yu and Zhang [97] and Phillips [71].

4. An analytical solution, for large displacements of an elastic cantilever with point load

at its free end, is given in Appendix C. The solution is given in the work by Khosravi

et al. [48]. The derivation is based on Euler-Bernoulli beam theory and does not

consider axial strains. Khosravi et al. do not provide a reference for the solution

given. In this dissertation the solution is extended to include axial deformations. As

indicated, a similar approach can be used to include shear deformations.

1.3 Organization of remaining chapters

The remainder of this dissertation is organized as follows. In Chapter 2, a review of the

literature discusses the ingredients generally necessary to model collapse simulations such

as geometric and material nonlinearity and the increasingly popular use of co-rotational for-

mulations. The chapter continues with a review of the current state of the art in collapse

simulation. A discussion of the advantages and disadvantages of the current techniques

leads to the idea that an alternative method of analysis may hold promise in advancing

structural computation to overcome the drawbacks of existing techniques. Meshfree meth-
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ods are thereby introduced as a potential alternative to finite element approaches. Chap-

ter 3 continues with a literature review of meshfree methods, the advantages of meshfree

methods, how meshfree methods have been used in the past and how the current research

intends to take advantage of the current meshfree technology. Two variants of meshfree

basis functions and their implementation are also introduced. Chapter 4 is devoted to the

implementation and extension of meshfree to the analysis of planar frames for small strains,

small displacements and rotations. In Chapter 5 the previous implementation is extended

to large displacements and rotations by introducing a co-rotational formulation for a 2D

continuum. Applications and validation of the proposed meshfree methodology is provided

in Chapter 6 through a variety of example problems that are compared to analytical so-

lutions, results from FE simulations and to experimental results when possible. Lastly,

Chapter 7 concludes with general observations on the current research and a discussion

on means to extend the proposed methodology in the area of collapse simulation. Finally,

recommendations for future research are suggested.
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Chapter 2

Literature Review

Collapse of large-scale civil engineering structures involves large displacements, large rota-

tions and relatively smaller strains. Under such conditions the material response is inelastic

in regions of extreme stress. At the limit state near collapse, large strains and fracture are

also likely. To simulate such behavior computational models need to consider both geomet-

ric and material nonlinearities. Having this in mind a review of literature pertinent to the

issues related to the development of a large-displacement analysis framework is provided in

this section. The review starts with methods that consider geometric nonlinearities.

2.1 Geometric nonlinearities

In essence, when material non-linearities are excluded, geometric nonlinearities result when

the forces required to cause structural deformation are a nonlinear function of the displace-

ments (see Figure 2.1). Except for very simple problems, closed form solutions are very

difficult if not impossible to obtain. For this reason it is necessary to resort to incremen-

tal iterative methods using computer-based simulations. In most cases this is done using

the finite element method (FEM), although in some cases it is possible to use numerical
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Figure 2.1: Geometric nonlinearity: (a) shallow truss example; (b) load P as a nonlinear
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Figure 2.2: Reference and current configurations of an arbitrary deformable structure.

methods such as finite differences or boundary element methods (BEM). Geometric non-

linearities are essential in collapse simulation because they capture the effects of buckling,

large changes in structure shape and the changes in internal forces necessary to keep the

structure in static equilibrium.

In the conventional finite element method, geometric nonlinearities are accounted for

by considering finite strains. It is possible to show that if small strains are used, with large

rotations that often result with large displacements, rigid body motions cause erroneous
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strains to develop within the structure. This obviously should not be the case because valid

rigid body motions are strain-free. It is for this reason that a valid measure of finite strain

is required for such problems. Consideration of finite strains is usually implemented within

either a Total Lagrangian (TL) or Updated Lagrangian (UL) approach.

To explain the different approaches consider Figure 2.2. The structure is in the reference

configuration initially, usually at time t = 0. Prescribed loads and displacements cause

the structure to deform, so that at some time t > 0 the structure reaches the current

configuration. In statics, the application of such prescribed loads and displacements takes

place over a sufficient period of time so that it is valid to neglect dynamic effects. In this

dissertation it is assumed that all problems are time independent and hence the assumptions

of statics are valid.

In a TL approach all static and kinematic variables are expressed in terms of the ref-

erence configuration. Conversely, in a UL approach all static and kinematic variables are

expressed in terms of the most recent current configuration of the displaced structure. A

rectangular coordinate system is usually attached to each finite element of the discretized

structure in a UL formulation. Updating of these coordinates takes place in every step of

the incremental analysis. The interested reader is referred to Belytschko et al. [17] for

further details on general TL and UL formulations. Analytical, TL, UL and co-rotational

derivations for the shallow truss problem of Figure 2.1 are presented by Mattiasson [63].

The TL and UL approaches are commonly used in solid mechanics type problems, how-

ever, they are also used for frame structures which constitute the primary structural type

considered in this dissertation. Hence, the literature review in this section discusses how

the finite element Lagrangian approaches have been used for large displacement analysis in

frames. The literature review by Schulz and Fillipou [74] provides an excellent overview of

developments leading to large-deformation FE analyses.
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It appears that the first TL and UL formulations for 3D beam elements in incremental

form were given by Bathe and Bolourchi [11]. In their paper, they demonstrate that the TL

and UL formulations yield identical stiffness matrices and nodal point force vectors. They

also note that the UL formulation is computationally more efficient. These incremental

forms of TL and UL, due to their computational effectiveness, became very popular and

were then applied to many structural problems, such as thin-walled beams in the work by

Conci [24], in which a UL approach is employed.

It is evident from the literature that 3D frame problems with large displacements require

special treatment due to the complex nature of finite rotations as discussed by Argyris [3].

By recognizing these difficulties a general treatment of 3D beams with large rotations, using

a TL approach, is given by Simo and Vu-Quoc [77, 81].

A variety of beam theories have been implemented for large displacement finite ele-

ment analysis. For example, the Bernoulli hypothesis is used in the work of Jelenić [42].

Timoshenko type beam elements are implemented in a TL formulation by Crivelli and Fe-

lippa [31]. The paper by Simo and Vu-Quoc [81] makes use of the Kirchhoff-Love model.

The choice of a particular beam theory is often based on problem specific requirements or

sometimes to simply demonstrate the validity or appropriateness of a new computational

or analytical approach.

In addition to TL and UL formulations, an extremely popular method for large dis-

placement and large rotation analysis of framed structures is based on the co-rotational

formulation. In fact, one might argue that this has become the method of choice for such

problems when using beam elements. More discussion of the co-rotational formulation is

given later on in this dissertation, however, the following basic ideas are noted. A co-

rotational analysis separates rigid body motion from strain producing deformations. This

is done in finite element formulations by attaching a local co-rotating coordinate frame
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to each element in the structure. With respect to the local co-rotating frame the rigid

body deformations are negligible and hence strains and subsequently stresses are calculated

based on the local element displacements. Relations between local variables and global

variables allow the determination of the large deflections and rotations that take place at

the global level. Co-rotational formulations are a relatively easy way to introduce the geo-

metrically nonlinear effects of large deflections and large rotations, while using small strain

assumptions at the local level.

Large rotations were first treated in a variationally consistent co-rotational formulation

for 3D beams by Crisfield [25]. Crisfield’s paper notes that researchers had previously used

a co-rotational formulation for beam elements, but that they had not used a consistent

derivation of the internal forces and tangent stiffness matrix. In fact, some authors had

only applied transformation matrices within the co-rotational formulation to the standard

linear stiffness matrix. This approach does not account for the geometric stiffness matrix

which arises by taking the variation of the transformation matrices. A variationally con-

sistent formulation is necessary to achieve quadratic convergence during Newton-Raphson

iterations for global equilibrium.

Some noteworthy developments in co-rotational formulations for beam elements have

been reported by several researchers. Urthaler and Reddy [91] develop a 2D co-rotational

beam formulation for Euler-Bernoulli, Timoshenko, and simplified Reddy theories. Hence,

they demonstrate a method to include shear deformations and the necessary details to avoid

shear locking. It bears mentioning that for the 2D case element tangent stiffness matrices

in a co-rotational formulation are symmetric. However, this has traditionally not been

the case when formulations are extended to 3D due to the non-commutativity of spatial

rotations. The resulting non-symmetric element stiffness matrices require more storage and

appropriate solvers must be used when solving the resulting global system of equations. It
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appears that Li [54] is the first to construct a formulation for 3D beams using vectorial

rotation variables and by so doing the stiffness matrices at the element and global levels

are symmetric. This has important computational advantages over previous formulations.

Li [55] also gives an interesting co-rotational formulation for 2D beam elements. This

formulation is noteworthy because of the use of a mixed formulation using the Hellinger-

Reissner functional, the use of vectorial rotation variables, adoption of Green strains and

successful avoidance of shear locking. Lastly, mention is made of the developments given by

Crisfield [26, 27] in which various large displacement formulations, including co-rotational

formulations, for beam elements in 2D and 3D are given.

Finally, it is noted that co-rotational formulations have much in common with the

natural approach introduced by Argyris et al. [4]. The natural approach has been used for

geometrically nonlinear problems and recognizes the advantages of separating rigid body

motions from strain producing deformations just like in co-rotational formulations.

2.2 Material nonlinearities

To simulate large deformations that lead to post-elastic response in structures, it is gener-

ally necessary to account for material nonlinearities. For the purposes of this study, only

materials related to large-scale civil engineering structures are addressed. In particular, the

most common material models attempt to reproduce the behavior of metals or reinforced

concrete.

The easiest way to consider material nonlinearities is by means of plastic analysis. Many

texts, particularly in steel design, devote chapters to plastic design, which is the study of

the development of concentrated plastic hinges and the determination of the collapse load

at which the structure forms an unstable mechanism due to plastic hinges, see for example
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Li and Li [52]. McGuire et al. [66] explain that a plastic analysis assumes that the beam

cross-section has only two possible states, namely, (i) the cross-section is completely elas-

tic if the maximum stress is less than or equal to the yield stress, or (ii) perfectly plastic

across the depth of the beam with tensile and compressive stresses constant at the specified

yield stress. This type of analysis is easy to implement in a computer analysis. However,

a fine discretization along beam elements is necessary to allow the location of hinges to

develop accurately. A more accurate analysis arises by allowing for the gradual develop-

ment of inelasticity across the beam depth. This is referred to as a distributed plasticity

approach as explained by Liew et al. [56]. Much research is devoted to this topic and only

a representative list and some relevant details are given here. Liew et al. [56, 57] use a

second-order refined concentrated plastic hinge method to obtain many of the benefits usu-

ally obtained by the distributed plasticity approach. By so doing they obtain comparable

results but with greater computational efficiency. Thus far the approaches mentioned are

displacement-based approaches. As indicated by Alemdar and White [2] these approaches

have some serious drawbacks due to the inability of the simple displacement polynomials

to correctly represent the highly nonlinear curvature that results along the beam length in

a distributed plasticity formulation. In fact, Alemdar and White [2] provide a comparative

study of different approaches, displacement-based, flexibility-based and mixed-based for-

mulations. In particular, the flexibility based formulations do not have the same drawbacks

as the displacement-based approaches. For this reason researchers have recently devoted

much effort to this type of formulation, see for example Sivaselvan and Reinhorn [82] who

apply a flexibility-based approach to the collapse analysis of plane frames. Alemdar [1] pro-

vides both flexibility and mixed-based approaches for distributed plasticity in steel frames.

The primary benefit of a flexibility-based approach is the ability to use one element for

a given frame member rather than the required multiple element discretization used in
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the displacement-based approach [75]. As indicated in the excellent review of Scott and

Fenves [75] a discussion of the benefits of the flexibility approach is provided by Neuenhofer

and Filippou [69]. Lastly, the reader is referred to the fiber beam element using a flexibility

approach by Taucer et al., which has been implemented in the open source software package

OpenSees [65]. Fiber-based beam elements allow a precise definition of cross-section shape

and, during the global incremental analysis, integration of the fibers across the beam depth

keeps track of the state of distributed plasticity. Various other researchers have also used

fiber-based beam elements such as Torkamani and Somnez [90].

The research cited above considers material nonlinearities and often also includes geo-

metric nonlinearities. It is possible to include material nonlinearities in TL, UL, natural

and co-rotational approaches. It seems however from the literature that this is most easily

done at the local level in co-rotational formulations. By combining both types of nonlin-

earity it is possible to model plastic and geometric instabilities, which is demonstrated in

many of the previously cited works. In particular, the work by Battini and Pacoste [12]

specifically is formulated to account for plastic instability of 3D beams using a co-rotational

formulation.

In the reserach above, the focus is on general schemes for including material nonlinear-

ity in beam type elements, however, when a structure is modeled as a continuum, more

advanced material models in 2D or 3D are commonly used. Kojić and Bathe [49] present

a variety of material models that consider metal plasticity, creep, viscoplasticity, soil plas-

ticity and even large strain plasticity. In this dissertation, the simplest continuum material

model of J2 plasticity is used since it is an effective model for metals. It is for this reason

that the chapters on applications mostly focus on steel framed structures that exhibit in-

elastic material behavior. The reader is also referred to the works of Simo and Taylor [80]

and the monograph by Simo and Hughes [78], which provide details on J2 plasticity in 2D
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and 3D and inelastic material behavior in general.

2.3 State of the art collapse analysis

By taking into account geometric and material nonlinearities it is possible to numerically

solve certain types of collapse analysis problems. In fact, from an engineering standpoint

many of the works cited above are constructed specifically to create the capability to study

structural collapse. Hence, a review of literature is provided in this section which focuses

specifically on collapse research.

A common approach to collapse analysis is the alternate path method. In this method

one removes an individual column or individual beam and determines the resulting loads

on the rest of the structure caused by the structural element removal. The loads once

supported by the removed element, find an alternate path through the remaining structural

system. If the capacities of the remaining structural elements are adequate, then collapse

will not occur. However, if the remaining structural elements are not adequate to resist

the additional loads, collapse may take place and/or there will be local deficiencies. When

considering global progressive collapse Ettouney et al. [34] point out that the commonly

used alternate path method is not necessarily adequate and that consideration of the global

response of the structural system should be made. Some simple methods to ascertain global

system stability are provided in their paper. It is also recognized that when members fail due

to overloading due to some extreme event, these members may fall, with impact, upon other

members. This obviously is a repeatedly occurring situation during progressive collapse.

Hence, Kaewkulchai and Williamson [45] provide a modeling technique to account for the

rigid body impact of one structural member upon another. They also provide an example

which demonstrates the importance of accounting for impact during progressive collapse.
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In particular, they note that impact velocity is the crucial factor in determining if in fact

structural elements will be damaged.

Modeling of collapse due to blast loads is illustrated by Luccioni et al. [60]. In their

work very advanced modeling is undertaken to simulate the behavior of the structure during

the pressure wave of the blast. They point out that this type of modeling is much more

complicated than wind or seismic loading type conditions, since architectural elements also

play a crucial role in the transfer of pressure wave loads to the building structural system.

The results of their analysis of a reinforced concrete structure due to simulated blast loading

are compared to the same structure that was destroyed by a terrorist bomb detonation in

real life.

Villaverde [92] gives an excellent review of literature and summarizes methods to assess

collapse potential of structures. In particular, he describes collapse analysis techniques

that fall into the following categories: single-degree-of-freedom models, nonlinear static

procedure, step-by-step finite-element analyses and detection of abrupt response increase,

incremental dynamic analyses and shake table collapse experiments. Similar information

is provided by Marjanishvili and Agnew [61] who review four techniques to assess collapse

vulnerability: linear-elastic static, nonlinear static, linear-elastic dynamic, and nonlinear

dynamic methodologies. Another excellent review of literature on progressive collapse and

comparison of codes and standards is provided by Mohamed [67].

The work mentioned previously, by Sivaselvan and Reinhorn [82], provides the results

of both static and dynamic collapse analyses for some simple structural examples. Their

approach is for 2D structures using a co-rotational and flexibility-based formulation which

also incorporates nonlinear material behavior.

As mentioned by Mohamed [67], literature on collapse greatly increased following 2001.

It is also evident from the literature that much research is still needed. For example, al-



18

though many analysis methods are ready to be implemented to study collapse, it seems that

focus on systematic studies of collapse behavior using current analysis techniques is still

lacking. Part of the reason for this seems to be that analysis techniques are only recently

becoming capable of performing meaningful simulations. For this reason the present re-

search is timely and relevant in that it aims to improve the capability for accurate collapse

simulation.

Recent research by Khandelwal et al. [47] and Bao et al. [10] provides further impetus

for creating computational methods for the advanced simulation of structures. Specifically,

Khandelwal and co-workers provide a study which uses high-fidelity finite element methods

on steel structure subassemblies, such as beam-column joints. Bao and co-workers similarly

use high-fidelity finite element methods on reinforced concrete beam-column joints. The

results from both of these advanced numerical studies are then used to calibrate simpler

macromodels that are computationally more efficient for the solution of global structural

collapse. It is envisioned that the meshfree methods developed in this dissertation will

eventually lead to another tool with which to calibrate macromodels for global structural

analysis.

2.4 Observations and conclusions

The literature review suggests that computer-based analyses to model collapse should have

the following characteristics.

1. The methodology should incorporate both geometric and material nonlinearities.

2. The formulation should consider distributed plasticity, thereby allowing the spread of

inelasticity to occur both across the depth of the section and along the length of the

member.
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3. Beam models should be based on exact theories, that include for example large strains,

shear deformations and allow for arbitrary beam cross-section distortions.

4. Special attention must be given to avoid shear locking.

5. The modeling should account for highly nonlinear curvature along beams due to the

formation of plastic hinges.

6. Mesh distortions should not affect the computational simulation.

7. Incremental iterative techniques should be used to capture material and geometric

softening. Arc length control is the most robust way to handle this requirement.

8. The approach should be able to handle composite materials to enable fiber modeling.

9. The methodology is computationally efficient and should be able to model global

structural behavior so that progressive collapse can be observed.

10. Consideration of dynamic effects must be included since contact and impact effects

should be accounted for.

The preceding list is the motivation for the work contained in this dissertation. It is

the intent of the research presented herein to address many of the shortcomings of previous

methods for collapse simulation. Although many of the items in the list have been addressed

there are two issues in particular that tend to cause erroneous results or cause simulations

to stop altogether. Items 5 and 6 tend to limit displacement-based methods and item 6

can affect flexibility-based methods. The direction that this research attempts to take is

expected to eliminate or alleviate these issues. The items that are not yet addressed in

this research include large strains (identified in item 3), the implementation of arc length

control (listed under item 7), and consideration of composite materials (listed in item 8).
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Although arc length control is not implemented, displacement control is implemented and

is adequate for the given objectives. Regarding item 9 much of the research here is quite

new and it is certainly the case that computational efficiency needs to be improved. Item

10, is not addressed which effectively removes the ability to consider problems of contact or

impact. Aside from these items all other characteristics are addressed as discussed below.

Geometric nonlinearities are addressed by use of a co-rotational formulation. A simple

J2 flow plasticity material model is implemented which includes linear and exponential

forms of isotropic hardening as well as kinematic hardening. This material model is appro-

priate for steel. The approach taken here uses a 2D continuum for plane stress, which auto-

matically attains the distributed plasticity requirement. The meshfree continuum approach

is based on elasticity theory (for small strains) and hence does take into account shear de-

formations and places no limitations on beam cross-section distortions. As is demonstrated

later in the dissertation, shear locking is avoided. As long as the discretization of the do-

main is sufficient, nonlinear curvature along beams is properly accounted for. The model

created herein uses meshfree technology and hence is unaffected by mesh distortions. Both

load control and displacement control methods are implemented, which are sufficient to

demonstrate the effectiveness of the approach. Theoretically, global structural behavior

during progressive collapse is possible with the current implementation and careful study

of member forces during the analysis can lend insight into the evolution of alternate paths

during collapse.

The summary in the preceding paragraph forms the basis of the developments described

in the remaining chapters. Meshfree literature and theory is presented next.
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Chapter 3

Meshfree Methods

Most structural engineering problems are readily solved using finite element (FE) methods,

which require the discretization of the spatial domain into a collection of elements. However,

FE methods encounter a host of issues in nonlinear structural analysis in applications

involving cyclic and extreme loads at the limit state near collapse. Continuing research

efforts to address these problems remain in the realm of FE methodology with the result that

strategies applied to one class of problems may not be valid for another. The elements which

make up the mesh in FE simulations must be predefined. By contrast, the discretization of

a domain without resorting to a predefined mesh forms the basis of meshfree (or element-

free) methods. A meshfree method typically requires only the specification of nodes (both

within the domain and on the boundary) to define the domain without the need for any

specific connectivity information between the nodes. Since the first formal introduction of

a meshfree Galerkin method, the so-called diffuse element method by Nayroles et al. [68],

many variants of element-free approaches have been proposed by Belytschko et al. [18], Liu

et al. [59] and Atluri and Zhu [8] among others.

The literature on meshfree methods is vast and comprehensive. The reader is referred
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to overview papers by Belytschko et al. [16], Li and Liu [53] and Fries and Matthies [36]

for additional details on theory and applications. Most of the structural applications to

date have been limited to problems in solid mechanics. With the possible exception of

Weitzmann [94], who applied meshfree methods to concrete shear walls, which are then

coupled to FE beam and column line elements of a building frame structure, very little

effort has been devoted toward extending meshfree methods to applications in large-scale

structural engineering. In particular, collapse evaluation of frame structures is an open

problem requiring large deformation analysis and inelastic material modeling. Meshfree

methods are well-suited for such problems and are likely to yield new insights into such

phenomenon.

Meshfree methods are now routinely used for many specialized applications in compu-

tational mechanics. Besides the fact that the task of accurate mesh generation in finite

element methods can be time-consuming and computationally demanding (particularly for

problems requiring remeshing), the growing popularity of element-free methods stems from

its ability to solve certain classes of problems that are unwieldy and difficult to solve with

traditional mesh-based methods. For example, large deformation problems in mesh-based

(FE) methods usually require remeshing and mapping state variables to the new mesh—a

process that is prone to numerical errors. In the absence of remeshing, large mesh dis-

tortions drastically reduce the solution accuracy or impede meaningful computations alto-

gether because the Jacobian in a severely distorted element can become zero or negative.

This problem is averted in meshfree methods since they are formulated to be sufficiently

independent of a mesh and large distortions do not adversely affect the construction of the

numerical approximation.

In this section two variants of meshfree shape (basis) functions are introduced. First,

moving least squares shape functions are derived using standard arguments. Second, a
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recently developed type of basis function, based on the maximum-entropy (max-ent) prin-

ciple is presented. In each case, examples are given for one-dimensional and two-dimensional

basis functions.

3.1 Moving least squares basis functions

Shape functions in meshfree methods are constructed independent of an underlying mesh

structure. This is the main distinction of meshfree methods as opposed to finite element

interpolants. Moving least squares (MLS) approximants as given in Lancaster and Salka-

uskas [50] are widely used in meshfree Galerkin methods (see Belytschko et al. [16]), and

a variant of MLS shape functions is used in this study. For a review of the most com-

monly used meshfree approximation schemes, the interested reader can refer to Sukumar

and Wright [85].

3.1.1 MLS shape function derivation

Lancaster and Salkauskas [50] use a weighted least squares approach to derive the MLS

shape functions (see Appendix A for common meshfree terminology and a weighted least

squares derivation of meshfree shape functions). The shape functions are also obtained

by imposing the polynomial consistency (reproducing) conditions as given by Belytschko

et al. [16], which is the approach presented here.

In two dimensions, the moving least squares approximant for a vector-valued function

u(x) is written as

uh(x) =
n
∑

a=1

φa(x)da ≡ φTd, (3.1)

where φa(x) are the nodal shape functions, da is the nodal coefficient vector for node a,

and n is the number of nodes in the neighborhood of x such that φa(x) 6= 0. In Belytschko
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et al. [16], the MLS shape function φa(x) is assumed to be of the form

φa(x) = pT (xa)α(x)w(xa), (3.2)

where p(x) = {1 x y}T is a linear basis in two dimensions, α(x) is a vector of unknowns

to be determined and w(x) ≥ 0 is a weighting function.

The vector of unknowns, α(x), is determined by imposing the consistency (reproducing)

condition, i.e., the shape function must exactly reproduce p(x). Hence, φa must satisfy

p(x) =
n
∑

a=1

p(xa)φa(x). (3.3)

Now, substituting Eq. (3.2) into Eq. (3.3) yields

p(x) =
[

n
∑

a=1

p(xa)p
T (xa)w(xa)

]

α(x) = A(x)α(x), (3.4)

which gives

α(x) = A−1(x)p(x). (3.5)

Upon substitution of α(x) into Eq. (3.2) the final shape function expression is

φa(x) = pT (xa)A
−1(x)p(x)w(xa). (3.6)

The weight function provides the local character of the shape function. For example, the

shape function φa has a radius of support, ρa, within which it is nonzero. This is best

illustrated in one dimension (see Figure 3.1), where the following quartic weight function



25

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

W
ei

gh
t f

un
ct

io
n

Radius of support ρ = 0.3125

w
5
 

(a)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

S
ha

pe
 fu

nc
tio

ns

(b)

Figure 3.1: MLS construction (9 equi-spaced nodes): (a) weight function, (b) shape func-
tions.

is used to generate the shape functions:

w(q) =











1− 6q2 + 8q3 − 3q4 q ≤ 1

0 q > 1

, (3.7)

and q = ‖x − xa‖/ρa. Note that the shape functions do not interpolate on the boundary

(φa(xb) 6= δab). This characteristic makes it difficult to impose essential boundary con-

ditions. In the following chapter, in Section 4.3, a discussion is given regarding how to

solve this problem of correctly imposing boundary conditions. An alternative to MLS basis

functions that allows easier imposition of essential boundary conditions is presented next.

3.2 Maximum-entropy basis functions

In meshfree Galerkin methods, moving least squares (MLS) approximants [50] and natural

neighbor interpolation schemes [22, 76] have been widely used, whereas maximum-entropy

basis functions are of more recent origin [5, 84]. For general overviews of meshfree methods

and meshfree approximants, the interested reader is referred to Belytschko et al. [16], Li

and Liu [53], and Sukumar and Wright [85]. In this dissertation, starting with Chapter 5,
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maximum-entropy basis functions are used to construct the trial and test approximations

that appear in the weak form. Maximum-entropy basis functions satisfy a weak Kronecker-

delta property on the boundary, which greatly simplifies the imposition of essential bound-

ary conditions [5].

In two dimensions, the constant and linear reproducing conditions

n
∑

a=1

φa(x) = 1 (3.8)

and
n
∑

a=1

φa(x)xa = x, (3.9)

do not prescribe unique basis functions if n > 3. The Shannon entropy in Reference [84]

and a modified entropy functional in Reference [5] are used to regularize the problem to

obtain unique basis functions for any n. The entropy functional of Arroyo and Ortiz [5] is

generalized in Sukumar and Wright [85] on using the notion of a prior (or weight function)

within the Shannon-Jaynes entropy functional.

The variational formulation for maximum-entropy basis functions using the Shannon-

Jaynes entropy functional is: find φa(x) ≥ 0 as the solution of the following constrained

optimization problem:

max
φ∈R

n
+

[

−
n
∑

a=1

φa(x) ln

(

φa(x)

wa(x)

)]

, (3.10a)
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subject to the linear reproducing conditions:

n
∑

a=1

φa(x) = 1, (3.10b)

n
∑

a=1

φa(x)(xa − x) = 0, (3.10c)

where wa(x) is a prior estimate (weight function), and R
n
+ is the non-negative orthant. The

prior weight, wa(x), is the initial estimate of the basis function φa(x). If wa(x) = 1 for all

a, then the Shannon entropy functional, −∑a φa lnφa, is obtained. On using the method

of Lagrange multipliers, the solution of the variational problem is [85]:

φa(x) =
Za(x;λ)

Z(x;λ)
, Za(x;λ) = wa(x) exp(−λ · x̃a), (3.11)

where x̃a = xa − x (x,xa ∈ R
d) are shifted nodal coordinates, λ are the d Lagrange

multipliers associated with the constraints in (3.10c), and Z(x) =
∑

b Zb(x;λ). A Newton

method is used to solve the dual optimization problem (min lnZ) to obtain λ; details on

the computation of φa and ∇φa are provided in References [5] and [85] for a uniform prior

and a Gaussian prior, respectively.

The expressions for the derivatives of the maximum-entropy basis functions for any

choice of a prior weight function are presented below. The notations and approach pre-

sented in Arroyo and Ortiz [5] are adopted. In what follows, it is assumed that λ is the

converged solution for the Lagrange multipliers and ∇φa is the gradient of the basis func-

tion. Equation (3.11) is written as

φa(x;λ) =
exp [fa(x;λ)]

∑n
b=1 exp [fb(x;λ)]

, fa(x;λ) = lnwa(x)− λ · x̃a (3.12)
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where λ is implicitly dependent on x. Using Eq. (3.12) yields

∇φa = φa

(

∇fa −
n
∑

b=1

φb∇fb

)

. (3.13)

Taking the gradient of fa in Eq. (3.12) and simplifying results in

∇fa =
∇wa

wa
+ λ− x̃a · ∇λ, (3.14)

where ∇λ remains to be determined. To this end, on taking the total derivative of both

sides of the equality r(x;λ) = −∑a φa(x;λ)x̃a = 0, the following is obtained

Dr = ∇r+∇λr · ∇λ = 0,

where ∇r is the gradient of r (keeping λ fixed) and ∇λ is used to denote the gradient

operator with respect to λ. On using Eq. (3.12) and noting that the Hessian of lnZ is

H = ∇λr, yields

∇λ = −H−1(A− I), H =
n
∑

b=1

φbx̃b ⊗ x̃b, A =
n
∑

b=1

φbx̃b ⊗
∇wb

wb
,

and therefore ∇fa in Eq. (3.14) becomes

∇fa =
∇wa

wa
+ λ+ x̃a ·

[

(H)−1 − (H)−1 ·A
]

. (3.15)

Using the above expression for ∇fa in Eq. (3.13), the gradient of φa is

∇φa = φa

{

x̃a ·
[

(H)−1 − (H)−1 ·A
]

+
∇wa

wa
−

n
∑

b=1

φb
∇wb

wb

}

. (3.16)
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For the numerical results in this dissertation, the quartic prior weight function of Eq. (3.7)

is used and the radius of support, ρa, is taken as 0.9 times the distance to the fifth nearest

neighbor.

The advantages of using maximum-entropy basis functions are revealed in Figure 3.2.

Quartic weight functions, max-ent basis functions and moving least squares (MLS) basis

functions are depicted on a unit square covered by a 3 × 3 nodal grid. For this example,

the support size of the nodal weight function is taken as 1.25 times the distance to the fifth

nearest neighbor. It is evident from Fig. 3.2f that the interior MLS basis function is not zero

on the boundary in contrast to the max-ent basis function (Fig. 3.2d), which is zero on the

boundary of the domain. Furthermore, boundary basis functions using maximum-entropy

are interpolatory (Fig. 3.2c), whereas MLS basis functions are not (Fig. 3.2e). Due to these

properties of max-ent basis functions, the imposition of essential boundary conditions in

max-ent meshfree methods is performed as in finite element methods.

One-dimensional max-ent shape functions, using a quartic weight function, are illus-

trated in Figure 3.3b for comparison with the MLS shape functions previously shown in

Figure 3.1b. As is seen in the 2D case the 1D max-ent shape functions are zero on the

boundary whereas the MLS shape functions are not.

3.3 Consistency requirements

During numerical implementation it is useful to verify that the basis functions constructed

are correct. As indicated by Belytschko et al. [16], if basis functions are constructed prop-

erly they satisfy certain consistency conditions. Furthermore, it is best if the conditions are

satisfied to machine precision during numerical computations. The consistency conditions,

for the case of two-dimensions, are as follows for arbitrary evaluation point x:
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Figure 3.2: Max-ent versus MLS basis functions on unit square (3 x 3 grid). Quartic
weight, max-ent and MLS basis functions for corner node in (a),(c),(e) and for center node
in (b),(d),(f).
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Figure 3.3: Max-ent construction (9 equi-spaced nodes): (a) weight function, (b) shape
functions.

1. Partition of unity
n
∑

a

φa(x) = 1 (3.17)

2. Linear consistency
n
∑

a

φa(x)xa = x,
n
∑

a

φa(x)ya = y (3.18)

3. Partition of nullity
n
∑

a

φa,x(x) = 0,
n
∑

a

φa,y(x) = 0 (3.19)

4. Derivative consistency
n
∑

a

φa,x(x)xa = 1, (3.20)

n
∑

a

φa,y(x)xa = 0, (3.21)

n
∑

a

φa,x(x)ya = 0, (3.22)

n
∑

a

φa,y(x)ya = 1 (3.23)
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Chapter 4

Analysis of Plane Frames

4.1 Introduction

This chapter is an initial attempt to establish a new paradigm in structural engineering com-

putation that offers a novel approach to analyzing structural engineering problems. With

the goal of designing and protecting the civil infrastructure from unconventional loads, there

arises the need to explore and develop new tools to analyze and predict the performance

of structures. Great strides have been achieved in the exploration of meshfree technology

in metal forming and crashworthiness simulations, but its application in structural engi-

neering has yet to be initiated in a decisive manner. In this chapter a preliminary effort is

presented to develop a framework that allows meshfree methodology to be embedded into

a finite element-based formulation (or vice-versa) and thereby enabling the simulation of

large-deformation structural response to complex loads. However, prior to embarking on the

ultimate challenge of tackling large-deformation structural analysis that enables modeling

of complex phenomena such as fracture and separation, it is essential to demonstrate the

feasibility of the method by extending well-established theories in meshfree methodology to

known concepts in computational structural analysis. The following phases are envisioned
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to accomplish the overall goals of this research endeavor: (i) development of a meshfree

methodology for a class of structural elements and validation of the approach for nonlinear

problems; (ii) extension of the developed methodology to incorporate co-rotational trans-

formations; and (iii) incorporation of features to model material damage, separation, etc.

This chapter addresses only the first step in this larger effort.

Therefore, with the eventual goal of investigating the feasibility of utilizing meshfree

methods in such applications, a blended finite element and meshfree Galerkin method is

formulated for nonlinear analysis of planar frames. Frame bending is modeled as a 2D

continuum problem under plane stress conditions. This was considered more suitable than

formulating a 1D beam (as employed by Atluri et al. [6], Donning and Liu [32], and Sue-

take [83]) because MLS shape functions would need to have cubic consistency in order

to approximate both the displacement and rotation deformation fields. This causes in-

creased difficulties in the meshfree formulation when trying to enforce displacement and

slope boundary conditions. Furthermore, higher-order derivatives of the shape functions

are required when solving the typical fourth-order differential equation necessary to model

beam bending. Therefore, the plane stress approximation was considered more suitable for

the proposed formulation and future research objectives. Small strain J2 elasto-plasticity is

used to characterize material behavior and a stabilized nodal integration scheme is employed

to obtain the discrete equations. An approach to model general sections with non-uniform

thickness is developed, though the particular case of steel frames composed of wide flange

sections is investigated in this dissertation. The proposed analytical scheme is applied to

several examples involving beam and frame subassemblies undergoing post-elastic behavior.

Results of numerical simulations are compared with analytical solutions, FE simulations

and available experimental data to validate the proposed formulation.
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4.2 Integrating the weak form

The variational (weak) form arises by taking the first variation of the potential energy and

setting it to zero. Using the strain-displacement relation (ε = Bd, where in a meshfree con-

text the d values are nodal coefficients, and not nodal displacements) and the displacement

approximation Eq. (3.1) in the weak form leads to

f ext − f int = 0, (4.1a)

f ext =

∫

S

φT t̄ dS, f int =

∫

V

BTσ dV, (4.1b)

where σ is the Cauchy stress and t̄ is the prescribed traction vector. For a linear elastic

material, constitutive relations (σ = Cε = CBd) are substituted in Eq. (4.1b) to give

Kd = f ext, (4.2)

where the stiffness matrix is

K =

∫

V

BTCB dV. (4.3)

For plane stress, the elastic modulus matrix, C, is

C =
E

1− ν2















1 ν 0

ν 1 0

0 0 1−ν
2















, (4.4)

where E is the modulus of elasticity and ν is Poisson’s ratio.

In an effort to depart from using elements for the purpose of numerical integration,

a node-based integration technique is used to compute K in Eq. (4.3). For node-based
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Figure 4.1: Voronoi cell of node a.

integration, a background geometric structure, such as a Voronoi diagram, is still required.

This geometric structure is preferable since it is node-based rather than element-based and

no Jacobian is required. A further advantage of nodal integration is that state variables,

such as material properties, are associated with nodes rather than elements. The nodal

integration procedure adopted here closely follows the integration scheme proposed by Chen

et al. [20].

Consider the Voronoi cell domain Va and boundary of segments Sa enclosing node a as

shown in Figure 4.1. Over the domain Va, the components of the smoothed strain tensor

(finite volume averaging) are

εij(xa) =
1

2Aa

∫

Va

(ui,j + uj,i) dV =
1

2Aa

∫

Sa

(uinj + ujni) dS, (4.5)

where the last expression is found by using the divergence theorem, Aa is the Voronoi cell

area associated with node a, and ni is the ith component of a unit vector normal to the

Voronoi cell boundary Sa.

Now, similar to FEM, ε of Eq. (4.5) is written as a strain-displacement relation. Using
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Eq. (3.1) in Eq. (4.5) and defining some new variables the strain-displacement relations are

ε(xa) =
6
∑

b=1

Bb(xa)db = [B1 B2 · · ·B6]























d1

d2

...

d6























≡ B(xa)d, (4.6)

where the index b ranges over the nodes whose associated shape function supports cover

any vertex of the Voronoi cell a (i.e., nodes 1 to 6 for the example of Figure 4.1) and the

following definitions apply:

ε = [ε11 ε22 2ε12]
T and da = [da1 da2]

T (4.7)

Bb(xa) =















bb1(xa) 0

0 bb2(xa)

bb2(xa) bb1(xa)















(4.8)

bbi(xa) =
1

Aa

∫

Sa

φb(x)ni(x) dS. (4.9)

On using the strain-displacement relation Eq. (4.6) in Eq. (4.3) gives K associated with

node a as

K(xa) = BT (xa)CB(xa)Aat. (4.10)

The thickness of the two dimensional domain, t, is generally taken as unity. The external

force vector f ext of Eq. (4.1b) is found similarly (see Chen et al. [20]).



37

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

S
ha

pe
 F

un
ct

io
n

MLS Shape Functions Blended 
Region 

FE Shape
Functions 

Figure 4.2: Blending of linear MLS and FE shape functions.

4.3 Enforcement of essential boundary conditions

In general MLS shape functions do not possess the Kronecker-delta property. Hence it

is difficult to enforce essential boundary conditions when using MLS shape functions. To

overcome this problem a variety of techniques have been devised to enforce essential bound-

ary conditions such as Lagrange multiplier method, penalty method, Nitsche’s method and

continuous blending method (Fernández-Méndez and Huerta [35]). In this dissertation,

continuous blending is used because it allows the MLS shape functions to blend into FE

shape function regions. Hence, the MLS shape functions are used everywhere except at

nodes where essential boundary conditions need to be enforced. At such nodes FE shape

functions are used, and enforcement of essential boundary conditions is imposed on the

finite element nodes in the standard way.

Continuous blending as proposed by Huerta and Fernández-Méndez [40] is accomplished

by recognizing three distinct regions possible in the discretized domain when the two types of
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shape functions are used. These regions are (i) MLS regions, (ii) blended regions (transition

between MLS and FE shape functions) and (iii) FE regions. For region (i) the MLS shape

functions are as given in Eq. (3.6). In this dissertation, a linear polynomial basis is used

to construct the MLS shape functions. The finite element shape functions perform best

in the method of continuous blending if they are also linear as indicated in Huerta and

Fernández-Méndez [40]. Therefore in region (ii) the MLS shape functions are blended into

linear quadrilateral finite element shape functions. Lastly, in region (iii) the transition is

complete and typical linear quadrilateral finite elements are solely used to construct the

approximate solution.

The meshfree approximation in a blended region is represented as

uh(x) =

nMLS
∑

a=1

φ̃a(x)da +

nFE
∑

b=1

Nb(x)ub, (4.11)

where the tilde is used to denote the blended approximation. If a node needs enforcement

of an essential boundary condition there is a two dimensional linear finite element shape

function, Nb, associated with the node. Note that a blended region does not have a complete

set of finite element shape functions. Hence, in Eq. (4.11) the sum over a is for all MLS

shape functions that are nonzero in the given blended region and the sum over b is for all

nonzero FE shape functions. The MLS shape functions in a blended region are constructed

the same as explained previously by enforcing the consistency condition:

p(x) =

nMLS
∑

a=1

φ̃a(x)p(xa) +

nFE
∑

b=1

Nb(x)p(xb). (4.12)

Equation (4.12) states that in the blended region the combined FE and MLS approximation

Eq. (4.11) is consistent with the polynomial that it is trying to approximate. Then, following

a procedure similar to the MLS shape function derivation, the MLS approximant in the
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blended region is

φ̃a(x) = φa(x)− pT (xa)A
−1

( nFE
∑

b=1

Nb(x)p(xb)

)

w(xa). (4.13)

The first term on the right hand side of Eq. (4.13) is the MLS shape function of node a in

the meshfree region. The second term on the right hand side of Eq. (4.13) is the correction

to the MLS shape function of node a if it is nonzero in the blended region. An example of

one-dimensional linear MLS shape functions blended into linear finite elements is shown in

Figure 4.2.

4.4 Numerical implementation

Several issues in the numerical implementation require further attention. First, it is shown

how to calculate the individual components of the smoothed strain-displacement matrices.

Second, nodal integration is unstable and requires some form of numerical stabilization,

which is addressed. Here, the terms stable and stabilization are not a mathematically

precise usage; however, they are often used in this context in the meshfree literature.

4.4.1 Numerical evaluation of strain-displacement matrix components

To carry out the integration, by numerically evaluating the components Eq. (4.9) of the

strain-displacement matrix, a two-node trapezoidal rule is employed. As indicated in the

example of Figure 4.3(a), xM
a and xM+1

a are the end nodes of segment SM
a . The length

of the segment is ℓMa and surface normal of the segment is nM
a . Using these definitions

Eq. (4.9) is rewritten as a summation over the number of Voronoi cell segments, Ns,

bbi(xa) =
1

Aa

Ns
∑

M=1

[

φb(x
M
a )nM

ai

ℓMa
2

+ φb(x
M+1
a )nM

ai

ℓMa
2

]

. (4.14)
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Figure 4.3: Node a: (a) integration over Voronoi cell; (b) triangular subcells.

When the last segment in the summation is reached define M + 1 = Ns + 1 ≡ 1. Next,

noting that Eq. (4.14) only involves evaluation of φbnai at the vertices of the Voronoi cell

for node a, Eq. (4.14) is now written as

bbi(xa) =
1

Aa

Ns
∑

M=1

[

1

2
(nM

ai ℓ
M
a + nM+1

ai ℓM+1
a )φb(x

M+1
a )

]

. (4.15)

This last equation involves no derivatives of the MLS shape functions. The technique

of nodal integration is used in linear problems in Chen et al. [20] and also in nonlinear

problems involving large displacements in Chen et al. [21].

4.4.2 Stabilization of stiffness matrix

Nodal integration instabilities are often manifested by hourglass modes in the calculated

deflected shape, by spurious low-energy modes in an eigen analysis and by locking in nearly

or totally incompressible materials. Hence, some form of stabilization is needed for the

stiffness matrix given in Eq. (4.10). Puso et al. [72] proposed the following stabilization
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scheme:

Ks(xa) = K(xa) +

[

αs

∑

c∈Ta

(B(xa)−Bc(xa))
TCs(B(xa)−Bc(xa))Act

]

, (4.16)

where Ks(xa) is the stabilized matrix, αs = 1.0 is the stabilization factor and Cs is

the stabilization modulus matrix. The first term on the right hand side of Eq. (4.16)

is equivalent to Eq. (4.10) and the second (stabilization) term in brackets is a summation

over the set of triangular subcells, Ta, for Voronoi cell a (see Figure 4.3(b)). Over each

triangular subcell c the Bc matrix is constructed in the same way that B matrices are

constructed over a Voronoi cell.

When constructing Cs for plastic materials with Lamé parameters µ and λ, the recom-

mendation of Puso et al. [72] is adopted such that the effective moduli are

µ̃ = H̄/2 and λ̃ = max(λ, 12.5H̄), (4.17)

where for linear hardening, H̄ is the hardening modulus and for exponential hardening,

H̄ is taken as the slope of the tangent to the exponential hardening curve at zero plastic

strain. The effective elastic modulus Ẽ and Poisson’s ratio ν̃ in terms of µ̃ and λ̃ are given

by

Ẽ =
µ̃(3λ̃+ 2µ̃)

λ̃+ µ̃
and ν̃ =

λ̃

2(λ̃+ µ̃)
. (4.18)

4.4.3 Summary of discrete equations

In general Eq. (4.1a) is nonlinear since the unknown stress field at time n+1 is a nonlinear

function of strain. Hence, following an approach similar to that presented in finite element
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monographs such as Gosz [37], linearization of σ gives

σn+1 ≈ σn +Cep
n ∆εn = σn +Cep

n B∆dn, (4.19)

where ∆dn = dn+1−dn, C
ep
n is the plane stress elasto-plastic tangent modulus matrix (Simo

and Taylor [80], see also Appendix E) and use has been made of the strain-displacement

relations. Substitution of Eq. (4.19) into Eq. (4.1a) gives

∫

V

BTCep
n B dV∆dn =

{∫

S

φT t̄ dS

}

n+1

−
∫

V

BTσn dV ⇒ Kt
n∆dn = f ext

n+1 − f int
n ,

(4.20)

where Kt
n is the tangent stiffness matrix. A Newton-Raphson scheme is used to iterate the

linearized (see Gosz [37]) system of Eqs. (4.20) until convergence is achieved. The iterated

equation is written as

K
t(ν)
n+1∆d(ν)

n = f ext
n+1 − f

int(ν)
n+1 , (4.21)

where ν is the iteration counter. It is understood that when the iteration counter is zero

the matrices and vectors are evaluated at time n, i.e., f
int(0)
n+1 = f int

n , etc.

On the basis of the preceding developments, the discrete equations are obtained as

follows:

K(xa) = BT (xa)C̃B(xa)Aat (4.22a)

Ks(xa) = K(xa) +

[

αs

∑

c∈Ta

(B(xa)−Bc(xa))
TCs(B(xa)−Bc(xa))Act

]

(4.22b)

f ext
b =

nb
∑

a=1

φb(xa)t̄(xa)Sa. (4.22c)

In the above equations, for nonlinear problems, such as elasto-plasticity, C̃ = Cep and
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Ks(xa) is the stabilized tangent stiffness matrix to be used in Eq. (4.21). For linear

problems C̃ is replaced with Eq. (4.4) and the stabilized stiffness matrix, Ks(xa), replaces

K in Eq. (4.2). In Eq. (4.22c) Sa is the length along the boundary of the Voronoi cell of

node a along which the traction t̄ acts, and nb is the number of boundary points. Once the

discrete equations are solved for the nodal coefficients, d, the displacements at each node

are found by using Eq. (3.1). The strains at each node a are found by using Eq. (4.6) and

stresses are found by using the appropriate constitutive relations.

4.5 Formulation for sections with non-uniform thickness

In order to allow for non-uniform thickness Eq. (4.22a) is modified to allow a unique thick-

ness, ta, for each node a:

K(xa) = BT (xa)C̃B(xa)Aata. (4.23)

A similar modification is required for Eq. (4.22b). By setting the thickness for different

regions of the 2D continuum it is possible to model a variety of common beam cross-

sections. For example, I-beams and channels in the case of steel cross-sections or T -beams

and I-shaped girders in the case of concrete. Of course the thicknesses are set to obtain

a moment of inertia which matches the beam being modeled. The validation problems

included below are for beams of I-shaped cross-section. Therefore, in Appendix D an

example is provided which illustrates the process of deriving the thickness of a section

associated with a particular meshfree node to obtain the correct moment of inertia for an

I-beam.
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Figure 4.4: Cantilever beam notation.

4.6 Validation of methodology

The linear and nonlinear response of several realistic frame subassemblies are evaluated

using the proposed blended FEM and meshfree method. For all example problems only

constrained nodes have FE shape functions for enforcement of essential boundary condi-

tions by the blending method. The remaining domain is modeled with MLS shape functions.

The results are compared to analytical solutions in the case of the cantilever beam and to

experimental data for a frame corner connection and a portal frame. Also included are

comparisons with simulations using one-dimensional fiber-section beam elements since they

are commonly employed in nonlinear frame analysis. The open-source structural analysis

software OpenSees, Mazzoni et al. [65], is used for both the 1D fiber beam (dispBeam-

Column element) simulations and the FE simulations with enhanced strain quadrilateral

elements.

4.6.1 Cantilever beam

First, the results for an I-beam cantilever using a linear elastic material are presented. In

Table 1, with grid refinement, the normalized tip displacement and bending stress values

asymptotically approach 1.0 where δtheor. = 0.0308 in. and σtheor. = 25.0 ksi. For these

results the variables used are E = 29, 000 ksi, ν = 0.3, P = 5 kips, L = 10 in., Ixx = 2.0 in.4,
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d = 2 in., tw = 1 in. with tf and bf dependent on the grid as explained in Appendix D.

Grid δ/δtheor. (in) σxx/σtheor. (ksi)

11× 3 1.045 0.77

21× 5 1.025 0.89

31× 7 1.016 0.94

41× 9 1.012 0.95

51× 11 1.010 0.96

61× 13 1.009 0.97

Table 4.1: Cantilever I-beam tip displacement and maximum bending stress.

Second, the results for an I-beam cantilever using an elasto-plastic material model are

shown in Figure 4.5. This analysis is performed with small strain plane stress J2 elasto-

plasticity as outlined in Simo and Taylor [80]. The solution procedure uses Newton-Raphson

iterations at the global level to enforce equilibrium between internal and external forces (see

Gosz [37]), and at the constitutive level an implicit integration scheme with radial return

is employed (Simo and Hughes [78], see Appendix E for details). In Figure 4.5b, the load

versus displacement response is compared to an analytical solution for an elasto-plastic

cantilever based on Euler-Bernoulli beam theory with an elastic shear deformation term

included similar to Eq. (D.6). For the results of Figure 4.5b, Ixx = 1.313 in.4, however, all

remaining geometry and material properties are the same as the linear analysis. In addition,

the hardening modulus is H̄ = 500 ksi, the yield stress is 36 ksi, and the maximum applied

load is 8 kips. The I-beam is modeled with a 51 by 11 grid of nodes (similar to 500 elements).

Figure 4.5b also shows results for a 1D fibersection beam model with a discretization of 10

finite beam elements and a 2D continuum model using 500 enhanced strain quadrilateral

finite elements.

The analytical solution (see Appendix B for the derivation) uses the bilinear model

shown in Figure 4.5a and is developed independently of previous work. However, the

initial steps to find the analytical solution are similar to Yu and Zhang [97] who set out
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Figure 4.5: Inelastic cantilever I-beam: (a) bilinear model; (b) load versus displacement.

preliminary formulas for an elasto-plastic beam of rectangular cross-section with a linear

hardening material. The interested reader is also referred to Phillips [71], where a method

to express the curvature as a function of applied moment is presented for beams of various

cross-sections, including a plastically deforming I-beam. Once curvature is known at every

cross-section deflection is calculated using the Second Area Moment theorem.

The numerical solution slightly differs from the analytical solution for a variety of rea-

sons. First, the discretization of the cantilever across the beam depth cannot exactly

represent the bilinear stress profile. Second, the analytical solution assumes plane sections

remain plane. However, the numerical solution is based on the elasticity solution which

does not restrict plane sections to remain planar. Third, the exact displacement boundary

conditions for an I-beam are not known. Hence, all nodes at the support are pinned. Last,

the analytical solution is based on the bilinear material model within Euler-Bernoulli beam

theory. This differs from the numerical solution where a J2 elasto-plastic material model

in plane stress is assumed. Despite these differences, the agreement between the numerical

and analytical results is excellent.
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4.6.2 Frame corner connection

In the second example, the nonlinear response of a frame corner connection tested to failure

by Beedle and Christopher [13] is investigated and the computed response is compared with

experimental results. The frame connection is made of W30x108 members and stiffeners

as shown in the test setup of Figure 4.6a. In the numerical model larger thicknesses are

specified along straight and diagonal stiffener lines to properly simulate the effect of the

stiffeners on the response of the connection. The resulting experimental versus simulated

load displacement results are shown in Figure 4.6b. Load displacement results are also

shown for 1D fibersection beam models with a discretization of 22 finite beam elements.

For the beam elements, in one case the panel zone elements were allowed to have an elasto-

plastic response, whereas the other case was forced to have an elastic panel zone. The

numerical results vary from the experimental results for several reasons. First, Beedle and

Christopher [13] do not provide the material properties for the corner connection material.

Theoretical predictions for the load displacement curve based on an elastic perfectly plastic

material provided by Beedle and Christopher [13] indicate their assumed yield stress value

of 36 ksi. However, following the recommendation of Johnston et al. [44], for a more

accurate plastic analysis, a yield plateau value of 33 ksi is used in the material model

herein. Secondly, the hardening used for the numerical results is based on an assumed

ultimate value of 55 ksi. Beedle and Christopher [13] mention that the frame connection

did develop its full plastic moment but failed by flange local buckling and that this accounts

for some hardening followed by softening as shown by the experimental curve. Hence, it is

not reasonable to expect that the estimated hardening behavior provided in the numerical

results (which does not consider flange local buckling) will exactly match the experimental

results. Despite these differences, the numerical results are in general agreement with the

experimental results.
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Figure 4.6: Frame corner connection: (a) test set up; (b) load versus displacement response.

Figure 4.7 shows an example of the final (160 kip load) stresses for the corner connection.

The σxx stresses are oriented along the axis of the top W30x108 beam. It is evident from

the stress plot that a plastic hinge has formed near the corner connection and that the

location of the neutral axis has shifted from the beam centerline toward the tension flange.

This shift is due to the combined stress state of bending and axial stresses. Each of these

observations are expected and lend confidence to the validity of the results. Lastly, it is

found that grid refinement from 357 nodes to 621 nodes does not change the simulation

results significantly. Figure 4.8b shows the magnified final (160 kip load) deflected shape

for the corner connection. Deflection results without stabilization (Figure 4.8a) exhibit

hourglass modes in the deformed shape.
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Figure 4.7: Frame corner connection stresses (ksi): (a) σxx; (b) σyy; and (c) σxy.
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Figure 4.8: Frame corner connection displacements: (a) without stabilization; (b) with
stabilization.
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4.6.3 Portal frame

Consider now the response of a portal frame loaded by equal vertical and lateral forces. In

this case an 8 inch deep I-beam with 4 inch flanges tested by Baker and Roderick [9] is

utilized in the simulation. Based on the specified web thickness of 1/4 inch, a given plastic

moment capacity of 576 k-in and given upper yield stress of 36 ksi provided in Baker and

Roderick [9], the flange thickness is calculated as 0.422 inches. These properties give Zx =

16 in.3 and Ixx = 56.18 in.4, which are used in the frame analysis. The frame dimensions,

support conditions and loading are shown in Figure 4.9a. Linear hardening is assumed

with an assumed ultimate steel stress of 55 ksi. Although the given material was assumed

to be A36 steel, the lower yield plateau stress of 33 ksi is used. Load deflection results

for a numerical model with 2023 nodes are compared in Figure 4.9b to the experimental

results provided by Baker and Roderick [9]. The load deflection results are also shown for

a 1D fibersection beam model with a discretization of 5 beam elements per column and

10 beam elements for the girder. The load deflection results are in good agreement with

the experimental results. As the loading progresses hinges develop simultaneously in the

beam and column near the top right corner joint of the frame. Following this condition,

a constant moment results in the beam segment between the vertical load and the left

column. A uniform elasto-plastic stress profile (see Figure 4.9d) progresses along the beam

segment until the frame resists no more load. These observations are consistent with those

presented in Baker and Roderick [9], and the numerical results given here closely match the

expected behavior.

Inevitably there are differences between the numerical and experimental results. In

addition to this there is always uncertainty in the true material properties of the tested frame

as well as uniformity of the quality of welded connections. In fact, Baker and Roderick [9]

state only an assumed yield of 36 ksi and do not provide an estimate for the ultimate
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stress. Having said this, it is noted that the most important value seems to be the yield

stress used in the numerical study. Adjusting ultimate stress and other hardening variables

has relatively little affect on the numerical curve shown in Figure 4.9b. However, using a

yield stress of 33 ksi gives numerical results similar to the experiment.

4.7 Conclusions

The capabilities of the element-free Galerkin method have been extended in this chapter to

the inelastic analysis of steel frames. A blended finite element and meshfree method was

developed for beam bending approximated as a plane stress problem. The treatment of

sections with non-uniform thickness is presented though the particular case of wide-flange

sections is considered in the sample simulations. The methodology was applied to solve

a variety of frame subassemblies undergoing inelastic deformations. It is shown that the

results from the numerical simulations match theory, experimental observations and other

finite element based solutions with considerable accuracy. This work has established the

feasibility of meshfree methods for the simulation of nonlinear frame response. However, as

pointed out in the introduction, the successful application of the meshfree formulation to

plane frame analysis is only a first necessary step toward the eventual goal of extending the

technology to more complex problems. In this phase of work, only material nonlinearities in

a small strain framework were considered. Incorporation of large displacements based on a

co-rotational formulation is presented in the next chapter along with the use of maximum-

entropy shape functions which allow easier enforcement of essential boundary conditions

and numerical implementation.
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Chapter 5

Meshfree Co-rotational

Formulation

5.1 Introduction

Co-rotational formulations are commonly used in finite element formulations for the anal-

ysis of structures. Wempner [95] and Belytschko and Hsieh [15] pioneered the introduction

of co-rotational formulations in finite element analysis. Such a formulation has many com-

monalities with the ‘natural approach’ of Argyris et al. [4]. The co-rotational formulation is

very popular for beams and shell elements and it has been extended to include finite strains

with continuum elements in a consistent formulation by Crisfield and Moita [28, 29]. One of

the primary motivations of a co-rotational formulation is the ability to use linear elements

in a non-linear context. Thus far, the co-rotational formulation has only been implemented

using finite element shape functions. In this dissertation, meshfree basis functions are in-

troduced within the framework of a co-rotational formulation for continua. It appears that

this has not been previously introduced in the literature.
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This chapter is part of the larger effort to advance collapse simulation technology for

large-scale civil engineering structures. Collapse simulation is by its nature a problem that

is highly nonlinear, subject to large displacements, rotations and inelastic material behavior.

While finite-element based simulations of structural collapse and failure have met with

some success for limited applications [39, 41, 60], much of the effort using finite elements to

simulate large displacements have been subject to difficulties due to mesh distortions that

cause a need for remeshing, loss of accuracy, and at times unsuccessful completion of the

simulation altogether. These difficulties are observed for both continuum elements as well

as beam elements.

Significant work has gone into the development of beam elements for limit state analysis

of large-scale engineering structures. However, as noted by Torkamani [90], these methods

tend to have two principal deficiencies: inaccurate descriptions of material nonlinearity, and

an inability to properly capture large distortions across the length of the element. Fiber-

based beam elements have been used to improve modeling of material nonlinearity [75, 86,

90] and Lagrangian or co-rotational formulations are employed to include large deflections.

Despite these advances, the ability to simulate collapse is still inadequate.

The objective of this chapter is to examine the ability of meshfree methods to alleviate

some of these difficulties and explore the potential for an alternative approach to large-

displacement analysis of structural systems.

On combining the advantages of meshfree methods with those of a co-rotational formu-

lation, it is expected that the ability to simulate large displacements and large rotations

can be better facilitated.

Furthermore, by using a continuum approach, material behavior is modeled more accu-

rately through the cross-section of beam-type structural elements. As a first step toward

the eventual goal of advancing collapse simulations, the present chapter focuses on two-
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dimensional continua in the presence of small strains with elastic and elasto-plastic material

behavior.

The remainder of this chapter is organized as follows. In Section 5.2, the co-rotational

formulation is derived to give (i) the relationship between global and local variables, (ii)

the angle of rotation of a typical co-rotating coordinate system, and (iii) a variationally

consistent tangent stiffness matrix. Including inelastic material behavior is also discussed

followed by an algorithm for a co-rotational formulation in a meshfree setting. The sec-

tion concludes with a brief discussion of numerical implementation details specific to a

co-rotational formulation. Section 5.3 presents numerical examples for validation of the

proposed formulation, which is followed by some concluding remarks in Section 5.4.

5.2 Co-rotational formulation

In general, the motion of a body is composed of rigid body translation, rigid body rotation

and strain producing deformations. Consider a sufficiently small region Ω ⊂ R
2 of a body.

To this small region attach a local coordinate frame that rotates and translates with the

material points of the region. With respect to this local coordinate frame, the rigid body

rotations and translations, of the small region’s overall motion, are negligible and only local

strain-producing deformations remain. This is the key idea behind a co-rotational formu-

lation. It is the objective of a co-rotational formulation to perform a nonlinear analysis of

a structure and determine the global displacement behavior as well as the stress and strain

causing local deformations. Some of the advantages of a co-rotational formulation are as

follows. First, for small strain/large rotation problems Mattiasson [64] indicates that the

co-rotational formulation is more accurate and has better convergence properties than finite

strain total Lagrangian or updated Lagrangian formulations. Second, co-rotational formu-
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lations satisfy the principle of material frame indifference (Belytschko and Bindermen [14]).

As a result of the material frame invariance damage constitutive equations are not limited

to isotropic elastic response (Masud et al [62]). Third, inelastic type constitutive equations

take the same form as in the case of a small deformation theory since stresses and strain

tensors are objective (W.K. Liu et al [58]). This greatly simplifies integration of inelastic

constitutive equations. Lastly, geometric nonlinearities due to large displacements and ro-

tations are taken into account without the requirement of a finite strain formulation and

alternative stress definitions.

For a co-rotational formulation several key ingredients are necessary. These ingredients

are: (i) the relationship between global and local variables, (ii) a method for determining

the angle of rotation of a typical co-rotating coordinate system, and (iii) the expression for

a variationally consistent tangent stiffness matrix. These ingredients are described within

the following subsections, where for the sake of clarity and completeness, intermediate steps

in the derivation are also indicated. The ensuing presentation closely follows Crisfield and

Moita [28].

5.2.1 Relationship between global and local variables

Referring to Figure 5.1, the relationship between overall global deformations and the local

strain producing deformations is illustrated. In Figure 5.1, node L and its neighboring

nodes are shown. In general, there are n nodes (node L is included in the set of n nodes) to

which a local co-rotating coordinate frame is associated (for finite elements the coordinate

frame is usually attached to each element). For simplicity only four nodes are shown and

the local co-rotating frame origin is placed at node L. In the reference configuration, the

local co-rotating frame axes are parallel to the global axes. Due to displacement of the

overall structure the n nodes translate, rotate and deform to some current configuration as
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Figure 5.1: Reference and current configurations in co-rotational formulation.

shown.

From the figure the local nodal coefficients (nodal displacements for the case of finite

elements) for node i in the local coordinate frame are expressed as

di
ℓ = QTxiL −Xi

ℓ, (5.1)

where a subscript ℓ is attached to vectors with components in local coordinates (with

some exceptions such as stress, σ, and strain-displacement matrices, B, which are clearly

understood to be in the local coordinates of a co-rotational formulation) and xiL = xi−xL =

XiL + di − dL indicates the difference between the spatial coordinates of nodes i and L in

the current configuration with components in the global coordinate system. The orthogonal

matrix Q = [e′1 e′2] is a rotation matrix, so that QT transforms global vector components to

local vector components. The unit basis vectors e′1 and e′2 which define the local co-rotating
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coordinate frame are defined in terms of θ with global components as follows:

e′1 =







cos θ

sin θ






e′2 =







− sin θ

cos θ






. (5.2)

Lastly, Xi
ℓ represents the material coordinates of node i in the local coordinate frame. It is

noted that Xi
ℓ = QTXiL = QT

(

Xi −XL
)

.

Based on the reference and current configurations Eq. (5.1) expresses the local nodal

coefficient components for node i in terms of known quantities xiL, Xi
ℓ and as yet unknown

quantity θ, the angle of rotation of the local co-rotating coordinate frame. This unknown

quantity is determined in the next section.

5.2.2 Co-rotating frame angle of rotation

The angle of rotation of the co-rotated coordinate frame is found by assuming that the

local spin, due to local nodal displacements in the current configuration, is equal to zero.

The local spin is evaluated at the centroid of the Voronoi cell for node L in the reference

configuration (see Jetteur and Cescotto [43])

Ωℓ =
∂u1ℓ
∂Yℓ

− ∂u2ℓ
∂Xℓ

= 0. (5.3)

The meshfree approximation for the displacement field in terms of the local nodal coeffi-

cients, dℓ, is written as

ujℓ = φTdjℓ, (j = 1, 2) (5.4)

where φ is the vector of nodal basis functions and djℓ denotes the vector of local nodal

coefficients associated with degree of freedom j.



59

Substituting Eq. (5.4) into Eq. (5.3) gives

Ωℓ =

(

∂φ

∂Yℓ

)T

d1ℓ −
(

∂φ

∂Xℓ

)T

d2ℓ = aTℓ dℓ, (5.5)

where

aℓ =





































∂φ1

∂Yℓ

− ∂φ1

∂Xℓ

...

∂φn

∂Yℓ

−∂φn

∂Xℓ





































and dℓ =













































d11ℓ

d12ℓ

d21ℓ

d22ℓ
...

dn1ℓ

dn2ℓ













































. (5.6)

Note that aℓ is evaluated at the centroid of the Voronoi cell for node L in local material

coordinates Xℓ (which is equivalent to evaluation in global material coordinates X) and

hence is a fixed vector. Next substitute Eq. (5.1) into Eq. (5.5) to get

Ωℓ =
∑

(aiℓ)
Tdi

ℓ =
∑

(aiℓ)
T (QTxiL −Xi

ℓ) = 0 (5.7)

or

Ωℓ =
∑

(aiℓ)
T (QTxiL)−

∑

(aiℓ)
T (Xi

ℓ) = 0. (5.8)

Noting that the last term of Eq. (5.8) is zero and expanding the first term yields

Ωℓ =
∑

(aiℓ)
T






cos θ







xiL

yiL






+ sin θ







yiL

−xiL












= 0. (5.9)
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Finally, from Eq. (5.9)

Ωℓ = a sin θ + b cos θ = 0, (5.10)

where

a =
∑

(aiℓ)
T







yiL

−xiL






and b =

∑

(aiℓ)
T







xiL

yiL






. (5.11)

It is convenient to rewrite a and b as follows:

a = cT x̄, (5.12)

where

c =













































0 −1 0 0 . . . 0 0

1 0 0 0 0 0

0 0 0 −1
...

0 0 1 0

...
. . .

0 0 0 −1

0 0 . . . 1 0













































aℓ, x̄ =













































x1L

y1L

x2L

y2L

...

xnL

ynL













































(5.13)

and b = aTℓ x̄. Note that c in Eq. (5.13) is a 2n by 2n matrix depending on the number

of neighbors n and similarly x̄ is a 2n by 1 vector. With these expressions in hand it is

possible to solve for the angle of rotation θ, which from Eq. (5.10) is

θ = tan−1

(−b

a

)

. (5.14)
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5.2.3 Derivation of the tangent stiffness matrix

To derive the tangent stiffness matrix first consider the local internal force vector, qLℓ, for

node L and its neighboring nodes, which is written as

qLℓ =

∫

Ω
BTσ dV = Ktℓdℓ, (5.15)

where B is the local strain-displacement matrix, σ are the local Cauchy stresses and Ktℓ

(t is used to denote a tangent stiffness matrix) represents the local tangent stiffness matrix,

which, as part of the iterative process for global equilibrium, is possibly constructed by

considering inelastic material behavior.

Next, note that the local nodal coefficients, dℓ, are related to the global nodal coeffi-

cients, d, via some function, f , i.e.,

dℓ = f(d, e′1, e
′

2), (5.16)

and the variation of Eq. (5.16) leads to the relationship

δdℓ = Tδd, (5.17)

where T is some as yet to be determined transformation matrix. Virtual work at the local

and global level are equivalent so that

(δdℓ)
TqLℓ = (δd)TqL. (5.18)

The global internal forces in terms of the local internal forces are found by making use of
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Eq. (5.17) and Eq. (5.18), which yields

(Tδd)TqLℓ = (δd)TTTqLℓ = (δd)TqL, (5.19)

qL = TTqLℓ = TTKtℓdℓ (5.20)

where the last equality comes from the use of Eq. (5.15).

To obtain the global stiffness matrix the variation of Eq. (5.20) is taken, which gives

δqL = TT δqLℓ + δTTqLℓ = TTKtℓδdℓ +Ktσδd = TTKtℓTδd+Ktσδd, (5.21)

where δTTqLℓ is represented as shown by Ktσδd. The matrix Ktσ is the initial stiffness ma-

trix and the last equality in Eq. (5.21) is found by making use of Eq. (5.17). Equation (5.21)

yields

δqL =
[

TTKtℓT+Ktσ

]

δd = KT δd, (5.22)

where KT represents the tangent stiffness matrix at the global level.

To find the transformation matrix in Eq. (5.22), the variation of Eq. (5.1) is taken to

give

δdi
ℓ = QT δxiL + δQTxiL. (5.23)

From Figure 5.1, note that

xiL = XiL + di − dL = XiL + diL. (5.24)

Taking the variation of Eq. (5.24) gives

δxiL = δXiL + δdiL = δdiL, (5.25)
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where the last step results since δXiL is zero. Substituting Eq. (5.25) into Eq. (5.23) yields

δdi
ℓ = QT δdiL + δQTxiL. (5.26)

Taking the variation of QT gives

δQT = δ

[

e′1 e′2

]T

=







− sin θ − cos θ

cos θ − sin θ







T

δθ. (5.27)

Consequently,

δQTxiL =







−s c

−c −s













xiL

yiL






δθ =







−sxiL + cyiL

−cxiL − syiL






δθ = QT







yiL

−xiL






δθ. (5.28)

Now substituting Eq. (5.28) into Eq. (5.26) yields

δdi
ℓ = QT δdiL +QT







yiL

−xiL






δθ. (5.29)

If QT δdL is added to Eq. (5.29) it should have no effect if the local coordinate system

computations correctly satisfy the infinitesimal strain-free rigid body requirements. This

addition to Eq. (5.29) gives

δdi
ℓ = QT δdi +QT







yiL

−xiL






δθ. (5.30)
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To obtain δθ differentiate Eq. (5.14) by recalling that d(tan−1 u)
dx

= 1
1+u2

du
dx
. This gives

δθ =
1

1 + b2

a2

δ(−ba−1) =
a2

a2 + b2
(−δba−1 + a−2bδa) =

a2

a2 + b2

(

bδa

a2
− aδb

a2

)

. (5.31)

Rearranging and simplifying Eq. (5.31) yields

δθ =
bδa− aδb

a2 + b2
=

1

a2 + b2
(bcT − aaTℓ )δd = vT δd. (5.32)

Substituting δθ = vT δd into Eq. (5.30) gives

δdi
ℓ = QT δdi +QT







yiL

−xiL






vT δd. (5.33)

Next, realizing that QT







yiL

−xiL






=







yiℓ

−xiℓ






, Eq. (5.33) becomes

δdi
ℓ = QT δdi +







yiℓ

−xiℓ






vT δd. (5.34)

Using Eq. (5.34), an alternative form is written for all neighbors and the current point L as

δdℓ = (Q̄+ x̄ℓv
T )δd, (5.35)



65

where

Q̄ =























[QT ] 0 . . . 0

0 [QT ]
...

...
. . .

...

0 . . . . . . [QT ]























, 0 =







0 0

0 0






(5.36)

and

x̄T
ℓ = [ y1ℓ −x1ℓ y2ℓ −x2ℓ . . . ynℓ −xnℓ

]. (5.37)

Note that Q̄ is a 2n by 2n matrix. Then, comparing Eq. (5.35) with Eq. (5.17) it is evident

that

T = Q̄+ x̄ℓv
T . (5.38)

All that remains to construct the tangent stiffness matrix (see Eq. (5.22)) is the initial

stiffness matrix Ktσ. The initial stiffness matrix arises from (see Eq. (5.21))

δTTqLℓ = Ktσδd. (5.39)

The variation of TT is found by representing the first part of Eq. (5.39) as

δTTqLℓ = δT1q1
Lℓ + δT2q2

Lℓ + . . . =

2n
∑

j=1

δTjqj
Lℓ, (5.40)

where Tj is the jth column of TT and qj
Lℓ is the jth component of qLℓ (which is a scalar).

Working now only with the first term in the summation Eq. (5.40) and using the transpose
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of Eq. (5.38) gives

δT1q1
Lℓ = q1

Lℓδ





















































































e′1

0

...

0











































+ y1ℓv











































= q1
LℓG

1δd, (5.41)

where 0T = [ 0 0 ]. From Eq. (5.41), G1δd must be determined. This is given by

G1δd = δ





















































































e′1

0

...

0











































+ y1ℓv











































=











































e′2

0

...

0











































δθ + δy1ℓv + y1ℓ δv. (5.42)

Now note that δy1ℓ comes from Eq. (5.35), i.e.,

δy1ℓ =

{[

e′T2 0 0 . . . 0

]

− x1ℓv
T

}

δd. (5.43)

To see this, consider for a moment the generic variable w. The variation of this variable in

local coordinates is related to the variation of itself in global coordinates as (see Eq. (5.35))

δwℓ = (Q̄+ x̄ℓv
T )δw, (5.44)

where w = X + d and wℓ = Xℓ + dℓ = xℓ. Specifically, wT
ℓ =

{

x1ℓ y1ℓ . . . xnℓ ynℓ

}

.

Then observe that δw = δd since δX = 0. By taking only the row of Eq. (5.44) associated

with δy1ℓ Eq. (5.43) is obtained.

If the last term of Eq. (5.42) is not included (just yet), using Eqs. (5.32), (5.42) and
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(5.43) yields

G1,a =











































e′2

0

...

0











































vT + v











































e′2

0

...

0











































T

− x1ℓvv
T , (5.45)

which is symmetric. In order to obtain the complete form of G it is necessary to deter-

mine δv. To this end, vT of Eq. (5.32) is rewritten as (in the following g = aℓ)

v =
1

a2 + b2
(bc− ag). (5.46)

Then, taking the variation of Eq. (5.46) gives, by use of the product rule,

δv = δ

(

1

a2 + b2

)

(bc− ag) +
1

a2 + b2
δ(bc− ag). (5.47)

Now observe that

δ

(

1

a2 + b2

)

= δ
(

(a2 + b2)−1
)

= −(a2 + b2)−2(2acT + 2bgT )δd =
−2(acT + bgT )

(a2 + b2)2
δd,

(5.48)

and

δ(bc− ag) = δbc− δag = (cgT − gcT )δd. (5.49)

Substituting Eqs. (5.48) and (5.49) into Eq. (5.47) yields

δv =
−2(acT + bgT )

(a2 + b2)2
(bc− ag)δd+

(cgT − gcT )

a2 + b2
δd

=
−2(abccT − a2gcT + b2cgT − abggT )

(a2 + b2)2
δd+

(a2 + b2)(cgT − gcT )

(a2 + b2)2
δd
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=
−2(abccT − a2gcT + b2cgT − abggT )

(a2 + b2)2
δd+

(a2cgT − a2gcT + b2cgT − b2gcT )

(a2 + b2)2
δd

=
(−2abccT + a2gcT − b2cgT + 2abggT + a2cgT − b2gcT )

(a2 + b2)2
δd

=

[

2ab(ggT − ccT ) + (a2 − b2)(cgT + gcT )

(a2 + b2)2

]

δd

= VT δd, (5.50)

which is symmetric. The expression in brackets above for VT is identical to that found by

Crisfield and Moita [28] with the exception that their denominator is not squared (a likely

typographical error). Note also, that the last term of G1, which includes the variation of v,

may be neglected (see Crisfield [27]). However, for completeness it is kept here. Hence,

having

G1,b = y1ℓV
T , (5.51)

the final expression for G1 is found as

G1 = G1,a +G1,b. (5.52)

However, the matrix G1 is only sufficient to construct the first term in the summation

Eq. (5.40). The other Gj matrices are found similarly. Hence, the initial stiffness matrix

is calculated as Ktσ =
∑2n

j=1 q
j
LℓG

jand subsequently the entire tangent stiffness matrix as

given in Eq. (5.22).

As additional information the calculation of G2 is demonstrated next. Starting with
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the second term in the summation of Eq. (5.40) yields

δT2q2
Lℓ = q2

Lℓδ





















































































e′2

0

...

0











































− x1ℓv











































= q2
LℓG

2δd. (5.53)

From Eq. (5.53), G2δd is determined, which is given by

G2δd = δ





















































































e′2

0

...

0











































− x1ℓv











































=











































−e′1

0

...

0











































δθ + δ(−x1ℓ )v + (−x1ℓ)δv. (5.54)

Now note that δx1ℓ arises in a similar fashion as that described after Eq. (5.43), i.e.,

δx1ℓ =

{[

e′T1 0 0 . . . 0

]

+ y1ℓv
T

}

δd. (5.55)

Then taking Eq. (5.54) and using Eqs. (5.32), (5.55) and (5.50) gives

G2 =











































−e′1

0

...

0











































vT + v











































−e′1

0

...

0











































T

− y1ℓvv
T − x1ℓV

T . (5.56)

Last, expressions for the generic cases of G2i−1 and G2i are given below. In general,
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for i = 1 to n

G2i−1 =

1

...

i

...

n























































0

...

e′2
...

0























































vT + v























































0

...

e′2
...

0























































T

− xiℓvv
T + yiℓV

T , (5.57)

G2i =























































0

...

−e′1
...

0























































vT + v























































0

...

−e′1
...

0























































T

− yiℓvv
T − xiℓV

T . (5.58)

5.2.4 Nonlinear material stiffness

If plasticity is included in the co-rotational formulation then it is necessary to update the

material properties during each load step of the analysis. Hence, the local tangent stiffness

matrix Ktℓ takes the following form:

Ktℓ =

∫

Ω
BTCepB dV, (5.59)

whereCep is the elasto-plastic modulus matrix that evolves during each load step if the local

trial stresses fall outside the yield surface such as in a plane stress J2 plasticity formulation

with radial return (see Simo and Taylor [80] and Simo and Hughes [78]). All other formulas

remain the same.
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5.2.5 Load control algorithm for a meshfree co-rotational formulation

An algorithm for the co-rotational formulation in a meshfree setting is given below. The

given algorithm is for a linear elastic or elasto-plastic material. In the following, the vec-

tors d represent meshfree nodal coefficients whereas the vectors u represent displacements.

1. Set up storage variables

2. Loop over load increments

(a) Create ∆fn+1

(b) Construct fn
int for each node L and its neighbors based on current stresses, σn

(c) Construct Kn based on current fn
int with current ∆dIℓ values and un

(d) Modify ∆fn+1 and Kn to account for supports

(e) Solve for ∆dI = (Kn)−1∆fn+1

(f) Calculate displacements ∆un+1 based on ∆dI

(g) Calculate ∆dIℓ based on un +∆un+1

(h) Calculate the incremental nodal strains based on the latest ∆dIℓ

(i) Calculate current stresses σn+1 (based on elastic or elasto-plastic constitutive

relations)

(j) Construct fn+1
int for each node L and its neighbors based on current stresses,

σn+1

(k) Update global stiffness to get Kn+1 based on current fn+1
int with current ∆dIℓ

values and un +∆un+1

(l) Modify Kn+1 to account for supports
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(m) Initialize variables for Newton-Raphson iterations, k = 0, tol = 10−2 and

maxiter = 100

(n) Calculate the residual gn+1
(k) = fn+1

int(k) − fn+1

(o) Begin Newton-Raphson Iterations, while
∣

∣

∣
gn+1
(k)

∣

∣

∣
> tol and k <= maxiter

i. δd
(k)
I = −(Kn+1

(k) )−1gn+1
(k)

ii. ∆d
(k+1)
I = ∆d

(k)
I + δd

(k)
I

iii. Calculate displacements ∆un+1
(k+1) based on ∆d

(k+1)
I

iv. Calculate ∆d
(k+1)
Iℓ based on un +∆un+1

(k+1)

v. Calculate incremental nodal strains based on the latest ∆d
(k+1)
Iℓ

vi. Calculate current stresses σn+1
(k+1)

vii. Construct fn+1
int(k+1) for each node L and its neighbors based on current

stresses, σn+1
(k+1)

viii. Update global stiffness to get Kn+1
(k+1) based on current fn+1

int(k+1) with current

∆d
(k+1)
Iℓ values and un +∆un+1

(k+1)

ix. Modify Kn+1
(k+1) to account for supports

x. Calculate the residual gn+1
(k+1)

xi. Update iteration variable k = k + 1

xii. If k = maxiter and gn+1
(k) > tol, provide warning that equilibrium tolerance

not met

(p) End while loop of Newton-Raphson iterations

(q) Update strain εn+1 = εn +∆εn+1

(r) Update displacements un+1 = un +∆un+1

(s) Update stresses
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3. End loop over prescribed load increments

5.2.6 Numerical implementation details

In this chapter the numerical examples are created using the max-ent shape functions given

in Section 3.2. These shape functions are used in the weak form with nodal integration

in just the same way as that described previously for MLS shape functions in Section 4.2

(of course continuous blending is not necessary when using the max-ent shape functions).

Furthermore, the numerical implementation details follow closely those given in Section 4.4

with the following observations. The stiffness matrices as constructed in Section 4.4 are

for a first order small strain analysis in local coordinates. These stabilized local stiffness

matrices, as part of the co-rotational formulation described by Eq. (5.22) are transformed

to the global level, and along with the additional initial stiffness matrix, are assembled into

a global stiffness matrix as is commonly done in standard finite element methods.

In the first order analysis described in Section 4.4 it is possible to incrementally update

the internal force vector, construct a residual and iterate for equilibrium at the global level.

However, within the co-rotational framework it becomes essential instead to construct the

local internal force vectors nodewise at the local level from the current total stresses. This is

necessary because local internal forces are required to construct the initial stiffness matrices.

Therefore, consistent with the stabilization scheme described in Section 4.4.2 and as given

in Eq. (4.16), the local internal forces take the following form:

qLℓ = f int
ℓ =

∫

Ω
BTσdV + αs

n
∑

c∈Ta

[∫

Ω
(B−Bc)T Cs (B−Bc)dℓ dVc

]

. (5.60)

After construction of the initial stiffness matrices these local internal forces are transformed

to the global level according to the first part of Eq. (5.20) and assembled into a global
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internal force vector as part of the residual calculation process. The residual is then used

in the Newton-Raphson scheme to enforce global equilibrium as indicated in the algorithm

of Section 5.2.5. By use of the consistent internal forces an optimum rate of convergence is

maintained in the iterations for global equilibrium.

The creation of Cs for plastic materials remains the same as that described previously

in Section 4.4.2. However, for elastic materials Cs = Celast.

5.3 Numerical examples

Numerical results for plane stress are presented using an implicit Newton-Raphson iteration

scheme at the global level. At the constitutive level, for inelastic materials, J2 plasticity

with an implicit Newton-Raphson iteration scheme using radial return is employed [80].

5.3.1 Linear elastic cantilever beam

A linear elastic cantilever beam with ν = 0.0, E = 100.0 ksi and uniform thickness t =

2.0 inches is loaded with a uniform load along the vertical free end. Deflected shapes are

shown for a regular and irregular grid of nodes in Figures 5.2a and 5.2b, respectively. A

load displacement plot of a meshfree co-rotational cantilever beam is compared to a 1D

co-rotational beam finite element in Figure 5.2c. The software OpenSees [65] is used to

obtain the results for the 1D beam element. The 1D beam element model uses ten beam

elements. An analytical solution based on Euler-Bernoulli beam theory with consideration

of axial deformations is also shown in the load displacement plot. For both regular and

irregular grids, the agreement of the current method with the other solutions is excellent.

The final deflected shape of the cantilever corresponds to a load of 10 kips, and the plot

of stress (Figure 5.2d) with increasing displacement is shown for model node A indicated.



75

0 2 4 6 8 10
−8

−6

−4

−2

0

2

x (in.)

y 
(in

.)
A

with stabilization 
regular grid 

(a)

0 2 4 6 8 10
−8

−6

−4

−2

0

2

x (in.)

y 
(in

.)

irregular grid 
with stabilization 

(b)

0 2 4 6 8 10
0

2

4

6

8

10

δ (in.)

P
 (

ki
ps

)

OpenSees
Analytical
Max−ent − regular
Max−ent − irregular

(c)

0 2 4 6 8 10
0

5

10

15

20

25

30

δ (in.)

σ 
(k

si
)

Max−ent
OpenSees

bending stress node A 

(d)

0 2 4 6 8 10

−2

0

2

x (in.)

y 
(in

.)

without stabilization

(e)

0 10 20 30 40
0

10

20

30

40

50

60

Load step

N
um

be
r 

of
 it

er
at

io
ns

Initial Stiffness Included
Initial Stiffness Excluded

(f)

Figure 5.2: 2D co-rotational meshfree cantilever beam solution compared to 1D co-
rotational beam element: (a) final deflected shape (regular grid); (b) final deflected shape
(irregular grid); (c) load displacement plot; (d) bending stress; (e) spurious deflected shape
without stabilization; and (f) iterations per load step with and without the initial stiffness
matrix included.
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The loading takes the strains of the small strain formulation higher than is recommended

(25 percent bending strain at node A), however, the results illustrate robust and smooth

results and the effectiveness of the stabilization in suppressing hourglass modes. Figure 5.2e

illustrates the hourglass modes that result when no stabilization is used. In fact, without

stabilization, the analysis crashes and fails even to converge at loads of about 0.4 kips.

For the above stabilized solution a series of 100 load increments are applied with at most

two Newton-Raphson iterations per load step required to reach equilibrium for a residual

tolerance of 10−2. It is interesting to note that in the past some researchers applied co-

rotational formulations without including the variation of the transformation matrix which

leads to the initial stiffness matrix. Although for this cantilever beam problem comparable

results are obtained for lower load levels by excluding the initial stiffness matrix the number

of iterations required for equilibrium increases dramatically. Figure 5.2f illustrates the

number of iterations required without the initial stiffness matrix for the first 38 load steps

in an analysis identical to the one described above. The analysis was terminated after the

38th load step since iterations required began to exceed 100. This demonstrates the value

of a consistent formulation and the loss of the quadratic rate of convergence when the initial

stiffness matrix is excluded.

5.3.2 Linear elastic circular shallow arch

A pin supported linear elastic circular shallow arch is loaded with a concentrated force at

its central point as shown in Figure 5.3a. For the arch, ν = 0.0, E = 68.948 kN/mm2,

radius is 10581.6 mm, cross-section radial depth is 79.2 mm, and the width of the cross-

section is 25.4 mm. The span of the arch from pin to pin is 2540 mm. The arch is

modeled with 2761 meshfree nodes, which is similar to 2500 quadrilateral elements. In

Figure 5.3b, the load displacement response, exhibiting snap-through behavior, is compared
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Figure 5.3: Results for pin-supported linear elastic circular shallow arch. (a) initial arch
configuration; (b) load displacement plot; (c) max-ent model convergence.
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Figure 5.4: Results for cantilever with inelastic material behavior included. (a) deflected
shape (450 kN load); and (b) load displacement plot.

to results found by using 2500 quadrilateral membrane elements in LS-DYNA [38]. The

load displacement results are obtained by using a single node displacement control scheme

using 115 displacement increments (see Clarke et al. [23]). The agreement with LS-DYNA

is very good. Numerical results are also shown in Figure 5.3c illustrating the convergence

of the meshfree method with grid refinement. The analysis does not correctly capture the

snap through behavior when the initial stiffness matrix is excluded, which further illustrates

the importance of a variationally consistent co-rotational formulation.

5.3.3 Elasto-plastic cantilever

As mentioned previously, once a co-rotational formulation is constructed, it is relatively

easy to include traditional small strain inelastic material behavior. To demonstrate this,

in Figure 5.4a, a cantilever beam is loaded at its free end with a load of 450 kN, which

is well beyond first yield. A plastic hinge develops and large rotations of the cantilever

beam result. The maximum bending strain is 25 percent. The maximum-entropy model

has 1449 nodes. The cantilever is 2 mm thick, 8 mm in depth, and is 160 mm long.

A plane stress elasto-plastic material (J2 plasticity with radial return [80]) is used with
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E = 140930 kN/mm2, ν = 0.3, a linear hardening modulus of 284 kN/mm2, and a yield

stress of 1550 kN/mm2. Finite element results, obtained by using the finite element large

strain hyperelasto-plastic program (FLagShyP) by Bonet and Wood [19], are included for

comparison. For the FLagShyP model the same material properties are used, along with

1280 hexahedral elements. Although the FLagShyP model is for a hyperelasto-plastic ma-

terial, for relatively small strains this is comparable to the elasto-plastic material used in

the maximum-entropy model. It is evident from the load displacement plot of Figure 5.4b

that the finite element and maximum-entropy results are in very good agreement. The

analysis is completed by using a displacement control scheme of 42 increments at the free

end of the cantilever.

5.3.4 Elastic and elasto-plastic T -frame

A T -frame is loaded with a point load as shown in Figure 5.5a. Figure 5.5b shows the

vertical displacement of node A versus load for elastic and elasto-plastic (J2 plasticity)

materials. The deflected shapes, for the load levels labeled in Figure 5.5b, are illustrated in

Figures 5.5c–5.5e. The maximum bending strain is 10 percent and 21 percent for the elastic

and elasto-plastic cases, respectively. The results are intended to demonstrate the ability of

the co-rotational formulation to capture large displacements and rotations for elastic and

elasto-plastic cases. The material properties are as follows: E = 29000 ksi, ν = 0.3, linear

hardening modulus H̄ = 100 ksi and yield stress fy = 550 ksi. The beams and columns

of the frame are 4 inch in depth and 1 inch thick. For the elastic case an artificially high

yield stress is used so that yielding is avoided during the entire simulation. The analysis is

completed using 70 equal (0.3 inch) steps of displacement control at node A.
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Figure 5.5: Results for T -frame. (a) initial configuration; (b) load versus displacement for
elastic and elasto-plastic cases; and (c),(d),(e) deflected shapes at load levels indicated in
(b).
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5.4 Concluding remarks

Maximum-entropy basis functions were successfully employed in a meshfree co-rotational

formulation for two-dimensional continua. A variationally consistent formulation was found

not only to dramatically improve rate of convergence but essential to solving certain prob-

lems. Nodal integration and stabilization was applied within the formulation to represen-

tative problems for validation. Benchmark problems such as the cantilever beam, shal-

low arch, and a T -frame were considered with elastic and elasto-plastic material behavior,

and the numerical results with the present co-rotational formulation were found to be in

good agreement with finite element computations. Notably, the use of stabilization when

performing nodal integration prevented the presence of spurious modes in the deflected

shape. The numerical results evince that maximum-entropy basis functions combined with

a co-rotational formulation is an effective technique for including large displacements and

rotations. This work provides impetus for future research-work on the extensions to fi-

nite strains and three-dimensional computations to further the effort to improve large-scale

collapse simulations.
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Chapter 6

Applications and Validation

Examples

In previous chapters examples are intended to demonstrate that the implementation of the

meshfree analysis is functioning properly. As is shown a variety of benchmark problems

are successfully solved. Specifically, linear elastic, inelastic and geometrically nonlinear

problems are presented. In the current chapter it is the intent to present problems of a

more practical nature specifically focused on everyday problems of structural engineering in

building design. Hence, a variety of frame structures and building structure subassemblies

are analyzed using the meshfree analysis program developed as part of this research. In

particular, problems including cyclic loading, catenary action and stiffness softening are all

demonstrated and compared to either experimental or FE results. Each of these conditions

are potentially necessary for an accurate collapse analysis. It is intended by these examples

to demonstrate that the analysis program created as part of this research successfully

accomplishes the goals set out initially to advance collapse technology.
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6.1 Portal frames under monotonic and cyclic loading con-

ditions

A portal frame under different loading conditions is analyzed using the meshfree analysis

program and results are compared to experimental results for the frame as given by Toma

and Chen [88]. This frame is reported in the literature specifically to allow researchers

to compare second-order analyses to the experimental results. Loading results are given

for both monotonic and cyclic loading conditions. In each of these loading conditions

the frames are tested with and without constant axial forces applied at the top of the

columns. Hence, the cases without the constant axial forces are analyzed by a first-order

meshfree analysis (max-ent shape functions) with inelasticity included. For the cases with

the constant axial forces a second-order (co-rotational) meshfree analysis (max-ent shape

functions) with inelasticity is used to capture the stiffness softening behavior. In all cases

displacement control is used to obtain the results. The test configuration for the frames is

shown in Figure 6.1. The reported material and wide flange beam section properties for

the experimental frames are given in Tables 6.1 and 6.3 respectively. The actual properties

used in each of the computer simulations are reported in Tables 6.2 and 6.4. In all cases

the modulus of elasticity is 29000 ksi and Poisson’s ratio is 0.3. Exponential hardening as

proposed by Voce [93] is used for all four frames (see Appendix E for the expression for

exponential hardening). In each case the frames are discretized by 946 nodes.

6.1.1 Monotonic loading

Results for monotonic loading with no axial loads are shown in Figure 6.2a and 6.2b. It

is evident that the experimental results are less stiff and have an earlier yield load than is

predicted by the computer simulation. Toma and Chen explain that the frame specimen
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Figure 6.1: Test set up and loading arrangement for frame by Toma and Chen [88].

Column Beam

Frame Loading σy (ksi) σu (ksi) σy (ksi) σu (ksi)

Monotonic (P = 0) 38 62.4 38 59.6

Monotonic (P = 153 kips) 39.2 62.6 40.6 61.3

Cyclic (P = 0) 37.8 60.35 40.3 58.9

Cyclic (P = 153 kips) 38.1 60.8 36.1 55.7

Table 6.1: Reported material properties for experimental frame by Toma and Chen [88].

Columns and Beams

Frame Loading σy (ksi) σu (ksi) Exponential Hardening Variable δ

Monotonic (P = 0) 38.0 61.0 16.3

Monotonic (P = 153 kips) 38.0 59.6 16.3

Cyclic (P = 0) 38.0 59.6 16.3

Cyclic (P = 153 kips) 37.0 59.6 16.3

Table 6.2: Material properties used in computer simulation.

Columns Beams

Frame Loading d (in.) Ixx (in.4) tw (in.) d (in.) Ixx (in.4) tw (in.)

Monotonic (P = 0) 6.89 65.8 0.295 9.84 97.3 0.236

Monotonic (P = 153 kips) 6.89 68.2 0.295 9.84 97.3 0.236

Cyclic (P = 0) 6.89 69.2 0.295 9.84 98.0 0.236

Cyclic (P = 153 kips) 6.89 68.2 0.295 9.84 97.8 0.236

Table 6.3: Reported beam and column section properties for experimental frame by Toma
and Chen [88].
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Columns Beams

Frame Loading d (in.) Ixx (in.4) tw (in.) d (in.) Ixx (in.4) tw (in.)

Monotonic (P = 0) 6.89 65.8 0.295 9.84 97.3 0.236

Monotonic (P = 153 kips) 6.89 68.2 0.295 9.84 97.3 0.236
Cyclic (P = 0)
Cyclic (P = 153 kips)

Table 6.4: Beam and column section properties used in computer simulation.

imperfections caused additional bending moments which explains the early yielding and

reduced initial stiffness. No information regarding the magnitude of the imperfections is

given and hence the computer simulation is for straight members. The authors also indicate

that base fixity in the actual frames was not perfect. No effort is made to compensate for

the frame imperfections in the computer results. Also, due to the frame imperfections

it is deemed unnecessarily precise to model the slight differences in material properties

between beams and columns. Hence, the material properties as indicated in Table 6.2 are

employed. However, in general, the computer simulation follows the overall behavior of the

experimental results. Plastic hinges form at the base of the columns and at beam column

joints as shown in the deflected shape of the frame, where the deflections shown are for the

case of loading at the end of the monotonic load simulation.

For the monotonic loading with axial loads of 153 kips per column a post peak stiffness

softening occurs as lateral load is increased. This is evident in Figure 6.2c. Such behavior

is only captured by including second order effects in the computer simulation (i.e. by

co-rotational formulation) and by using a displacement control scheme in the incremental

iterative analysis. Again, for this case the experimental frame is less stiff, has imperfect

base fixity and has a lower yield value, than the computer simulation, due to imperfections

in the actual experimental frame. However, the basic behavior of the frame and the stiffness

softening is evident in the computer results. Plastic hinges result at locations in the frame
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Figure 6.2: Monotonic loading of portal frame: (a) load versus displacement response
(P = 0); (b) deflected shape at end of loading (P = 0); (c) load versus displacement
(P = 153 kips); (d) deflected shape at end of loading (P = 153 kips).

similar to the case for monotonic loading with no axial loads. The deflected shape is shown

in Figure 6.2d for the final load condition when the simulation is terminated.

6.1.2 Cyclic loading

Cyclic loading behavior for frames is of interest because it is similar to loading which takes

place during seismic events. The resulting load displacement plot for cyclic loading results

in a hysteresis loop consisting of alternating elasto-plastic loading and elastic unloading

portions of the curve. To correctly capture unloading it is essential to have an implicit

nonlinear analysis procedure at both the global and constitutive levels. As mentioned
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previously this consists of implicit Newton-Raphson iterations at the global level and an

implicit Newton-Raphson iteration procedure with radial return to achieve J2 plastic con-

sistency at the constitutive level. The following examples demonstrate that the computer

simulation correctly reproduces the general loading unloading behavior.

Cyclic loading is applied with no constant axial loads. The resulting hysteresis loop for

both the experimental and simulated results are shown in Figure 6.3a. Unloading along

the elastic curve is demonstrated at the end of every elasto-plastic loading cycle. Isotropic

exponential hardening is used to obtain the results for the computer simulation. Frame

imperfections, imperfect base fixity and the resulting decreased initial yield account for

most of the differences between the experimental and simulated results. However, the

computer simulation is in good agreement with the overall behavior of the experimental

frame test.

For the case of cyclic loading with constant axial loads of 153 kips per column the

results are shown in Figure 6.3b. The most notable difference is the post peak softening

that becomes evident with load cycles of sufficient lateral displacement. This behavior

is captured by the computer simulation which includes second order effects by use of the

co-rotational formulation. The primary cause of the stiffness softening is the external

column axial forces which are applied at the beginning of the simulation and held constant

throughout the cyclic loading. Again, frame imperfections as in previous cases cause most

of the deviation between the experimental and simulated results.

6.1.3 Summary of results

For the monotonic and cyclic loaded frames of this section it is found that two of the most

important factors are yield stress and frame panel zone modeling. When comparing to

experimental results an accurate value of the true yield stress is essential. However, as
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Figure 6.3: Cyclic loading of portal frame: (a) load versus displacement response (P = 0);
(b) load versus displacement (P = 153 kips).

observed above this importance is adversely affected when specimen imperfections strongly

influence the initial yield values. The panel zones are potentially very influential in the

load displacement response of frames. Obviously the rotation behavior at the joints has a

system wide effect and can dramatically influence first yield and even second order effects.

In the frames tested above the experimental frames included X-shaped stiffeners in the

frame panel zone. Hence in the computer simulation the effect of the stiffeners is included

by using increased thickness along the diagonal nodes of the panel zone. Such modeling

tends to force yielding and distortion away from the panel zone and into the beam and

column sections just outside the panel joint.

6.2 Development of catenary action in building frame sub-

assembly

For a variety of reasons a building column may cease to function properly. This could be

due to blast damage, overloading of the column, fire damage or damage and instability

due to earthquake loadings. Loss of column function likely results in a roof or upper
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floor(s) collapse. However, it is possible due to the column removal that loads transfer to

adjacent columns and structural elements. Under these conditions instead of collapse the

floor or roof system beams sag into the shape of a catenary and, if the structural system is

adequate, the collapse does not progress further. This is of course preferable and therefore

the formation of catenary behavior during partial collapse is of interest. It is useful to

know what forces result when a column is removed and catenary behavior tries to develop.

If such forces are determined ahead of time by a computer analysis it is then possible to

design the structural system adequately and possibly prevent progressive collapse. In this

section such a scenario is considered and several subassemblies of a building structure are

modeled and the computer analysis attempts to capture catenary behavior.

Khandelwal and El-Tawil [46] present computer simulations for beam-column assem-

blies extracted from an eight story special moment resisting perimeter frame system (see

Figure 6.4a). In particular, simulations are run for assemblies from the first, fifth and sev-

enth stories. The simulations are intended to model the behavior of a typical subassembly

when a column is removed from the building frame system as shown in Figure 6.4b. The

computer simulations by Khandelwal and El-Tawil are quite advanced. Dynamic effects are

accounted for by constructing the model within LS-DYNA and using the explicit dynamic

solver. The Gurson material model is used for the finite elements near the beam-column

joints to account for fracture and three dimensional shell type elements are used to account

for flange and lateral torsional buckling effects. For regions away from the joints the simpler

J2 plasticity model is used. The left half of a subassembly is illustrated in Figure 6.4c. The

column lengths at the left are from the beam centerline to the mid-height column inflection

points. At the right the middle column is cut off at the top and bottom of the beam flange

as shown.

Meshfree co-rotational computer simulations for the beam-column subassembly are pre-
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Figure 6.4: Eight story special moment resisting frame system: (a) interior beam and
column sizes and typical frame dimensions; (b) resulting catenary action when bottom
column removed; (c) left half of a typical beam-column subassembly.
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Figure 6.5: Building structure beam-column subassemblies, formation of catenary behavior:
(a)(c)(e) load versus displacement response, stories 1,5,7 respectively; (b)(d)(f) deflected
shape at end of loading, stories 1,5,7 respectively.
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sented to compare with the results by Khandelwal and El-Tawil. Due to the symmetry

of a total beam-column assembly only half of the beam-column assembly is modeled as

shown in Figure 6.4c. The top and bottom of the columns at the left are pin supported

and the column stub at the right is fully supported along the column web centerline with

rollers at all of the meshfree nodes. Khandelwal and El-Tawil ran simulations for girders

with reduced beam sections and non-reduced beam sections. The results obtained using

the meshfree co-rotational simulation are compared to the results with non-reduced beam

sections at stories 1, 5 and 7. Load displacement results are obtained by vertical displace-

ment control at the middle column centerline of the beam-column subassembly. The load

displacement results and final deflected shapes are shown in Figure 6.5.

The meshfree simulations do not consider dynamic effects, fracture, flange buckling

or lateral torsional buckling effects. By only considering the non-reduced beam sections

the lateral torsional buckling effects are avoided. However, the remaining effects cause a

noticeable deviation between the meshfree and finite element results. Although this is the

case, the general behavior of the meshfree simulations is similar to the more advanced finite

element simulations. In fact, tension stiffening is most evident at story 7 where the load

displacement curve starts to curve upwards near the end of the simulation indicating the

onset of catenary behavior. To account for the dynamic and buckling effects included in the

advanced FE computer simulation the beam yield and ultimate stresses are adjusted for the

first (17% reduction) and fifth (9% reduction) story cases in the meshfree simulation. The

effect of making these reductions for the beam is shown in the load displacement curves of

Figures 6.5a and 6.5c.

For the first story the half beam-column assembly is discretized with 1822 nodes and

a finer discretization of 1967 nodes (more nodes across column depth). The difference in

discretization causes only minor changes in the load versus displacement plot. For the



93

0 20 40 60 80 100
0

100

200

300

400

500

δ (in.)

P
 (

ki
ps

)

Max−ent
FEincrement 5 

increment 12 

increment 43 

increment 63 
Story 7− Subassembly 

(a)

0 100 200 300

0

50

100

150

+σ
xx

+σ
yy

−40

−30

−20

−10

0

10

20

30

40

(b)

0 100 200 300

0

50

100

150

+σ
xx

+σ
yy

−60

−40

−20

0

20

40

60

(c)

0 100 200 300

0

50

100

150

+σ
xx

+σ
yy

−60

−40

−20

0

20

40

60

(d)

0 100 200 300

0

50

100

150

+σ
xx

+σ
yy

−60

−40

−20

0

20

40

60

80

(e)

Figure 6.6: Story 7 development of catenary behavior in meshfree simulation: (a) load
displacement plot with additional displacement increments demonstrating the development
of tension stiffening; (b)(c)(d)(e) σxx (ksi) at end of displacement increments 5, 12, 43 and
63 respectively.
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Story Beam Column Below Column Above

1 W30x124 W14x342 W14x257

5 W27x102 W14x211 W14x176

7 W21x83 W14x132 W14x99

Table 6.5: Story subassembly beam and column list.

fifth and seventh story results a discretization of 1766 nodes is used. Flanges for beams

and columns are modeled using the procedure similar to that described in Appendix D.

Stiffeners across column webs are modeled to provide the same area as the adjacent beam

flanges. Table 6.5 contains a summary of the AISC [70] beams and columns modeled at

stories 1, 5 and 7.

For the seventh story the meshfree simulation is repeated with more displacement in-

crements included at the end of the previous simulation. This is done to demonstrate the

ability of the meshfree analysis program to definitively capture catenary behavior. A new

load displacement plot for this simulation is given in Figure 6.6a, where tension stiffening

is prominently illustrated at the end of the curve. In the plot, displacement increments 5,

12, 43 and 63 are identified. At the end of these increments the current state of stress is

recorded to allow observation of the evolution of the σxx stresses in the beam. The stress

plots for these cases are given in Figures 6.6bcde. By following the evolution of stresses

in the beam it is apparent that linear elastic stresses develop, next plastic hinges form at

each end of the beam, next tension stiffening starts to shift the neutral axis at the beam

ends toward the compression flange, and finally the tension stiffening shifts the neutral axis

very close to the compression flange. This behavior is symptomatic of sagging elements

developing the tension of catenary behavior.

For completeness, at the end of displacement increment 43 the remaining stresses σyy

and σxy are given in Figure 6.7. The σyy stresses of Figure 6.7a show the development of



95

0 100 200 300
−100

−50

0

50

100

150

200

250

+σ
xx

+σ
yy

−60

−40

−20

0

20

40

60

(a)

0 100 200 300
−100

−50

0

50

100

150

200

250

+σ
xx

+σ
yy

−30

−20

−10

0

10

20

30

(b)

Figure 6.7: Story 7 remaining stresses at end of increment 43: (a) σyy (ksi); and (b) σxy
(ksi).
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a plastic hinge at the base of the column just above the beam. The development of this

plastic hinge is consistent with the findings of Khandelwal and El-Tawil.

6.2.1 Summary of results

The meshfree co-rotational formulation definitely captures tension stiffening. The stress

plots also illustrate the shifting of the neutral axis in the plastic hinge regions, which

indicates development of the tensile forces of catenary behavior. Although the finite element

results are more advanced the general trends in the load displacement plots are captured

by the meshfree method.

6.3 ‘El Zanaty’ portal frame with stiffness softening

El Zanaty et al. [33] first analyzed the frame shown in Figure 6.8 as a test case for second

order analysis simulations. As a result this frame is now a common benchmark problem. As

indicated in the paper by Toma et al. [89], White [96] analyzed the El Zanaty frame using

a second order inelastic analysis (plastic-zone theory) and the stress-strain response shown

in Figure 6.9. Furthermore, White included initial residual stresses in the frame analysis

by subdividing the cross-section of the beam (essentially using fiber elements). Each beam

and column of the frame was modeled by 12 bar type finite elements. The frame was loaded

by constant axial forces of P = 0.6Py per column. Then a monotonically increasing lateral

load H was applied at the centerline of the frame beam. The results of the finite element

analysis are summarized by Toma et al. [89]. These results are compared to a similar

analysis using the meshfree co-rotational formulation.

For the meshfree co-rotational analysis the domain of the frame is discretized with 2853

nodes. The meshfree analysis uses plane stress with J2 plasticity. The stress-strain response
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Figure 6.10: El Zanaty portal frame: (a) load versus displacement response; (b) final
deflected shape.

used for hardening is the same as given in Figure 6.9. The meshfree analysis however does

not include consideration of initial residual stresses that exist in the beams and columns

due to fabrication. The load displacement results are shown in Figure 6.10a and the final

deflected shape is shown in Figure 6.10b.

The meshfree co-rotational load versus displacement results are in general agreement

with the results obtained by White. The analysis definitely captures the stiffness softening

behavior due to the large axial forces relative to the yield capacity of the columns. It

is likely that the deviation is due to using a continuum rather than 1D beam elements,

excluding the effect of residual forces and the inevitable differences in behavior of the beam

column joints by using 1D elements versus a continuum.
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Chapter 7

Conclusions

The feasibility of using meshfree methods for simulations involving large scale structural

systems subject to large displacements and large rotations is evident from the results pro-

vided. This work also provides additional research directions in structural collapse simu-

lation, particularly in the area of meshfree co-rotational formulations. In the following a

review of the work presented along with discussions of findings and suggestions for future

research is given.

7.1 Use of meshfree basis functions

Meshfree methods are given as a possible alternative to current collapse simulation tech-

niques. The methodology is successfully employed with meshfree MLS and maximum-

entropy basis functions for problems of plane stress. However, although MLS basis functions

are successfully implemented it is found that the bookkeeping required in the computer im-

plementation is cumbersome due to difficulties of enforcing essential boundary conditions,

which, in this work, is accomplished by the method of continuous blending. It was ini-

tially thought that this blending method using meshfree with finite elements would lend
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some computational advantages by allowing the use of meshfree only where necessary and

finite elements elsewhere due to their better computational efficiency. However, with the

introduction of maximum-entropy basis functions two benefits are realized. First, the cum-

bersome method of continuous blending is no longer necessary for enforcement of essential

boundary conditions since maximum-entropy basis functions have a weak Kronecker-delta

property on their boundary. Second, because of this the maximum-entropy basis functions

in theory are amenable for combination with finite elements. For this reason maximum-

entropy basis functions are shown to be very effective, easy to implement and fairly robust

for constructing a meshfree formulation.

7.2 I -shaped beam frame structures

The meshfree method using MLS shape functions for plane stress is applied to problems

of frame like structures. These problems only consider small strains, displacements and

rotations while using the nonlinear material model of J2 plasticity. Several representative

problems are successfully solved. In particular, the problems are for structures composed of

beams with I-shaped cross-sections. This necessitates the specification of larger thickness

in flange regions of the plane stress domain. A successful methodology for doing this is

demonstrated by the beam and frame problems shown. It is also worth mentioning that

the formulation is achieved by the use of nodal integration with stabilization. These results

paved the way for the following step.

7.3 Meshfree co-rotational formulation

A meshfree method within a co-rotational formulation is formulated for the case of plane

stress with allowance for the material model of J2 plasticity. Inclusion of the co-rotational
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formulation allows the additional benefits of large displacements and rotations, however,

keeping the restriction of small strains. The co-rotational formulation successfully solves

a set of large displacement and rotation type benchmark problems including snap through

and inelasticity. By using a variationally consistent formulation it is demonstrated that

an optimum rate of convergence is maintained within the context of nodal integration and

stabilization. This extension of the work is successfully accomplished using the more easily

implemented maximum-entropy basis functions. This implementation is truly independent

of a mesh, since no blending with finite elements is necessary as is the case with MLS shape

functions, there is no dependence on a mesh data structure and integration is accomplished

without Gaussian quadrature over a background mesh. This implementation allows the

solution of problems more directly related to collapse.

7.4 Applications and validation

The developed methodology is applied to model representative real life structural behavior

for purposes of further validation. First, the meshfree co-rotational formulation with J2

plasticity material behavior is applied to steel wide flange portal frames. The frames are

laterally loaded monotonically and cyclically. For each case of loading the frames are

modeled with and without constant axial forces applied to the columns. The results are

compared to experimental results available in the literature. The numerical simulations

indicate that the co-rotational formulation successfully captures stiffness softening for the

cases that include the application of constant axial forces. Second, the formulation is applied

to beam-column subassemblies extracted from the frame system of a multi-story structure.

These subassemblies are tested to simulate the removal of a supporting frame column. As a

result the beam column assembly sags due to the applied loads and develops tensile forces
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associated with catenary behavior. The model results are compared to high fidelity finite

element simulations provided in the literature. It is evident from the numerical results

that the meshfree co-rotational formulation correctly captures the development of catenary

behavior and tension stiffening. Last, the so-called ‘El Zanaty’ portal frame, a common

benchmark used in the evaluation of second order analysis simulations, is analyzed by the

current research formulation and compared to published results. Although the published

results are created using 1D beam elements the numerical results are in good agreement,

and once again the method’s ability to capture stiffness softening caused by including large

constant axial forces during the frame’s lateral analysis is demonstrated.

7.5 Observations regarding 1D beam elements versus plane

stress continuum

A variety of observations were made during the process of modeling I-shaped beam elements

in a plane stress continuum and subsequently comparing the results to 1D beam elements.

There are two approaches to modeling frame joints with 1D beam elements. One can

use rigid joints for the panel zone or somehow try to model the joint behavior with some

form of nonlinear material behavior. Regardless of the approach taken it is difficult to

achieve the same results with the 1D beam elements and the frame modeled as a plane

stress continuum. This should not pose a problem, because in actuality one should not

expect the two modeling techniques to match because they are not of the same order of

complexity. Furthermore, the biggest single difference in the models is the modeling of the

joints. Results can vary widely for the plane stress results depending on how the panel

zone of a beam-column joint is modeled. For example, thicknesses specified in the panel

zone area or across column webs to simulate stiffeners can make a significant difference in
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behavior for both elastic and inelastic panel zones. This should not be a surprise since

frame deflections are significantly affected by joint rotations. It is for these reasons that

great care is required when modeling frames for comparison to other computer simulations

or experimental results.

7.6 Future research directions

The current research establishes the feasibility of the method. It now remains to extend

the capabilities of the present research. Specifically, the meshfree co-rotational formulation

is extendable to three dimensions, interfacing with finite elements, finite strains, dynamics,

including impact, arc length control, the case of reinforced concrete and fracture. Further-

more, as indicated in the literature review an advance version of this formulation may also

one day be used as a calibration tool for simpler macromodels. Comments on several of

these possible research directions are given next.

Interfacing with (co-rotational) finite elements on the meshfree boundary poses no obsta-

cles and is in fact easier with max-ent basis functions than it is with MLS basis functions

and the method of continuous blending. It is possible, for example, to directly connect

quadrilateral continuum elements to the meshfree boundary and include their contribution

to the global stiffness matrix in the standard way. Referring to Figure 7.1, it is worthwhile

to research the benefit of using meshfree domains only where necessary and using 1D beam

(or continuum) elements elsewhere. This of course is possible within a co-rotational frame

work. In the example of the figure a portal frame is considered. The meshfree domain has

nodes with translation degrees of freedom. The question that arises is how to connect a

standard beam element to the meshfree domain. A possible technique is to attach an ‘in-

terface’ beam as shown in the figure. This interface beam is actually a series of small beam



104

meshfree region

1D beam element

interface beam

Figure 7.1: Possible scheme for interfacing a mesfree continuum to 1D beam elements.

elements connecting each node across the beam section. Each node of the interface beam

has translational degrees of freedom which correspond to the meshfree nodes’ translational

degrees of freedom. However, the interface beam rotation degrees of freedom are free. This

interface beam is constructed with very large flexural stiffness but at the same time has

an axial stiffness such that it does not inappropriately restrain the meshfree cross-section.

The 1D beam element and the interface beam are then connected by both translation and

rotation degrees of freedom. Thus the 1D beam element axial, shear and moment are all

transferred to the continuum region through the interface beam. It seems as though this

scheme is easily implementable and it is just an issue of assembling the local stiffness matrix

degrees of freedom at the correct locations in the global stiffness matrix.

It is uncertain exactly how, for example, 1D beam elements are connected to nodes on

the interior of the meshfree domain. Perhaps some form of penalty method or method of

Lagrange multipliers is a possible direction of research to accomplish this task. In fact, one

example, of connecting (quadrilateral) finite elements used as rebar in a meshfree concrete
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continuum using a Lagrange multiplier method, is given by Rabczuk and Belytschko [73].

The case of a concrete continuum with co-rotational beam elements acting as rebar is also

an interesting case to consider. It is foreseeable that an advanced research code can be

constructed so that the meshfree concrete continuum could fracture and separate exposing

rebar modeled with 1D co-rotational beam elements with the capability of capturing buck-

ling. Before such a case is considered perhaps a simpler intermediate case as explained next

is possible.

The research completed in this dissertation is now possible to extend to the case of

multiple material regions. In fact, for several of the examples in the validation chapter

yield and ultimate stress values differed between the beams and columns. It is a fairly

simple matter to allow for different materials such as concrete and steel. It is interesting

to consider the case of reinforced concrete for example. This is possible to do using the

already existing J2 plasticity model for a line of meshfree nodes in the continuum with

correctly specified thickness to mimic the steel rebar. For nodes designated as concrete a

simple first approach is to have a separate concrete material model based on a modified J2

plasticity. The modified J2 plasticity model is constructed as follows. The principle back

stress variables β̃ are initially set so that the center of stress space is shifted toward the

compression stress region. This is equivalent to giving a one-time initial Bauschinger effect

to the yield surface. By proper adjustment of the back stress variable an approximate

perfectly plastic concrete yield surface could be set to have an appropriate compressive

strength and a low tensile capacity. In Figure 7.2, for the case of plane stress, an example

concrete yield surface based on this idea is shown in principle space.

In future work it is worthwhile to implement the various research directions within an

object oriented programming framework. A major aspect of implementation is the issue

of bookkeeping, which is a daunting task. Object oriented programming is uniquely con-
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Figure 7.2: Scheme for approximate concrete yield surface in principle stress space (ksi),
by using modified J2 plasticity model.

structed to assist with these types of problems and also allows for easier future modifications

and additions to the research code. The only limitation to this is that researchers need to

invest a certain amount of time becoming well-versed in the methods of object oriented

programming.

7.7 Summary of most noteworthy results

In conclusion, some of the most noteworthy results and observations are given. First, at

the present time it appears that maximum-entropy basis functions allow for the easiest

meshfree implementation once robust basis function generation routines are constructed.

Unless better and more computationally efficient basis functions are discovered, these are

the basis functions recommended. Second, mesh distortion limitations are removed by

nodally integrating the weak form. Third, all forms of nodal integration currently available
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require some form of stabilization to avoid hourglass modes, shear locking, or spurious low

energy modes in an eigen analysis. The stabilization recently given in the literature by Puso

et al. [72] and implemented as part of this dissertation has proven to be very effective.

Fourth, a meshfree co-rotational formulation using nodal integration and stabilization is

implemented and applied to a variety of benchmark problems. Within a co-rotational

formulation the inclusion of inelastic material behavior has proven to be straightforward.

Furthermore, it is demonstrated that a variationally consistent co-rotational formulation is

essential to obtaining an optimum rate of convergence during Newton-Raphson iterations

for global equilibrium. Fifth, the implemented method successfully solves problems of

practical importance as shown in the chapter of applied validation problems. Specifically,

the behavior of snap through, stiffness softening and tension stiffening is captured within

a co-rotational framework. Last, the feasibility and success of the meshfree co-rotational

formulation provides many possible research directions for the advancement of collapse

simulation.
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Appendix A

Moving Least Squares Terminology

and Alternative Derivation

A.1 Some relevant terminology.

Some background terminology is helpful to understand the following sections. The termi-

nology here is consistent with terminology often used in the literature.

m – The order of the polynomial base.

Polynomial base – A column vector, p, of a complete polynomial of order m. For

example, for a 1D linear (order m=1) polynomial base pT = [1 x], for a 1D quadratic (order

m=2) polynomial base pT = [1 x x2], and similarly for higher order polynomials. In each

case these examples give a complete polynomial base since no terms of the polynomial, from

order 0 to m, are missing. For a 2D polynomial (order m=1) linear base pT = [1 x y], for

quadratic (order m=2) pT = [1 x y x2 xy y2].

k – The number of terms in the polynomial base. When programming the moving

least squares shape functions it is useful to know how many terms are in the mth order
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polynomial base vector. The following table gives the relationship between m and k for 1,

2 or 3 dimensions.

Dimensions k

1D m+ 1

2D (m+ 1)(m+ 2)/2

3D (m+ 1)(m+ 2)(m+ 3)/6

Table A.1: Relationship between m and k based on the number of dimensions.

φa – A shape (or basis) function associated with a particular point a in the domain of

the problem.

x – A point at which a shape function is evaluated. It is just a number in 1D, and a

vector in 2D or 3D.

n – The number of points that have nonzero weight function values at evaluation point x.

These points are a subset of the points used to discretize the entire domain. The points

used to discretize the entire domain are the alternative to covering the domain with finite

elements.

xa – A particular point a has its own vector of coordinates xa each of which are asso-

ciated with shape function φa. The collection of points xa, there are n of them, are used

to construct the MLS shape functions.

Kronecker-delta property – If the shape functions have the Kronecker-delta prop-

erty then φa(xb) = δab. In FEM the shape functions have the Kronecker-delta property.

However, MLS shape functions generally do not have the Kronecker-delta property. This is

the reason that imposition of essential boundary conditions has been difficult in meshfree

methods.

Compact Support – In FEM the shape functions are said to have compact support.

For instance they have the Kronecker-delta property. So their support is limited to a small
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region around a particular node. MLS shape functions can have compact support also.

Generally, even though the Kronecker-delta property is absent for MLS shape functions,

the support of each MLS shape function is kept compact. This is done by the use of a

support radius, ρa, for each node a, and the weight function.

Support Radius - Each shape function has a support or zone of influence. Usually

this is a circular region in 2D or a sphere in 3D centered on the point associated with the

shape function. The radius of this zone of influence is called the support radius, ρ. The

radius is usually taken to be the distance to the 2nd nearest neighboring point in 1D and

the 3rd or 4th nearest neighboring point in 2D, times a user input parameter, α.

Zone of influence – The domain within which a given shape function is nonzero.

Weight Function – Generally, weight functions are chosen to be the same for all

nodes. However, this is not required. A variety of weight functions are available. Each

weight function a is constructed so that it equals 1 at the point a and is zero at a distance

equal to the support radius away from the point. The 4th order quartic spline weight

function is effective and easy to use. With q = ‖x− xa‖/ρa the 4th order quartic spline is

defined as follows:

w(q) ∈ C2 =











1− 6q2 + 8q3 − 3q4 q ≤ 1

0 q > 1

(A.1)

Bubnov-Galerkin Method– The common method of using the same shape functions

for both the trial functions and the test functions in the weak form of a BVP.

Element Free Galerkin – The meshfree method which makes use of MLS shape

functions and solves the system of governing pde’s by a Galerkin method (usually the

Bubnov-Galerkin Method).

Weighted Least Squares – Each squared term in a traditional least squares summa-

tion is multiplied by its own weight function. Hence the influence of each squared term is
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affected or limited by its associated weight. For instance, a weighted least squares func-

tional (which is explained in more detail later in this appendix) differs from a traditional

least squares functional only by the addition of the wa term in the summation as follows:

J(g) =
1

2

n
∑

a=1

wa

{

pT (xa)g − ua
}2

(A.2)

Moving Least Squares (MLS) – For a particular fixed point x each wa is calculated

for the weighted least squares functional. The functional J is then minimized with respect

to each gi (i ranges from 1 to k) and solved for the gi values (contained in g). These

gi values are then dependent on the fixed point used to evaluate the wa’s. Later, it is

shown how this minimization procedure is used to determine the value of the MLS shape

functions at a particular fixed point x. Hence every time there is a move to a new point the

minimization procedure is repeated. This is why this is a moving least squares procedure,

because it is dependent on the current evaluation point x.

Moment Matrix – In the literature this is often denoted as the A matrix. This matrix

is defined during the derivation of the MLS shape functions given below.

Interpolation property – In FEM the approximation is of the form uh = Σφa(xb)ua,

so that when b is equal to a, uh = ub due to the Kronecker-delta property. This is the

interpolating property of FEM shape functions. However, MLS shape functions generally

do not have the Kronecker-delta property and hence are not interpolating. Hence more

than one shape function may be nonzero at each node. Another way of saying this is that

the values ua are not nodal values like they are in FEM, hence they are sometimes called

nodal coefficients instead.

Partition of unity – If the MLS shape functions are constructed correctly then the

shape functions evaluated at any given point x sum to 1. This is a good way to numerically



119

check if the shape functions are constructed correctly. If shape functions are constructed

correctly this criteria is satisfied to machine precision. The partition of unity property is

stated mathematically as follows:
n
∑

a=1

φa(x) = 1 (A.3)

Partition of nullity – If the derivative of the MLS shape functions are constructed

correctly then the shape function derivatives evaluated at any given point x sum to 0.

This is a good way to numerically check if the derivatives are constructed correctly. If the

derivatives are constructed correctly this criteria is satisfied very close to machine precision:

n
∑

a=1

∇φa(x) = 0 (A.4)

Consistency – The highest polynomial order which is represented exactly. For example,

MLS shape functions constructed with a linear polynomial base have 1st order consistency.

That is, if a differential equation has a linear solution then the MLS shape functions can

represent the solution exactly. Another example, consider an mth order polynomial base

p(x) and n points at which MLS shape functions are constructed. So to each point xa

(a vector in 2 and 3 dimensions) there is a corresponding shape function φa. Then, with

mth order consistency, the following is true:

n
∑

i=a

φa(x)p(xa) = p(x), ∀x ∈ Ω (A.5)

A.2 Moving least squares (MLS) shape functions derivation

The derivation given is for 1D problems (hence the x variable is non bold in the following,

the derivation is easily extended to 2 or 3 dimensions merely by making x bold as necessary
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to reflect its vector character).

Consider the task of finding an approximate solution uh(x), while knowing the true

solution, ua at selected points xa. Then in a least squares sense minimization of the

expression [uh(xa)− ua]
2 for each a is the objective. Suppose a polynomial approximation

is chosen so that

uh(x) = g1 + g2x+ g3x
2 + . . . gm+1x

m. (A.6)

The approximation is then written in matrix form

uh(x) = pT (x)g = {1 x x2 . . . xm}























































g1

g2

g3

...

gm+1























































. (A.7)

Using the above the least squares functional is written with the approximation substituted

in for uh(x) (the 1/2 in front is added for mathematical convenience):

J =
1

2

n
∑

a=1

{

uh(xa)− ua

}2
=

1

2

n
∑

a=1

{

pT (xa)g − ua
}2

. (A.8)

Now, recall that compact support for each node a is intended. Therefore, the local solution

is influenced by the local nodes. Whereas, nodes far away have no influence. Hence, each

summation term, indexed by a, in the least squares functional is weighted by a weight

function wa, which limits the term’s influence to point a and usually several surrounding

nodes. Based on this intuition the functional J is modified and becomes a weighted least
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squares functional as follows:

J =
1

2

n
∑

a=1

wa

{

pT (xa)g − ua
}2

. (A.9)

Next, it is necessary to minimize J with respect to each gi. However, before this oper-

ation, it is helpful to first write the functional in matrix form. To this end, the functional

J is written as follows:

J =
1

2
(Pg − u)TW(Pg − u), (A.10)

where,

P =























p1(x1) p2(x1) . . . pk(x1)

...
. . .

...

...
. . .

...

p1(xn) p2(xn) . . . pk(xn)























. (A.11)

Notice that each row of the P matrix is just pT (xa) for each row a. And, this matrix is n

by k in size.

For W, an n by n matrix results (see Eq. (A.1) for the definition of diagonal terms wa)

W =























w1(x− x1) 0

w2(x− x2)

. . .

0 wn(x− xn)























. (A.12)

The g vector is k by 1 and the u vector is n by 1.
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Now, set ∂J
∂g

= 0. This yields the following:

(Pg − u)TWP = 0. (A.13)

Transposing the whole equation yields

(WP)T (Pg − u) = 0. (A.14)

Multiplying through gives

PTWPg −PTWu = 0 (A.15)

and finally

PTWPg = PTWu. (A.16)

Now define the moment matrix A = PTWP and B = PTW. Note that A is k by k and

B is k by n. Using these definitions Eq. (A.16) becomes

Ag = Bu. (A.17)

Solve now for the unknown coefficients g

g = A−1Bu. (A.18)

Substitute this into the first part of Eq. (A.7)

uh = pT (x)g = pT (x)A−1Bu. (A.19)
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The approximations uh are usually written as

uh = φTu =

n
∑

a=1

φaua. (A.20)

Comparison of Eq. (A.20) with Eq. (A.19) reveals that the vector of MLS shape functions

is

φT = pT (x)A−1B. (A.21)

Notice that the A and B matrices depend on W. The W matrix in turn is a function of

the xa and the evaluation point x. Hence every time a new evaluation point x is chosen

the matrices A−1 and B are recomputed to calculate the MLS shape functions based on

the equation φT = pT (x)A−1B.

A.3 MLS shape function characteristics

The properties of MLS shape functions are different then FEM shape functions in the

following ways:

• MLS shape functions do not have the Kronecker-delta property

• MLS shape functions are not known in closed form

• MLS shape functions are non-interpolating

• The size of support can be controlled by the radius of support parameter, ρ. It is

common to set ρ equal to the distance to the 3rd or 4th nearest neighboring point (in

2D for example) and adjust this as necessary by a parameter called α. This parameter

is a user specified input when constructing MLS shape functions. It is sometimes

necessary to adjust the radius of support by use of α to eliminate a singular moment
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matrix A when insufficient nodes are included within the support radius.

• More computational effort is required to calculate the MLS shape functions.

• Because the MLS shape functions do not have the Kronecker-delta property special

attention must be paid to enforcing essential boundary conditions during the solution

of a boundary value problem.

A.4 MLS shape function derivatives

Shape function derivatives are calculated by application of the product rule on Eq. (A.21).

For example, if the derivative of φ is taken with respect to the kth dimension (could be x,

y or z)

φT
,k(x) = pT

,kA
−1B+ pTA−1

,k B+ pTA−1B,k (A.22)

with A−1
,k = −A−1A,kA

−1. This last expression is found as follows. Take the derivative of

Eq. (A.17) to get

A,kg +Ag,k = B,ku. (A.23)

Solving Eq. (A.23) for g,k and substituting in Eq. (A.18) for a yields

g,k = A−1B,ku−A−1A,kA
−1Bu. (A.24)

Now take the derivative of Eq. (A.18), which is

g,k = A−1B,ku+A−1
,k Bu. (A.25)

Finally compare Eq. (A.24) and Eq. (A.25) and observe that they are the same except

for the coefficient of the Bu term. Hence the coefficients of this term must be equivalent.
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Therefore A−1
,k = −A−1A,kA

−1, which completes the derivation. Second derivatives are

found similarly, see Fries and Matthies [36, page 21].
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Appendix B

Derivation of Analytical Solution

for Elasto-Plastic Rectangular and

I -shaped Beams

B.1 Introduction

Analytic solutions for linear structural mechanics problems are plentiful. However, ana-

lytical nonlinear solutions of structural mechanics problems are rare if not impossible to

find. If such solutions are found they are helpful for validation of nonlinear numerical solu-

tions provided by finite difference, finite element or meshfree methods for example. In the

following, an analytical solution of an elementary Euler-Bernoulli cantilever beam with a

bilinear material model is presented. The presentation illustrates the solution for a rectan-

gular cross-section and then extends the results to the case of an I-beam type cross-section.

First, a review of the elementary equations is given.
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Figure B.1: Cantilever beam.

B.2 Rectangular cantilever beam – elasto-plastic analytical

equations

In the development of the elementary equations use is made of the geometry, loading and

coordinate system, for a standard cantilever beam, as given in Figure B.1. Referring to this

figure, when load P is large enough to cause yielding, there are two distinct regions along

the length of the cantilever. The cross-sections not yet yielded are on the left (x ≤ xy) and

cross-sections which have yielded are on the right (x > xy). The x-distance beyond which

yield is taking place is denoted by xy.

First, define the internal moment as caused by the external load P as a function of x.

This equation is valid for all cross-sections of the beam.

Me(x) = Px (B.1)

Next, consider the first region (x ≤ xy). For all sections a − a, as cut in Figure B.1, the

maximum stress is

σm(x) =
Mec

I
=

3Px

2tc2
(B.2)
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and maximum strain is

εm(x) =
σm
E

=
3Px

2Etc2
. (B.3)

Proceed now to the second region (x > xy). Find the expression for xy by solving Eq. (B.2)

for x and setting σm = σy.

xy =
2σytc

2

3P
(B.4)

Now, considering the second region, a bilinear material model is chosen as shown in Fig-

ure B.2. For the elastic range a modulus of elasticity E and for the plastic range a hardening

modulus H̄ is chosen.

Now consider a typical section b − b as cut in Figure B.1 and refer to the stress and

strain profiles for section b − b as given in Figure B.3. Note that in Figure B.3 an as yet

unknown parameter α is defined. In terms of the parameter α, by similar triangles, an

expression for the maximum strain is written as follows:

εm =
c

αc
εy =

εy
α
. (B.5)

Using Eq. (B.5) and referring to the stress response of Figure B.2 the expression for σm is

σm(α) = σy + (εm − εy)H̄ = σy +
(εy
α

− εy

)

H̄ = σy +

(

1− α

α

)

εyH̄. (B.6)

Using Figure B.3 write an expression for the internal cross-section moment due to the

stress profile. The expression is found by summing moments about the neutral axis of the

cross-section.

Mi(α) = 2t

[

1

2
σyαc

(

2

3
αc

)

+
σm(α) + σy

2
(1− α)c

(

αc+
[2σm(α) + σy]b

3[σm(α) + σy]

)]

. (B.7)
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Figure B.2: Bilinear material model.
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Figure B.3: Section b− b.

Equation (B.7) is simplified to give

Mi(α) =
c2t

3
[σm(α)(2− α− α2) + σy(1 + α)]. (B.8)
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B.3 Solving the rectangular elasto-plastic cantilever beam

problem

Given the equations above the stresses, strains, and deflections consistent with the bilinear

material chosen are found. In the elastic region of the cantilever the solution is trivial. In

the yielded regions of the beam recognize that the moment Me, a function of x and P ,

must be in equilibrium with the moment Mi. This then gives an equation from which the

unknown parameter α is solved.

Me(x, P )−Mi(α) = 0 (B.9)

Equation (B.9) does have one real positive root but the expression is quite complicated.

Instead the solution for this one real positive root is expressed as a function of x and P as

follows:

α(x, P ) = root(Me −Mi, α ∈ [0, 1]). (B.10)

For specified x and P the root of the above expression is found numerically. With the

solution for α in hand a set of equations is obtained in both regions of the cantilever beam.

In the yielded portion of the beam the equations are of course nonlinear. Over the length

of the beam the expression for the maximum strain as a function of x and P is given as

εm(x, P ) =















3Px

2tc2E
x ≤ xy

εy
α(x, P )

x > xy

(B.11)
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and the expression for σm(x, P ) is similarly expressed as

σm(x, P ) =















3Px

2tc2
x ≤ xy

σy +

(

1− α(x, P )

α(x, P )

)

εyH̄ x > xy.

(B.12)

In order to calculate the nonlinear displacement versus load for the cantilever beam recall

from basic beam theory the 2nd Moment Area Theorem and that for small displacements

the curvature of the elastic curve is given by εm/c. The deflection for the tip of the cantilever

as a function of P is then calculated as follows:

δ(P ) =

∫ L

0
x
εm(x, P )

c
dx (B.13)

B.4 I -beam cantilever – elasto-plastic analytical equations

For the case of an I-beam type cross-section a procedure similar to the rectangular cross-

section is followed. When possible, use is made of previously found results. For the I-beam

cross-section the notation of Figure B.4 is used. First, for all cross-sections of the beam the

internal moment as caused by the external load P (see Figure B.1) is

Me(x) = Px. (B.14)

Consider the first the region where x ≤ xy (i.e. no yielding). The maximum stress is

σm(x) =
Mec

Ixx
=

Pcx

Ixx
, (B.15)
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Figure B.4: I-beam cross-section.

where Ixx is the moment of inertia about the x − x axis as shown in Figure B.4 and the

maximum strain is

ε(x) =
σm
E

=
Pcx

EIxx
. (B.16)

Next consider the regions for which x > xy. First, xy is found by solving Eq. (B.15) for x

and setting σm = σy which gives

xy =
σyIxx
Pc

. (B.17)

For the region x > xy a bilinear material model as shown in Figure B.2 is chosen similar to

the case of a rectangular beam. Now consider a typical section b − b as cut in Figure B.1

and refer to the stress and strain profiles of Figure B.3. In terms of α the maximum strain

is

εm =
c

αc
εy =

ε

α
. (B.18)

Upon using Eq. (B.18) and referring to the stress response of Figure B.2 the maximum

stress is

σm(α) = σy + (εm − εy)H̄ = σy +

(

1− α

α

)

εyH̄. (B.19)
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Figure B.5: Case 1: (a) flange area contribution, (b) yield in flanges stress profile.

Referring to Figure B.3 the goal is to write an expression for the internal moment due to

the stress profile acting on the I-beam section of Figure B.4. For the rectangular portion

of the I-beam cross-section the internal moment found previously (see Eq. (B.8)) based on

α is

Mi(α) =
c2t

3
[σm(α)(2− α− α2) + σy(1 + α)]. (B.20)

The additional internal moment due to the flanges must be added to the internal moment

due to the rectangular portion of the I-beam. In so doing, consideration is made for two

cases. For case 1, the unknown parameter, α, is such that αc > (d/2− tf ) (i.e., the flanges

have not yielded through their entire thickness). For case 2, α is of a value such that

αc ≤ (d/2− tf ) (i.e., the flanges have yielded through their entire thickness).

Consider first case 1 and refer to Figure B.5. The contributing flange width is

b = bf − tw. (B.21)
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The stress at the bottom of the flange is

σb =
(d2 − tf )σy

αc
=

(

d− 2tf
2αc

)

σy. (B.22)

For the unyielded portion of the flange the average stress is

σup =
σy + σb

2
=

2αcσy + (d− 2tf )σy
4αc

=

(

2αc+ d− 2tf
4αc

)

σy. (B.23)

For the yielded portion of the flange the average stress is

σyp =
σy + σm

2
. (B.24)

The force of the unyielded portion of the flange is

Pup = σupb

(

αc−
(

d

2
− tf

))

. (B.25)

The moment arm of the unyielded portion of the flange is given by

Ȳup = αc− 1

3

(

2σb + σy
σb + σy

)(

αc−
(

d

2
− tf

))

. (B.26)

The force of the yielded portion is

Pyp = σypb

(

d

2
− αc

)

. (B.27)

The moment arm of the yielded portion of the flange is given by

Ȳyp = αc+
1

3

(

2σm + σy
σm + σy

)(

d

2
− αc

)

. (B.28)
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Figure B.6: Case 2: (a) yield below flange stress profile, (b) linear strain profile.

Finally, the expression for the additional moment caused by the flanges (top and bottom

flanges) is written as

Mi(α)flanges case 1 = 2(PupȲup + PypȲyp), (B.29)

so that the total internal moment for case 1 is

Mi(α) = Mi(α)rectangular +Mi(α)flanges case 1. (B.30)

Next consider case 2 for which the flanges yield through their entire thickness. Referring

to Figure B.6, the stress at the bottom of the flange is written as

σb = σy + (εb − εy)H̄. (B.31)
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By use of similar triangles the expression for the strain at the bottom of the flange is

εb =

(

d− 2tf
2αc

)

εy. (B.32)

Upon substituting Eq. (B.32) into Eq. (B.31) the stress at the bottom of the flange is

σb = σy +

((

d− 2tf
2αc

)

− 1

)

εyH̄. (B.33)

The force on the flange (not including the flange width) is

Pyp = σypbtf , (B.34)

where in this case σyp = (σm + σb)/2. The moment arm of this force is given by

Ȳyp =
d

2
− 1

3

(

2σb + σm
σb + σm

)

tf . (B.35)

Hence, for case 2, the additional moment due to the contribution of the flanges is

Mi(α)flanges case 2 = 2(PypȲyp), (B.36)

so that the total internal moment for case 2 is

Mi(α) = Mi(α)rectangular +Mi(α)flanges case 2. (B.37)

Then, as was done previously for the rectangular cross-section, the external moment minus
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the internal moment is set equal to zero, that is

Me(α)−Mi(α) = 0, (B.38)

for x > xy. If αc < (d/2 − tf ) then Mi(α) is as given in Eq. (B.37), otherwise Eq. (B.30)

is to be used. Equation (B.38) is solved numerically for α. The solution is easily obtained

using Mathcad or some other scientific calculation software. The solved for value of α is a

function of P and x and is denoted here as α(x, P ) similar to Eq. (B.10). Finally, similar

to Eqs. (B.11), (B.12) and (B.13) expressions for maximum strain, maximum stress and

cantilever tip displacement are written for the case of an I-beam cross-section. That is

εm(x, P ) =















Pcx

EI
x ≤ xy

εy
α(x, P )

x > xy

, (B.39)

σm(x, P ) =















Pxc

I
x ≤ xy

σy +

(

1− α(x, P )

α(x, P )

)

εyH̄ x > xy

(B.40)

and

δ(P ) =

∫ L

0
x
εm(x, P )

c
dx. (B.41)

To this last expression, for cantilever tip displacement, a shear term is added. This addition

provides more accurate results particularly in the linear range. The added shear term is

δ(P )shear =
PL

Gtwd
. (B.42)
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Appendix C

Derivation of Analytical Solution

for Large Displacement Cantilever

C.1 Introduction

An analytical solution for the large displacements of an elastic cantilever, with end load, is

derived below. The solution closely follows that given by Khosravi et al. [48]. This solution

is based on the use of a linear elastic material and is consistent with Euler-Bernoulli beam

theory. Axial deformations are neglected in the solution by Khosravi, however, it is a simple

matter to include axial deformations as indicated in the section after the main derivation.

Shear deformations can be added similarly.

C.2 Derivation

Consider the arrangement shown in Figure C.1. A cantilever is shown in its deflected

configuration with a point load, P , acting upwards at the right end. The origin of the

coordinate system is chosen to coincide with the deflected end of the cantilever with positive
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Figure C.1: Differential element of length ds.

x axis to the left and positive y axis downwards as shown. The angle α is measured from

the positive x axis to the tangent line drawn through the end of the elastic curve. The

cantilever is fixed at support A. The cantilever has length ℓ as shown. The cantilever

material has modulus of elasticity E and the cantilever has moment of inertia I.

Consider now the differential element ds taken from the elastic curve. This differential

element is at an angle of φ from the the positive x axis as shown. Using the standard

moment curvature relations

EI
dφ

ds
= M = −Px. (C.1)

Differentiating both sides with respect to s

EI
d2φ

ds2
= −P

dx

ds
= −P cosφ (C.2)

d2φ

ds2
= −k2 cosφ (C.3)
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where k2 = P/EI. Next integrate both sides of Eq. (C.3) with respect to φ to get

∫

d2φ

ds2
dφ = −k2

∫

cosφ dφ. (C.4)

By the chain rule modify the first integral so that

∫

d2φ

ds2
dφ

ds
ds = −k2

∫

cosφ dφ. (C.5)

Next recognize that Eq. (C.5) is equivalent to

1

2

∫

d2φ

ds2
dφ

ds
+

d2φ

ds2
dφ

ds
ds = −k2

∫

cosφ dφ, (C.6)

or,

1

2

∫

d

ds

(

dφ

ds

)2

ds = −k2
∫

cosφ dφ. (C.7)

Upon carrying out the integration of Eq. (C.7)

1

2

(

dφ

ds

)2

= −k2 sinφ+ c. (C.8)

The boundary conditions at x = 0 are dφ/ds = 0 (i.e. M = 0) and φ = α, which implies

from Eq. (C.8) that

c = k2 sinα. (C.9)

This last result substituted into Eq. (C.8) yields

(

dφ

ds

)2

= 2k2(sinα− sinφ). (C.10)
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From Eq. (C.1) it follows that dφ/ds < 0, consequently solving Eq. (C.10) for ds yields

ds =
−dφ

k
√
2
√
sinα− sinφ

. (C.11)

Making use of the expression for ds it follows that

ℓ =

∫ 0

α

ds =

∫ α

0
−ds =

1

k
√
2

∫ α

0

dφ√
sinα− sinφ

, (C.12)

XA =

∫ 0

α

dx =

∫ 0

α

cosφ ds =

∫ α

0
cosφ (−ds) =

1

k
√
2

∫ α

0

cosφ dφ√
sinα− sinφ

, (C.13)

YA =

∫ 0

α

dy =

∫ 0

α

sinφ ds =

∫ α

0
sinφ (−ds) =

1

k
√
2

∫ α

0

sinφ dφ√
sinα− sinφ

, (C.14)

where ℓ is the length of the cantilever and (XA, YA) are the coordinates of the fixed end

from the origin located at the deflected end of the cantilever.

Equations (C.12), (C.13) and (C.14) are solved in the following steps.

1. For a given load P , properties E, I and length ℓ, equation Eq. (C.12) is used to

numerically solve for α.

2. Having α from step 1 the values for XA and YA are numerically solved for given P ,E

and I.

3. Finally, the deflected values of the tip are expressed as

δx = ℓ−XA, (C.15)

δy = YZ . (C.16)

4. The deflected values for any load P are obtained by repeating steps 1 to 3 as necessary.
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Figure C.2: Elastic curve segment ds.

C.3 Adding the effect of axial deformations

In this section the additional x and y displacements at the tip of the cantilever, due to axial

deformations, are derived. Use is made of several of the preceding equations. Consider the

differential line segment ds shown in Figure C.2. For any segment ds the force acting along

the segment is P sinφ. The axial deformation for the segment is

δs =
P sinφ ds

AE
, (C.17)

where A is the cross-sectional area of the beam. The components of deflection in the x and

y direction for the differential segment ds are

δsx = δs cosφ =
P cosφ sinφ ds

AE
(C.18)

δsy = δs sinφ =
P sin2 φ ds

AE
. (C.19)

The expressions for cosφ ds and sinφ ds are found in Eqs. (C.13) and (C.14) respectively.

Substituting these results in Eqs. (C.18) and (C.19) and integrating over the range of angle
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Figure C.3: Cantilever tip deflection δy.

α the final results for the axial deformations are

δx(axial) =
1

k
√
2

∫ α

0

P sinφ

AE

cosφ dφ√
sinα− sinφ

(C.20)

δy(axial) =
1

k
√
2

∫ α

0

P sinφ

AE

sinφ dφ√
sinα− sinφ

. (C.21)

C.4 Numerical example

Using Mathcad a load deflection plot is obtained for a linear elastic cantilever beam loaded

at its free end. For this example E = 100.0 ksi, I = 1.333 in4 and ℓ = 10.0 in. Results are

given in Figure C.3 for cases with and without including axial strain.
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Appendix D

Meshfree Modeling of Wide Flange

Beam Cross-Sections

D.1 Introduction

In the present work, beams are modeled as a 2D continuum of non-constant thickness in

the direction perpendicular to the 2D plane of the domain. For example, in Figure D.1, the

Voronoi diagram of a nodal set used to discretize a plane stress cantilever beam domain

is shown. In the formulation a thickness, bf , is specified for the flanges (top and bottom

nodes) and a thickness, tw, for the intermediate nodes of the web (see also Figure 4.4c).

The specified thickness covers the Voronoi cell area corresponding to each node. As a result

the grid spacing defines a grid specific tf value and one can adjust bf so the required Ixx

results. The procedure to accomplish this for an I-section follows.

Given an I-beam as shown in Figure 4.4c, the moment of inertia is written as the sum
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Figure D.1: Voronoi diagram for cantilever I-beam profile.

of contributions from the web and the flanges. This gives

Iw =
tw(d− 2tf )

3

12
, (D.1)

If =

[

2tf

(

d− tf
2

)2

+
t3f
6

]

bf = Brbf , (D.2)

where Br is the coefficient that multiplies bf in Eq. (D.2), so that

Ixx = Iw + If . (D.3)

Now, if the grid spacing is arbitrary then tf is set by the chosen grid. Hence, given Ixx,

and specified values of tw and d, the required thickness bf is obtained as

bf =
Ixx − Iw

Br
. (D.4)

Equation (D.4) gives the necessary domain thickness perpendicular to the 2D domain at

the flanges. The specific procedure described above can be applied to any cross-section

composed of rectangular sections, and, the concept can be extended to fairly arbitrary

cross-sections.
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D.2 Analytical solution for comparison to numerical results

for elastic I -beam

Using the above procedure for a cantilever I-beam the results of Table 4.1 are obtained. The

numerical analysis and comparison to analytical results proceeds as follows. First, consider

the exact analytical elasticity solution for a cantilever beam (see Figure 4.4), with transverse

shear load at its free end, as discussed in Timoshenko and Goodier [87], Belytschko et al.

[16]

ux =
−Py

6EI

[

(6L− 3x)x+ (2 + ν)

(

y2 − D2

4

)]

(D.5a)

uy =
P

6EI

[

3νy2(L− x) + (4 + 5ν)
D2x

4
+ (3L− x)x2

]

(D.5b)

σxx =
−P (L− x)y

I
(D.5c)

σyy = 0 (D.5d)

σxy =
P

2I

(

D2

4
− y2

)

(D.5e)

where I, which is the moment of inertia for a rectangular cross-section of unit thickness, is

given by

I =
D3

12
. (D.5f)

Even though the solution above is for a rectangular beam, it can be applied to I-beams

by simply replacing the moment of inertia term, I, in Eqs. (D.5a-c) by Ixx, the moment

of inertia for the I-section. Similarly, the moment of inertia of the I-beam web, Iw is
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used in place of I in Eq. (D.5e) to determine the shear traction at the right end of the

cantilever. The tip displacement solution of the I-beam cantilever is computed from the

formula provided by Euler-Bernoulli beam theory with a shear term added, i.e.,

δtheoretical =
PL3

3EIxx
+K

PL

GAw
, (D.6)

where K ≈ 1.0 is typical for I-beams, Aw is the I-beam web area and G is the shear mod-

ulus.
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Appendix E

Algorithm for Plane Stress J2

Plasticity with Radial Return

The inelastic material model implemented in this dissertation is for the case of J2 plasticity

under the conditions of plane stress. Several different hardening models are possible in the

material formulation. For example, the implemented model includes the cases of linear

and/or exponential isotropic hardening [93], as well as linear kinematic hardening. An

implicit algorithm with radial return is employed in the computer implementation. The

material model is summarized below and is based on the works by Simo and Taylor [80]

and Simo and Hughes [78].
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E.1 Preliminary definitions

In plane stress J2 flow plasticity the yield function is expressed in a convenient form by

use of a P matrix defined as follows

P =
1

3















2 −1 0

−1 2 0

0 0 6















(E.1)

To map the trial stress back to the yield surface use is made of a transformation matrix,

Γ, which is a function of the consistency parameter, ∆γ, as follows:

Γ =















α1 α2 0

α2 α1 0

0 0 α3















(E.2)

where,

α1 =
1

2+2a∆γ
+ 1

2+2b∆γ

α2 =
1

2+2a∆γ
− 1

2+2b∆γ

α3 =
1

1+b∆γ

a = E
3(1−ν) +

2
3H

′

b = 2µ+ 2
3H

′.

The squared form of the yield function is used in the return mapping algorithm to solve

for the consistency parameter by Newton-Raphson iteration. The squared form of the yield

function is

f2(∆γ) =
1

2
f̄2(∆γ)−R2(∆γ). (E.3)
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Functions f̄2(∆γ) and R2(∆γ) are given as follows

f̄2(∆γ) = [Γξtrialn+1 ]
TP[Γξtrialn+1 ] (E.4)

R2(∆γ) =
1

3
K2(α) (E.5)

with K2 evaluated at α = αn +
√

2
3∆γf̄(∆γ). Hence f2(∆γ) is evaluated appropriately as

part of an implicit backward Euler integration scheme.

As part of the Newton-Raphson iterations the derivative of f2(∆γ) with respect to ∆γ

is required. Denoting the derivative of Γ with respect to ∆γ as dΓ, by the product rule

d(f̄2)

d∆γ
= [dΓξtrialn+1 ]

TP[Γξtrialn+1 ] + [Γξtrialn+1 ]
TP[dΓξtrialn+1 ]. (E.6)

The derivative of R2 with respect to ∆γ is also easily found so that the derivative of the

squared yield function is

d(f2)

d∆γ
=

1

2

d(f̄2)

d∆γ
− d(R2)

d∆γ
. (E.7)

The following additional definitions are necessary to understand the expressions given

above and the algorithm of Section E.2.

ξtrialn+1 = the trial relative stress = σtrial
n+1 − β̃n.

β̃n = a variable in plane stress subspace analogous to deviatoric back stress, this variable

becomes nonzero in the presence of kinematic hardening (see the algorithm in Section E.2

for further details).

K(α) = σy + θH̄α+(K̄∞ − K̄o)[1− e−δα] = the linear and exponential isotropic hardening

laws combined.

α = the internal variable often called the equivalent plastic strain or plastic flow parameter.

H̄ = the hardening modulus.
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K̄∞ = the saturation stress or ultimate stress σu.

K̄o = the initial or yield stress σy.

δ = a material constant which dictates how much strain hardening is required to reach the

ultimate stress after first yield.

K ′ = the derivative of K, the isotropic hardening law, with respect to α.

H(α) = (1− θ)H̄α = the kinematic hardening law.

H ′ = the derivative of H(α), the kinematic hardening law, with respect to α.

C = Celast = the elastic modulus matrix.

Finally, θ is selected so that θ ∈ [0, 1]. By adjusting θ and the variables H̄, K̄∞, K̄o and

δ it is possible to obtain various types of hardening behavior. For example, using θ = 1

and setting δ = 0, one obtains linear isotropic hardening.

E.2 Algorithm for plane stress J2 flow plasticity with return

mapping at the constitutive level

1. Update total strain and calculate trial elastic stresses.

εn+1 = εn +∆εn+1

σtrial = C[εn+1 − εpn]

ξtrial = σtrial − β̃n

2. IF f trial
n+1 ≤ 0 THEN

εen+1 = εn+1 − εpn

σn+1 = σtrial
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ELSE solve f2(∆γ) = 0 for ∆γ by Newton-Raphson iteration.

3. Using ∆γ compute the modified (algorithmic) elastic tangent moduli

Ξ = [C−1 +
∆γ

1 + 2
3∆γH ′

P]−1

4. Using the solved for value of ∆γ, update relative stress, backstress, stress, plastic

strain, and plastic flow parameter.

ξn+1 =
1

1 + 2
3∆γH ′

ΞC−1ξtrial = Γξtrial

β̃n+1 = β̃n +∆γ
2

3
H ′ξn+1

σn+1 = ξn+1 + β̃n+1

ε
p
n+1 = εpn +∆γPξn+1

αn+1 = αn +∆γ

√

2

3
f̄n+1

5. Compute the consistent elasto-plastic tangent moduli

Cep
consistent = Ξ− [ΞPξn+1][ΞPξn+1]

T

ξTn+1PΞPξn+1 + β̄n+1

θ1 = 1 +
2

3
H ′∆γ, θ2 = 1− 2

3
K ′

n+1∆γ, β̄n+1 =
2θ1
3θ2

(K ′

n+1θ1 +H ′θ2)ξ
T
n+1Pξn+1

6. Update ε33

ε33n+1
=

−ν

E
(σ11n+1

+ σ22n+1
)− (εp11n+1

+ εp22n+1
)

ENDIF
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E.3 Examples

Several examples are presented to demonstrate the evolution of the yield surface according

to J2 plasticity with radial return. To facilitate visualization of the various cases the

examples are given in principal stress space. For all cases the initial stress state starts inside

the yield surface at (σxx = 120 N/mm2, σyy = −80 N/mm2). A single strain increment

(εxx = 0.0014, εyy = 0.0014) is given such that a trial stress state of (σxx = 400 N/mm2,

σyy = 200 N/mm2) occurs outside the initial yield surface. Finally, the radial return

mapping takes the stresses back in a direction normal to the final yield surface. The material

properties used are yield stress σy = 200 N/mm2, modulus of elasticity E = 200000 N/mm2,

Poisson’s ratio ν = 0.0 and hardening modulus H̄ = 20000 N/mm2. Examples are given in

Figures E.1a–d for the cases of no hardening (perfect plasticity), linear isotropic hardening,

linear kinematic hardening and a case of 50 percent isotropic hardening combined with

50 percent kinematic hardening. The final stress state for each of these cases is given

in Table E.1 (the results match those given by Crisfield [27, pages 181,182]). Since the

hardening for isotropic, kinematic and combined are all in the same direction from the

initial stress state, the final stress states, after the radial return, are identical.

Hardening Type σxx (N/mm2) σyy (N/mm2)

None 226.229 153.306

Linear Isotropic 249.585 164.404

Linear Kinematic 249.585 164.404

1/2 Isotropic + 1/2 Kinematic 249.585 164.404

Table E.1: Final stresses on yield surface.
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Figure E.1: Principal stress space (N/mm2) yield surface evolution with radial return:
(a) no hardening; (b) linear isotropic hardening; (c) linear kinematic hardening; and (d)
50 percent isotropic hardening combined with 50 percent kinematic hardening.
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Increments σxx (N/mm2) σyy (N/mm2)

1 226.229 153.306

10 218.0830 174.8430

Table E.2: Final stresses on yield surface for different number of strain increments.

E.4 Increment size and sub-incrementation

It is worth noting that the plasticity algorithm given above with radial return is not error

free. Even though the consistency parameter, necessary to achieve a yield function equal

to zero, is solved for within tolerance by Newton-Raphson iterations the algorithm is not

exact if the strain increments are too large. To demonstrate this the example of Figure

E.1a is repeated. However, this time the one increment of strain is broken up into 10

equal increments. This is usually termed sub-incrementation. As seen in Figure E.2 the

final stress state using sub-incrementation is not equivalent to the stress state obtained by

a single strain increment (see Table E.2). To overcome this error it is necessary to use

sufficiently small load or displacement steps at the global level of the nonlinear analysis

to ensure small strain increments at the constitutive level. Alternatively, some form of

sub-incrementation is necessary at the constitutive level in the plasticity algorithm. In this

dissertation, sub-incrementation is not used and care is taken to ensure enough increments

are used at the global level to ensure a converged solution.
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Figure E.2: Final stress state (N/mm2) using single strain increment versus 10 sub-
increments.
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Appendix F

OpenSees Scripts

Several problems presented in this dissertation are analyzed using OpenSees [65] for com-

parison with the meshfree solutions. The scripts for the OpenSees analyses are included in

this appendix.

F.1 Elasto-Plastic I -beam cantilever 1D fiber-section beam

elements

# OpenSees Elasto-Plastic-Cantilever

# Using 1D Nonlinear Beam-Column elements and fiber-sections.

# by Louie L. Yaw - 3-21-08

#

# Units: kips, in, sec

# ------------------------------

# Start of model generation

# ------------------------------

wipe

# Create ModelBuilder (with two-dimensions and 3 DOF /node for

# beam column elements)

model BasicBuilder -ndm 2 -ndf 3

# Create nodes & add to Domain - command: node nodeId xCrd yCrd

set endnode 2

node 1 0.0 0.0
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node 3 1.0 0.0

node 4 2.0 0.0

node 5 3.0 0.0

node 6 4.0 0.0

node 7 5.0 0.0

node 8 6.0 0.0

node 9 7.0 0.0

node 10 8.0 0.0

node 11 9.0 0.0

node $endnode 10.0 0.0

# Set the boundary conditions - command: fix nodeID xResrnt?

# yRestrnt? zRestrnt

fix 1 1 1 1

puts "Nodes and Supports Defined"

# Define materials for beam/column elements

# -----------------------------------

uniaxialMaterial Hardening 1 29000.0 36.0 500.0 0.0

#Transformation tag definition

geomTransf Linear 1

#Define the wide flange section

set bf 3.0

set tw 1.0

set tf 0.2

set d 2.0

# START FIBER DEFINITION

set nfdw 16; # number of fibers along web depth

set nftw 1; #number of fibers along web thickness, more if

#bidirectional response wanted

set nfbf 1; # use 16 when bidirectional response being modeled

#number of fibers along flange width (you want this

#many in a bi-directional loading)

set nftf 4; # number of fibers along flange thickness

set dw [expr $d - 2 * $tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]
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set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

#

section fiberSec 1 {

# nfIJ nfJK yI zI yJ zJ yK zK yL zL

patch quadr 1 $nfbf $nftf $y1 $z4 $y1 $z1 $y2 $z1 $y2 $z4

patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $z2 $y3 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $z1 $y4 $z1 $y4 $z4

}

# Define elements

# ---------------

# Create nonlinear beamcolumn-command: element $type $elemtag

# $node1 $node2 $#intgrpts $sectag $transftag

element nonlinearBeamColumn 1 1 3 5 1 1

element nonlinearBeamColumn 2 3 4 5 1 1

element nonlinearBeamColumn 3 4 5 5 1 1

element nonlinearBeamColumn 4 5 6 5 1 1

element nonlinearBeamColumn 5 6 7 5 1 1

element nonlinearBeamColumn 6 7 8 5 1 1

element nonlinearBeamColumn 7 8 9 5 1 1

element nonlinearBeamColumn 8 9 10 5 1 1

element nonlinearBeamColumn 9 10 11 5 1 1

element nonlinearBeamColumn 10 11 $endnode 5 1 1

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 60

set Pmax -8.0

set uniload 1.0

set loadinc [expr $Pmax/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce zMoment

load $endnode 0.0 [expr $uniload] 0.0

}

puts "Loads Defined"
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# ------------------------------

# End of model generation

# ------------------------------

# ------------------------------

# Start of analysis generation

# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD

# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is used as

# homogeneous constraints

constraints Plain

# Create the integration scheme, the LoadControl scheme using

# steps of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-1 30

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation

# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file plasticbeamcol.out -load -node $endnode -dof 2 disp

#recorder Element -file examplef.out -ele 1 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements
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print node $endnode

print ele

F.2 Elasto-Plastic I -beam cantilever 2D FE enhanced-strain

quadrilateral elements

# OpenSees Plastic-Cantilever

# Using 2D Quad 4 continuum plane stress elements.

# by Louie L. Yaw - 12-3-07

#

# Units: kips, in, sec

# ------------------------------

# Start of model generation

# ------------------------------

wipe

# Create ModelBuilder (with two-dimensions and 2 DOF /node)

model BasicBuilder -ndm 2 -ndf 2

# Define materials for truss elements

# -----------------------------------

# Create Elastoplast mat. prototype-command:

#nDMaterial J2Plasticity matID k G fy fu delta H eta

#nDMaterial ElasticIsotropic 2 29000 0.3

nDMaterial J2Plasticity 2 24166.7 11153.8 36.0 55.0 0.0 500.0 0.0

nDMaterial PlaneStress 1 2

#This next one is for use only with bbarquad making it

#do plane stress

nDMaterial J2Plasticity 3 16996.3 11153.8 36.0 55.0 0.0 500.0 0.0

#Define cantilever with a single 2D block command

set nx 50; #number of elements in x direction

set ny 10; #number of elements in y direction

set e1 1; #starting element number for generation

set n1 1; #starting node number for generation

#For regular quadrilateral element

#set eleArgs "1.0 PlaneStress 1"

#set Quad "quad"

#For Enhanced strain quadrilateral element

set eleArgs "PlaneStress 1"

set Quad "enhancedQuad"
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#For bbar quadrilateral element

#set eleArgs "3"

#set Quad "bbarQuad"

block2D $nx $ny $n1 $e1 $Quad $eleArgs {

1 0.0 0.0

2 10.0 0.0

3 10.0 2.0

4 0.0 2.0

}

#the bottom node of a row is (row-1)*(nx+1)+nx+1

#Add another layer of same elements over the top, stiffness

#should double

# i variable is for rows

# j variable is for cols

# enum keeps track of the next element number if more

# would be added

set startrow 1

set endrow $ny

set enum [expr $nx*$ny+1]

for {set i $startrow} {$i <= $endrow} {incr i} {

for {set j 1} {$j <= $nx} {incr j} {

set nodei [expr ($i-1)*($nx+1)+$j]

set nodej [expr ($i-1)*($nx+1)+$j+1]

set nodek [expr $i*($nx+1)+$j+1]

set nodel [expr $i*($nx+1)+$j]

#Thicken the model at flanges

if {$i == $startrow || $i == $endrow} {

for {set k 1} {$k <= 2} {incr k} {

element $Quad $enum $nodei $nodej $nodek $nodel PlaneStress 1

incr enum

}

}

#Thicken the web at the supports

if {$i != $startrow && $i != $endrow && $j == 1} {

for {set k 1} {$k <= 2} {incr k} {

element $Quad $enum $nodei $nodej $nodek $nodel PlaneStress 1

incr enum

}

}

} ;#end loop over columns

} ;#end loop over rows
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# Set the boundary conditions - all nodes at x=0.0

fixX 0.0 1 0

fix 256 1 1

puts "Nodes and Supports Defined"

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 100

set Pmax -8.0

set uniload 1.0

set loadinc [expr $Pmax/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce

load 51 0 [expr $uniload/11.0]

load 102 0 [expr $uniload/11.0]

load 153 0 [expr $uniload/11.0]

load 204 0 [expr $uniload/11.0]

load 255 0 [expr $uniload/11.0]

load 306 0 [expr $uniload/11.0]

load 357 0 [expr $uniload/11.0]

load 408 0 [expr $uniload/11.0]

load 459 0 [expr $uniload/11.0]

load 510 0 [expr $uniload/11.0]

load 561 0 [expr $uniload/11.0]

#load 8 0 [expr $uniload/4.0]

#load 12 0 [expr $uniload/4.0]

#load 16 0 [expr $uniload/4.0]

}

puts "Loads Defined"

# ------------------------------

# End of model generation

# ------------------------------

# ------------------------------

# Start of analysis generation

# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD
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# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is

# used as homogeneous constraints

constraints Transformation

# Create the integration scheme, the LoadControl scheme using steps

# of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-1 30 1

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation

# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file plasticCantpvsu.out -load -node 306 -dof 2 disp

#recorder Element -file examplef.out -ele 1 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements

print node 306

#print ele

F.3 Frame corner connection with elasto-plastic panel zone

# OpenSees Elasto-Plastic-Beedle Frame Corner Connection -

# elasto-plastic panel zone

# Using 1D Nonlinear Beam-Column elements and sections.

# by Louie L. Yaw - 3-25-08

#

# Units: kips, in, sec
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# ------------------------------

# Start of model generation

# ------------------------------

wipe

# Create ModelBuilder (with two-dimensions and 3 DOF /node for

# beam column elements)

model BasicBuilder -ndm 2 -ndf 3

# Create nodes & add to Domain - command: node nodeId xCrd yCrd

set endnode 23

node 1 0.0 0.0

node 2 8.5277 8.5277

node 3 17.0554 17.0554

node 4 25.5831 25.5831

node 5 34.1108 34.1108

node 6 42.6385 42.6385

node 7 51.1662 51.1662

node 8 59.6940 59.6940

node 9 68.2217 68.2217

node 10 76.7494 76.7494

node 11 85.2771 85.2771

node 12 95.8413 95.8413

node 13 85.2771 106.4054

node 14 76.7494 114.9331

node 15 68.2217 123.4608

node 16 59.6940 131.9886

node 17 51.1662 140.5163

node 18 42.6385 149.0440

node 19 34.1108 157.5717

node 20 25.5831 166.0994

node 21 17.0554 174.6271

node 22 8.5277 183.1548

node 23 0.0 191.6825

# Set the boundary conditions - command: fix nodeID xResrnt?

# yRestrnt? zRestrnt

fix 1 1 1 0

fix 23 1 0 0

puts "Nodes and Supports Defined"

# Define materials for beam/column elements

# -----------------------------------

#Steel Material

uniaxialMaterial Hardening 1 29000.0 36.0 150.0 0.0
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#Transformation tag definition

geomTransf Linear 1

#Define the wide flange section

set bf 10.5

set tw 0.545

set tf 0.76

set d 29.875

# START FIBER DEFINITION

set nfdw 16; # number of fibers along web depth

set nftw 1; #number of fibers along web thickness, more if

# bidirectional response wanted

set nfbf 1; # use 16 when bidirectional response being modeled

#number of fibers along flange width (you want this many in

# a bi-directional loading)

set nftf 4; # number of fibers along flange thickness

set dw [expr $d - 2 * $tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]

set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

#

section fiberSec 1 {

# nfIJ nfJK yI zI yJ zJ yK zK yL zL

patch quadr 1 $nfbf $nftf $y1 $z4 $y1 $z1 $y2 $z1 $y2 $z4

patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $z2 $y3 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $z1 $y4 $z1 $y4 $z4

}

# Define elements

# ---------------

# Create nonlinear beamcolumn-command: element $type $elemtag $node1 $node2

# $#intgrpts $sectag $transftag

element dispBeamColumn 1 1 2 5 1 1

element dispBeamColumn 2 2 3 5 1 1
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element dispBeamColumn 3 3 4 5 1 1

element dispBeamColumn 4 4 5 5 1 1

element dispBeamColumn 5 5 6 5 1 1

element dispBeamColumn 6 6 7 5 1 1

element dispBeamColumn 7 7 8 5 1 1

element dispBeamColumn 8 8 9 5 1 1

element dispBeamColumn 9 9 10 5 1 1

element dispBeamColumn 10 10 11 5 1 1

element dispBeamColumn 11 11 12 5 1 1

element dispBeamColumn 12 12 13 5 1 1

element dispBeamColumn 13 13 14 5 1 1

element dispBeamColumn 14 14 15 5 1 1

element dispBeamColumn 15 15 16 5 1 1

element dispBeamColumn 16 16 17 5 1 1

element dispBeamColumn 17 17 18 5 1 1

element dispBeamColumn 18 18 19 5 1 1

element dispBeamColumn 19 19 20 5 1 1

element dispBeamColumn 20 20 21 5 1 1

element dispBeamColumn 21 21 22 5 1 1

element dispBeamColumn 22 22 23 5 1 1

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 100

set Pmax -150.0

set uniload 1.0

set loadinc [expr $Pmax/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce zMoment

load $endnode 0.0 [expr $uniload] 0.0

}

puts "Loads Defined"

# ------------------------------

# End of model generation

# ------------------------------

# ------------------------------

# Start of analysis generation
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# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD

# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is used as

# homogeneous constraints

constraints Plain

# Create the integration scheme, the LoadControl scheme using

# steps of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-1 30

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation

# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file beedleeppanel.out -load -node $endnode -dof 2 disp

#recorder Element -file examplef.out -ele 1 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements

print node $endnode

print ele

F.4 Frame corner connection with elastic panel zone

# OpenSees Elasto-Plastic-Beedle Frame Corner Connection -
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# elastic panel zone

# Using 1D Nonlinear Beam-Column elements and sections.

# by Louie L. Yaw - 3-25-08

#

# Units: kips, in, sec

# ------------------------------

# Start of model generation

# ------------------------------

wipe

# Create ModelBuilder (with two-dimensions and 3 DOF /node

# for beam column elements)

model BasicBuilder -ndm 2 -ndf 3

# Create nodes & add to Domain - command: node nodeId xCrd yCrd

set endnode 23

node 1 0.0 0.0

node 2 8.5277 8.5277

node 3 17.0554 17.0554

node 4 25.5831 25.5831

node 5 34.1108 34.1108

node 6 42.6385 42.6385

node 7 51.1662 51.1662

node 8 59.6940 59.6940

node 9 68.2217 68.2217

node 10 76.7494 76.7494

node 11 85.2771 85.2771

node 12 95.8413 95.8413

node 13 85.2771 106.4054

node 14 76.7494 114.9331

node 15 68.2217 123.4608

node 16 59.6940 131.9886

node 17 51.1662 140.5163

node 18 42.6385 149.0440

node 19 34.1108 157.5717

node 20 25.5831 166.0994

node 21 17.0554 174.6271

node 22 8.5277 183.1548

node 23 0.0 191.6825

# Set the boundary conditions - command: fix nodeID xResrnt?

# yRestrnt? zRestrnt

fix 1 1 1 0

fix 23 1 0 0

puts "Nodes and Supports Defined"
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# Define materials for beam/column elements

# -----------------------------------

#Steel Material

uniaxialMaterial Hardening 1 29000.0 36.0 150.0 0.0

#Transformation tag definition

geomTransf Linear 1

#Define the wide flange section

set bf 10.5

set tw 0.545

set tf 0.76

set d 29.875

# START FIBER DEFINITION

set nfdw 16; # number of fibers along web depth

set nftw 1; #number of fibers along web thickness, more if

#bidirectional response wanted

set nfbf 1; # use 16 when bidirectional response being modeled

#number of fibers along flange width (you want this many

#in a bi-directional loading)

set nftf 4; # number of fibers along flange thickness

set dw [expr $d - 2 * $tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]

set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

#

section fiberSec 1 {

# nfIJ nfJK yI zI yJ zJ yK zK yL zL

patch quadr 1 $nfbf $nftf $y1 $z4 $y1 $z1 $y2 $z1 $y2 $z4

patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $z2 $y3 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $z1 $y4 $z1 $y4 $z4

}

# Define elements
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# ---------------

# Create nonlinear beamcolumn-command: element $type $elemtag $node1 $node2

# $#intgrpts $sectag $transftag

element dispBeamColumn 1 1 2 5 1 1

element dispBeamColumn 2 2 3 5 1 1

element dispBeamColumn 3 3 4 5 1 1

element dispBeamColumn 4 4 5 5 1 1

element dispBeamColumn 5 5 6 5 1 1

element dispBeamColumn 6 6 7 5 1 1

element dispBeamColumn 7 7 8 5 1 1

element dispBeamColumn 8 8 9 5 1 1

element dispBeamColumn 9 9 10 5 1 1

element dispBeamColumn 10 10 11 5 1 1

element elasticBeamColumn 11 11 12 31.7 29000 4470 1

element elasticBeamColumn 12 12 13 31.7 29000 4470 1

#rigidLink beam 11 12

#rigidLink beam 12 13

element dispBeamColumn 13 13 14 5 1 1

element dispBeamColumn 14 14 15 5 1 1

element dispBeamColumn 15 15 16 5 1 1

element dispBeamColumn 16 16 17 5 1 1

element dispBeamColumn 17 17 18 5 1 1

element dispBeamColumn 18 18 19 5 1 1

element dispBeamColumn 19 19 20 5 1 1

element dispBeamColumn 20 20 21 5 1 1

element dispBeamColumn 21 21 22 5 1 1

element dispBeamColumn 22 22 23 5 1 1

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 100

set Pmax -160.0

set uniload 1.0

set loadinc [expr $Pmax/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce zMoment

load $endnode 0.0 [expr $uniload] 0.0

}

puts "Loads Defined"
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# ------------------------------

# End of model generation

# ------------------------------

# ------------------------------

# Start of analysis generation

# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD

# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is used as

# homogeneous constraints

constraints Plain

# Create the integration scheme, the LoadControl scheme using

# steps of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-1 30

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation

# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file beedleepanel.out -load -node $endnode -dof 2 disp

#recorder Element -file examplef.out -ele 1 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements
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print node $endnode

print ele

F.5 Elasto-plastic portal frame with elastic panel zone (Baker

and Roderick [9])

# OpenSees Elasto-Plastic-Baker Frame

# Using 1D Nonlinear Beam-Column elements and sections.

# by Louie L. Yaw - 4-3-08

#

# Units: kips, in, sec

# ------------------------------

# Start of model generation

# ------------------------------

wipe

# Create ModelBuilder (with two-dimensions and 3 DOF /node

# for beam column elements)

model BasicBuilder -ndm 2 -ndf 3

# Create nodes & add to Domain - command: node nodeId xCrd yCrd

set dispnode 16

set vertnode 11

node 1 0.0 0.0

node 2 0.0 23.0

node 3 0.0 46.0

node 4 0.0 69.0

node 5 0.0 92.0

node 6 0.0 96.0

node 7 4.0 96.0

node 8 27.0 96.0

node 9 50.0 96.0

node 10 73.0 96.0

node 11 96.0 96.0

node 12 119.0 96.0

node 13 142.0 96.0

node 14 165.0 96.0

node 15 188.0 96.0

node 16 192.0 96.0

node 17 192.0 92.0

node 18 192.0 69.0

node 19 192.0 46.0

node 20 192.0 23.0
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node 21 192.0 0.0

# Set the boundary conditions - command: fix nodeID xResrnt?

# yRestrnt? zRestrnt

fix 1 1 1 0

fix 21 1 1 0

puts "Nodes and Supports Defined"

# Define materials for beam/column elements

# -----------------------------------

#Steel Material

uniaxialMaterial Hardening 1 29000.0 33.0 150.0 0.0

#Transformation tag definition

geomTransf Linear 1

#SECTION 1 DEFINED HERE

#Define the wide flange section

set bf 4.0

set tw 0.25

set tf 0.422

set d 8.0

# START FIBER DEFINITION

set nfdw 16; # number of fibers along web depth

set nftw 1; #number of fibers along web thickness, more if

#bidirectional response wanted

set nfbf 1; # use 16 when bidirectional response being modeled

#number of fibers along flange width (you want this many in

#a bi-directional loading)

set nftf 4; # number of fibers along flange thickness

set dw [expr $d - 2 * $tf]

set y1 [expr -$d/2]

set y2 [expr -$dw/2]

set y3 [expr $dw/2]

set y4 [expr $d/2]

set z1 [expr -$bf/2]

set z2 [expr -$tw/2]

set z3 [expr $tw/2]

set z4 [expr $bf/2]

#



175

section fiberSec 1 {

# nfIJ nfJK yI zI yJ zJ yK zK yL zL

patch quadr 1 $nfbf $nftf $y1 $z4 $y1 $z1 $y2 $z1 $y2 $z4

patch quadr 1 $nftw $nfdw $y2 $z3 $y2 $z2 $y3 $z2 $y3 $z3

patch quadr 1 $nfbf $nftf $y3 $z4 $y3 $z1 $y4 $z1 $y4 $z4

}

#END SECTION 1 DEFINITION

# Define elements

# ---------------

# Create nonlinear beamcolumn-command: element $type $elemtag $node1

# $node2 $#intgrpts $sectag $transftag

element dispBeamColumn 1 1 2 5 1 1

element dispBeamColumn 2 2 3 5 1 1

element dispBeamColumn 3 3 4 5 1 1

element dispBeamColumn 4 4 5 5 1 1

#element dispBeamColumn 5 5 6 5 1 1

#element dispBeamColumn 6 6 7 5 1 1

element elasticBeamColumn 5 5 6 5.165 29000 56.18 1

element elasticBeamColumn 6 6 7 5.165 29000 56.18 1

element dispBeamColumn 7 7 8 5 1 1

element dispBeamColumn 8 8 9 5 1 1

element dispBeamColumn 9 9 10 5 1 1

element dispBeamColumn 10 10 11 5 1 1

element dispBeamColumn 11 11 12 5 1 1

element dispBeamColumn 12 12 13 5 1 1

element dispBeamColumn 13 13 14 5 1 1

element dispBeamColumn 14 14 15 5 1 1

#element dispBeamColumn 15 15 16 5 1 1

#element dispBeamColumn 16 16 17 5 1 1

element elasticBeamColumn 15 15 16 5.165 29000 56.18 1

element elasticBeamColumn 16 16 17 5.165 29000 56.18 1

element dispBeamColumn 17 17 18 5 1 1

element dispBeamColumn 18 18 19 5 1 1

element dispBeamColumn 19 19 20 5 1 1

element dispBeamColumn 20 20 21 5 1 1

#element dispBeamColumn 11 11 12 5.165 29000 56.18 1

#element dispBeamColumn 12 12 13 5.165 29000 56.18 1

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 100

set Pmax 14.0
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set uniload 1.0

set loadinc [expr $Pmax/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce zMoment

#the lateral point load

load $dispnode [expr $uniload] 0.0 0.0

#the vertical point load

load $vertnode 0.0 [expr -$uniload] 0.0

}

puts "Loads Defined"

# ------------------------------

# End of model generation

# ------------------------------

# ------------------------------

# Start of analysis generation

# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD

# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is used as

# homogeneous constraints

constraints Plain

# Create the integration scheme, the LoadControl scheme using

# steps of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-1 30

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation
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# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file bakerpvsu1D.out -load -node $dispnode -dof 1 disp

#recorder Element -file examplef.out -ele 1 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements

print node $dispnode

print ele

F.6 Elastic cantilever beam using 1D co-rotational beam el-

ement

# OpenSees co-rotational beam element

# by Louie L. Yaw - 1-24-08

#

# Units: kips, in, sec

# ------------------------------

# Start of model generation

# ------------------------------

# Create ModelBuilder (with two-dimensions and 3 DOF /node)

model BasicBuilder -ndm 2 -ndf 3

# Create nodes & add to Domain - command: node nodeId xCrd yCrd

node 1 0.0 0.0

node 2 1.0 0.0

node 3 2.0 0.0

node 4 3.0 0.0

node 5 4.0 0.0

node 6 5.0 0.0

node 7 6.0 0.0

node 8 7.0 0.0

node 9 8.0 0.0

node 10 9.0 0.0

node 11 10.0 0.0
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# Set the boundary conditions - command: fix nodeID

# xResrnt? yRestrnt?

fix 1 1 1 1

puts "Nodes and Supports Defined"

# Define materials for truss elements

# -----------------------------------

# Create Elastic material prototype - command:

# uniaxialMaterial Elastic matID E

uniaxialMaterial Elastic 1 1e2

# Create the type of geomtransformation - command:

# geomTransf transftype transtag

geomTransf Co-rotational 1

# Define elements

# ---------------

# Create beam elements - command: element elasticbeamcolumn

# eleID node1 node2 A E I transfTag

element elasticBeamColumn 1 1 2 4 100.0 1.33333 1

element elasticBeamColumn 2 2 3 4 100.0 1.33333 1

element elasticBeamColumn 3 3 4 4 100.0 1.33333 1

element elasticBeamColumn 4 4 5 4 100.0 1.33333 1

element elasticBeamColumn 5 5 6 4 100.0 1.33333 1

element elasticBeamColumn 6 6 7 4 100.0 1.33333 1

element elasticBeamColumn 7 7 8 4 100.0 1.33333 1

element elasticBeamColumn 8 8 9 4 100.0 1.33333 1

element elasticBeamColumn 9 9 10 4 100.0 1.33333 1

element elasticBeamColumn 10 10 11 4 100.0 1.33333 1

puts "Elements Defined"

# My Own Definitions for numLoad Steps, Pmax, loadinc per step

set nsteps 80

set Pload -10.0

set uniload 1.0

set loadinc [expr $Pload/$nsteps]

# Define loads

# ------------

# Create a Plain load pattern with a linear TimeSeries

pattern Plain 1 "Linear" {

# Create the nodal load -command: load nodeID xForce yForce

load 11 0 $uniload 0

}

puts "Loads Defined"

# ------------------------------

# End of model generation
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# ------------------------------

# ------------------------------

# Start of analysis generation

# ------------------------------

# Create the system of equation, a SPD using a band storage scheme

system BandSPD

# Create the DOF numberer, the reverse Cuthill-McKee algorithm

numberer RCM

# Create the constraint handler, a Plain handler is used as

# homogeneous constraints

constraints Transformation

# Create the integration scheme, the LoadControl scheme using

# steps of loadpercent of total

integrator LoadControl $loadinc

# Specify Test For Convergence Criteria

test NormUnbalance 1.0e-4 10

# Create the solution algorithm, a Linear algorithm is created

algorithm Newton

# create the analysis object

analysis Static

# ------------------------------

# End of analysis generation

# ------------------------------

# ------------------------------

# Start of recorder generation

# ------------------------------

# create a Recorder object for the nodal displacements at node 4

recorder Node -file example.out -load -node 11 -dof 2 disp

recorder Element -file examplef.out -ele 2 force

# --------------------------------

# End of recorder generation

# ---------------------------------

# ------------------------------

# Finally perform the analysis

# ------------------------------

# Perform the analysis

analyze $nsteps

# Print the current state at node 2 and at all elements

print node

print ele
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Appendix G

Analysis Program and User

Manual

In this appendix, a summary of the meshfree research code used to generate the results in

many of the examples of this dissertation is presented. It is the intent of the summary to

describe the major aspects of the code that were implemented as part of this research. Also

a user manual is given in the section on input.

G.1 Meshfree co-rotational analysis program implementa-

tion

The meshfree co-rotational analysis program is divided into the four basic parts of input,

preprocessing, analysis, and post processing. Each of these are described along with relevant

implementation details in the following subsections. The description provided below is

based on a load control scheme, however, certain details required for displacement control

are mentioned as well.



181

G.1.1 Input - user manual

Introduction

This section describes the input file required for execution of the Element Free Galerkin

Analysis Program (EFGAP). EFGAP is a small strain plane stress J2 elasto-plasticity

“meshfree” analysis program. It is meshfree in the sense that the interpolation functions

are maximum-entropy basis functions and hence are not dependent on the initial mesh used

to generate the layout of nodes. It is meshfree also in the sense that integration of the weak

form of the elasto-statics problem is performed by using nodal integration over Voronoi

diagram cell boundaries enclosing each node in the domain. EFGAP is also implemented

using a co-rotational formulation so that even though strains are small, large displacements

and rotations are allowed. EFGAP has many built in options that are specified by the user

in the main input file. This main input file is explained first.

Main Input File

The executable file for EFGAP is run in a windows console. The user is immediately

prompted for the input file. The input file can have a name of up to 80 characters in

length. The input file itself starts with a descriptive title followed by a variety of sections

each of which contain numeric data. Each of the sections must have a descriptive title of

up to 90 characters in length. Descriptive titles are required in the input file to help locate

numeric data and to make editing more manageable. On lines following the descriptive title

numeric data must be provided with one or more spaces or a return between each numeric

value. Numeric data must never be on a descriptive title line or it is assumed to be part of

the descriptive title. A description of a typical input file is given below. Note that the data

descriptions under each section are given in the required order that they must be provided.
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Also, be sure to enter integers as integers (i.e., without decimals as shown in the examples

below).

1. Model Title

Title – A model title is required on the first line of the input file. A descriptive title

of up to 90 characters in length is allowed. An example is shown in the following box.

Example

EFGAP input file - Model Cantilever Beam (January 1, 2007)

2. MLS Variables

Title – A title for this section and all subsequent sections is required. Titles must be

on one line and cannot exceed 90 characters in length.

α – MLS variable α adjusts the support radius of the MLS shape functions. The

value should be based on the quadrilateral in the mesh (if a mesh is used for laying

out the grid of nodes) that gives the biggest value when the longest side length is

divided by the shortest side length of the quadrilateral, this then defines the worst

aspect ratio. If the aspect ratio increases the value of α will likely need to increase

or the program may fail to execute. The user should always try to use the smallest

value of α possible. Values as low as 0.9 have been successful for aspect ratios of 1.0.

If a warning arises during execution of EFGAP, that the A matrix is singular, then it

is likely that the value of α should be increased. It is recommended that the aspect

ratio be kept close to 1.0 as much as possible for better accuracy and reduced analysis

time. Values greater than 2.0 should be avoided. In the example shown below the

value of α is 1.0.

Example
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MLS variables

1.0

3. Analysis variables

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of load increments – the number of load increments in which the load is to

be applied. The first load increment will be the user estimated yield load, Py. After

the first load increment is applied the remaining uniform load increments add up

to Pmax − Py. This scheme is devised to help minimize the amount of time wasted

calculating elastic load steps.

Pmax – The maximum load to be applied, unless collapse occurs before this load is

reached.

Py - The estimated yield load. Actually this should be something less than the yield

load. This helps minimize the analysis time wasted on the elastic loading phase. Al-

though this may not be known at first one may estimate the value or run the analysis

with a small number of load increments first and get an estimate of the yield load.

Collapse Residual – The residual at which collapse is considered to have occurred. If

a residual during Newton-Raphson iterations exceeds this value the program writes

to file the data from the last stable load increment and the program terminates. Ba-

sically this is a collapse criteria. A good value is 1000.0. If load steps are sufficiently

small the residuals stay small and this criteria is not violated.

Maximum Number of Iterations – The maximum number of Newton-Raphson itera-

tions that are to be used to try and achieve equilibrium. If equilibrium is not reached

the program stops iterations and goes on to the next load increment. Such a case

likely means that final results are questionable and probably are not valid. In such a
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case the program will report that the equilibrium tolerance has not been met within

the maximum number of iterations allowed. A value of 200 works fine and is really

much bigger than necessary. If many iterations are required a convergence problem is

likely the result and step size needs to be reduced or something is probably incorrect

in the input file.

Equilibrium Tolerance – The residual below which Newton-Raphson iterations are

considered to have achieved equilibrium for the current load increment. This seems

to give acceptable results with a value as large as 0.1. The smaller the residual of

course the more iterations and hence time required. Values smaller than 0.1 do not

appear to give significantly different results.

Displacement Node – One of the output files is a load displacement file. The user

must provide the node number at which to track displacement so that the load dis-

placement file is created.

Displacement Node DOF – the degree of freedom of displacement to track at the Dis-

placement Node. A value of 0 is for the x degree of freedom and a value of 1 indicates

the y degree of freedom.

Example

Analysis Variables

100 12.0 9.0 10.0 200 0.1 98 1

4. Material Properties

Title – The title must be on one line and cannot exceed 90 characters in length.

H̄ – The linear hardening modulus for isotropic or kinematic hardening depending on

the value of θ specified (see Appendix E).

K̄∞ – The saturation stress (equivalent to ultimate stress σu) for the case of isotropic
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exponential hardening. In other words the maximum stress that can be achieved if

only exponential hardening is used.

K̄o – The yield stress (commonly denoted as σy).

θ – A parameter in the range [0, 1] that allows specification of different types of

hardening behavior (see Appendix E).

δ – A parameter that dictates how rapidly the saturation stress is reached after first

yield. In other words, the bigger the value the smaller the strain required to reach

the saturation stress after first yield.

ν – Possion’s ratio.

E – Young’s modulus of elasticity.

σy – The yield stress for the material model. This value and Ko should be identical

in value.

αs – The stabilization factor, a value of 1.0 is usually used.

µs – The µ value for the modulus matrix Cs used to provide stabilization for the

nodally integrated stiffness matrices. Per the recommendations of Puso et al. [72]

this value should be set to the value H̄/2 in the case of linear hardening. In the case

of exponential hardening this value should be set to 0.5δ(K∞−Ko), which is one half

the slope value of the exponential hardening curve at the yield strain, εy. Using a

µs value less than zero sets the stabilization modulus matrix, Cs, equal to the elastic

modulus matrix, Celast.

Example

Material Properties

0.0 58.0 36.0 1.0 16.3 0.3 29000.0 36.0

1.0 179.0

5. Mesh Variables
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Title – The title must be on one line and cannot exceed 90 characters in length.

Number of Nodes – The number of nodes in the mesh.

Number of Elements – The number of quadrilateral elements in the mesh.

Mesh Input File Name – The file name of the generated mesh to be used in the

model. Note carefully that the input file name must be on a separate line all by itself

as shown in the example below. The required generated mesh file format is described

later. Note that this mesh is used mostly to have node coordinates provided in a

uniform pattern over the domain and for plotting purposes.

Example

Mesh Variables

357 300

beam357.dat

6. Displacement Boundary Conditions

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of Active Nodes – The number of individual nodes at which the user wants

to specify displacement boundary conditions. If no active nodes are to be specified

use a value of zero.

Active Nodes – Active node numbers must be given. The quantity of active node

numbers must match the value of Number of Active Nodes. If zero active nodes are

specified, proceed to the next item of input.

Number of Active Lines – The number of lines at which all nodes along each line

are to be marked as active and hence can have displacement boundary conditions

prescribed. This allows a whole edge of a model to be selected by a line along the

edge. This is helpful when a whole edge of nodes is to be pinned or to have rollers.

At least one active line must be specified even if the line crosses no nodes.
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Active Lines – Active lines must be given as two pairs of coordinates. In other words,

a start coordinate for the line and an end coordinate for the line. The quantity of

active lines provided in this manner must match the value of Number of Active Lines.

Active x displacement – All active nodes (individual or along active lines) will be

marked as zero displacement nodes or as free nodes in the x direction. A value of 0

indicates a zero displacement node and a value of 1 indicates a free node.

Active y displacement – All active nodes (individual or along active lines) will be

marked as zero displacement nodes or as free nodes in the y direction. A value of 0

indicates a zero displacement node and a value of 1 indicates a free node.

Number of Displacement Nodes – The number of individual nodes at which the user

wishes to specify displacement boundary conditions. These nodes must be in the list

of nodes indicated previously as either an active node or on an active line. The dis-

placement boundary conditions specified on these nodes supersede any displacement

boundary conditions previously made on these individual nodes (such as in the active

x or active y displacement specification). Note that the following three variables must

be given for each displacement node (the first triple must be given, then the next,

and so on, see the example).

Node Number – The node number of a node at which displacement boundary condi-

tions are to be given.

X displacement – The value of the specified displacement in the x direction. A value

of 9999.0 specifies that the node be free in the x direction.

Y displacement – The value of the specified displacement in the y direction. A value

of 9999.0 specifies that the node be free in the y direction. (Note: for the co-rotational

displacement control version of EFGAP the x and y displacement specification must

be either 0.0 for fixed or 9999.0 for free, i.e. nonzero displacements are not allowed.)
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Example

Displacement Boundary Conditions

2

10 98

1

10.56 -1.0 10.56 250.0

1 1

2

10 0.0 0.0

98 0.0 9999.0

7. Traction Boundary Conditions

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of Traction Paths – The user must specify the number of paths along which

tractions are specified.

Number of Traction Nodes Along Path 1 – The number of nodes along traction path

number 1.

Direction of Traction at Path 1 – Traction points along the x axis for a value of 0 and

along the y axis for a specified value of 1.

Traction Type at Path 1 – A value of 1 is a uniform traction, a value of 2 gives a

parabolic traction.

Traction Load Factor at Path 1 - A load factor with a plus or minus sign to orient it

in the positive or negative sense. The total force of the traction will be Pmax if the

load factor is 1.0 (as long as collapse does not prevent Pmax being reached).

.

.

.

Number of Traction Nodes Along Path n – The number of nodes along traction path
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number n.

Direction of Traction at Path n – Traction points along the x axis for a value of 0

and along the y axis for a specified value of 1.

Traction Type at Path n – A value of 1 is a uniform traction, a value of 2 gives a

parabolic traction.

Traction Load Factor at Path n - A load factor with a plus or minus sign to orient it

in the positive or negative sense. The total force of the traction will be P if the load

factor is 1.0 (as long as collapse does not prevent P being reached).

Node 1 path 1 to Node n path 1 – The sequence of nodes in path 1.

.

.

.

Node 1 path n to Node n path n – The sequence of nodes in path n.

Example

Traction Boundary Conditions

2

3 1 1 -1.0

3 0 1 1.0

104 105 106

7 129 5

8. Voronoi Diagram Generation Variables

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of perimeter nodes – The user must provide a sequence of perimeter nodes.

These nodes must be in CCW order around the model perimeter. The lines con-

necting these nodes, as they proceed CCW around the model, must past through

all nodes on the boundary of the domain. Hence not all the nodes on the bound-
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ary must be included in this number of perimeter nodes. This is just the number of

nodes sufficient such that the lines connecting these perimeter nodes pass through all

boundary nodes. During preprocessing boundary nodes on these perimeter lines are

automatically determined.

Perimeter node number 1 – The first node in the sequence.

.

.

.

Perimeter node number n – The nth node in the sequence.

Perimeter node number 1 – The first node in the sequence is repeated.

Example

Voronoi Diagram Generation Variables

9

0 1 3 6 8 9 5 4 0

9. Thickness and Special thickness lines

Title – The title must be on one line and cannot exceed 90 characters in length.

Overall Thickness – A constant thickness initially specified over the entire domain.

Number of thickness lines – The number of lines along which nodes are to have a

thickness specified different than the overall thickness.

Node Number 1 Line 1 – The first node number of a line along which a special

thickness is to be specified.

Node Number 2 Line 1 – The second node number of a line along which a special

thickness is to be specified.

Special thickness Line 1 – The thickness specified for all nodes along line 1 including

start and end nodes.



191

.

.

.

Node Number 1 Line n – The first node number of a line along which a special

thickness is to be specified.

Node Number 2 Line n – The second node number of a line along which a special

thickness is to be specified.

Special thickness Line n – The thickness specified for all nodes along line n including

start and end nodes.

Example

Thickness and Special thickness lines

0.545

10

8 12 3.0

0 5 4.01

5 6 4.01

6 7 4.01

2 4 4.01

1 4 4.01

70 74 2.6238

34 38 2.6238

231 239 1.0

239 247 1.0

10. Read from data files directives

Title – The title must be on one line and cannot exceed 90 characters in length.

bIi(xL) flag – 0 means do not read bIi(xL) data file, 1 means read the bIi(xL) data

file. Always use 0 for this flag.

φ flag – 0 means do not read φ data file, 1 means read the φ data file. Always use 0

for this flag.
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Example

Read from data files directives

0 0

11. Read displacement increments (*if displacement control version of EFGAP used). If

displacement control is being used the number of load increments is not used. Instead

the number of displacement increments controls the incremental iterative analysis.

The incremental displacements control the displacement node in the degree of freedom

direction specified. Also, Pmax is in general not reached, but rather the maximum

value of P is dependent on the final specified displacement at the displacement node.

The input required is as follows.

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of displacement increments – The number of displacement increments to be

read from the displacement increment data file.

Increment increase factor – The displacement increment data file may have for ex-

ample 10 displacement increments. The increment increase factor should be 1 if no

change to the increments is desired. However, if the 10 increments are to be cut in

half the increment increase factor should be 2. This factor allows the user to basi-

cally divide up the displacement increment data file into finer increments, rather than

having to edit the data file. The displacement increment factor should be an integer

greater than or equal to 1.

Name of displacement increment data file – A text file with one displacement incre-

ment per line in the file.

Example
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Read file of displacement increments

30 1

dispincs.txt

12. Read constant traction input (*if displacement control co-rotational version used)

Constant tractions may be specified at certain nodes. These tractions are applied at

the beginning of the analysis and are held constant throughout the nonlinear analysis

procedure. The input required is as follows.

Title – The title must be on one line and cannot exceed 90 characters in length.

Number of constant traction paths – The number, k, of constant traction paths to be

specified.

Number of load increments – The number of load increments used to apply the trac-

tion paths. Ideally this could be performed in one step, since the total traction loads

should not exceed yield. However, within a co-rotational formulation the second or-

der effects sometimes dictate that several load increments for application of constant

tractions is better.

Number of traction nodes for path 1 – The number of nodes along the path of trac-

tion 1.

Constant traction direction for path 1 – The direction of the traction for traction

path 1. A value of 0 is for x direction and value of 1 is for y direction.

Constant traction type for path 1 – A value of 1 gives a uniform traction. A value of

2 gives a parabolic traction.

Load factor for path 1 – A load factor for the traction along load 1. The load factor

here is not dependent on the Pmax value previously input. The load factor here should

have the correct magnitude and sign so that the load factor equals the desired total
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load caused by the traction.

.

.

.

Number of traction nodes for path k – The number of nodes along the path of trac-

tion k.

Constant traction direction for path k – The direction of the traction for traction

path k. A value of 0 is for x direction and value of 1 is for y direction.

Constant traction type for path k – A value of 1 gives a uniform traction. A value of

2 gives a parabolic traction.

Load factor for path k – A load factor for the traction along load k. The load factor

here is not dependent on the Pmax value previously input. The load factor here should

have the correct magnitude and sign so that the load factor equals the desired total

load caused by the traction.

Node 1 path 1 to Node n path 1 – The list of node numbers in order for traction path

1.

.

.

.

Node 1 path k to Node n path k – The list of node numbers in order for traction

path k.

Example
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C-tractionBCs

1 1

5 0 1 -9.57

14 9 5 2 0

Mesh Input File

The mesh input file must be in the following format.

Mesh input file in variable form example

Number of Nodes Number of Elements

Number of Dimensions(2 in this case)

Node 1 xcoordinate ycoordinate

.

.

.

Node n xcoordinate ycoordinate

Element 1 element type node1 node2 node3 node4

.

.

.

Element n element type node1 node2 node3 node4

Note that element nodes must be consistently in CW order or consistently in CCW

order. The node numbers and element numbers in the mesh file must start at 1. EFGAP

will automatically put the element nodes into CCW order regardless of the order given in

the mesh input file. EFGAP also renumbers the nodes and elements starting at 0. Always

use element type of 1 (although it probably doesn’t matter since this value is not used but

must be present in the input file). Below is a numerical example of a mesh file.

Mesh input file example (6 nodes and 2 elements)
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6 2

2

1 0.0 0.0

2 2.0 0.0

3 4.0 0.0

4 0.0 2.0

5 2.0 2.0

6 4.0 2.0

1 1 1 2 5 4

2 1 2 3 6 5

Mistakes to Avoid

1. Mesh file node numbers start at 1. However, in the EFGAP main input file node

numbering starts at 0. Hence node 1 in the mesh file is node 0 in the EFGAP input

file.

2. Mesh file element numbers start at 1. However, in the EFGAP main input file element

numbering starts at 0. Hence element 1 in the mesh file is element 0 in the EFGAP

input file.

3. Setting Py too high so that the first load step causes yield. This will often cause

immediate collapse and the program terminates with no displacement calculations

provided.

4. Use thplot.m to verify that model thicknesses are specified correctly

5. Be sure to input the correct boundary for the model so that the Voronoi diagram is

generated correctly.

Error Messages

1. A matrix is singular. Possible Solution: The variable α should be made larger.
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Figure G.1: Example model for example input file.

2. Edge list full. Edge list should be checked. Voronoi diagram generation has likely

failed. There is likely an error in the input. Plotting the Voronoi diagram may lend

some clues to the problem.

3. If no error message is provided by EFGAP, and the system crashes, it is very likely an

error in the input file. The user should check the input file carefully. Plot preliminary

output if available.

An Example Model and Input File

An example input file, for the case of load control, is given next for the model shown in

Figure G.1. A twelve node cantilever is loaded with a downward vertical load at its free

end (at right). At the left end of the cantilever nodes 10 and 11 are pinned to create fixity.

Start of Input File Example

Title - Test Cantilever 12 Nodes (12-5-07)

MLS Variables (alpha)
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1.0

Analysis Variables(nldincs,Pload,Py,clpseresid,maxiter,eqtol,dispnd,dof)

20 20 0.5 1.0e6 10 1.0e-2 1 1

Matl Props(Hbar,Kinf,Ko,theta,delta,nu,E,sigmayield,sfactor,mus)

0.0 55.0 36.0 1.0 18.0 0.0 10000.0 36.0

1 171.0

Mesh Variables(ngnodes,nelems,mfilename)

12 5

cant12.m

Disp BC’s(nanodes,anodes,nalines,alines,axdisp,aydisp,ndispnds,nnum,dx,dy)

0

1

0.0 0.0 0.0 6.0

0 0

0

Traction BC’s(ntrcpaths,ntrctnodespk,tdirectpk,ttypepk,Lfact,nd1pk..ndnpk)

1

2 1 1 -1.0

0 1

Voronoi Diagram Generation(npnds,nodes in ccw order, 1st & last node same)

5

0 1 11 10 0

Thickness & Special thickness lines(thickness,nlines,node1Lk,nodenLk,thLk)

2.0

1

0 1 2.0

Read from data files directives(read bIi_xL, read nodal phi vals,0 n 1 y)

0 0

End of Input File

G.1.2 Preprocessing

Preliminary calculations that are not repeated throughout the analysis are completed first.

Many of these results are stored for use during the analysis phase, although some are used

immediately during preprocessing. Unless noted otherwise the preprocessing is accom-

plished entirely within the analysis program.

Renumbering, by the reverse Cuthill McGee (RCM) algorithm, of the generated nodes is

one item of preprocessing which is done outside of the analysis program. This preprocessing
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is essential for two reasons. First, renumbering of the nodes by the RCM algorithm causes

the stiffness matrix to have a significantly reduced bandwidth. Solution of the resulting

system of algebraic equations is more computationally efficient because the solution process

using a standard LU decomposition method can take advantage of the banded nature of the

stiffness matrix. Figure G.2a illustrates the location of nonzero stiffness matrix (438x438

size) entries for a meshfree model with 219 nodes in which no care is taken to renumber the

model nodes. Figure G.2b illustrates the same meshfree model stiffness matrix after using

the RCM node renumbering scheme. The banded nature of the resulting matrix is evident.

As a result of the renumbering, the solution of the algebraic equations for this example is

almost 18 times faster, which is a significant computational improvement. The second ad-

vantage of the renumbering is that only the banded portion of the stiffness matrix is stored in

memory. In this example, the banded matrix requires approximately one fifth the memory

required for the full 438x438 matrix. These computational and memory advantages become

even more pronounced as the matrix size increases. In fact, if these issues are not taken into

account a nonlinear analysis soon becomes computationally prohibitive and perhaps impos-

sible due to memory limitations. For these reason a banded storage LU decomposition solver

was created as part of this dissertation. A C++ implementation of the RCM algorithm is

available at http://people.scs.fsu.edu/~burkardt/cpp_src/rcm/rcm.html.

The only other part of preprocessing not done within the analysis program is the mesh

generation. This is done with Professor Mark Rashid’s simple quadrilateral mesh generator.

Several comments are worth noting regarding the mesh. Originally a quadrilateral mesh was

used in conjunction with the MLS basis functions and the method of continuous blending

to enforce essential boundary conditions. Hence, there was a dependence on having a mesh.

The max-ent basis functions allow easier imposition of essential boundary conditions and

hence do not require the method of continuous blending. So, even though a mesh is still
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Figure G.2: Plot of nonzero entries in example 438x438 stiffness matrix: (a) results without
renumbering of nodes; (b) results with renumbering of nodes by the Reverse Cuthill McGee
algorithm.

a required part of the input, the program is mesh independent for the following reasons.

Element connectivity and the relationship between nodes and elements for the mesh is never

used inside the analysis program. Furthermore, the benefit of using a quadrilateral mesh is

three-fold. First, the mesh is helpful for discretizing the domain and observing the aspect

ratio of the node spacing. If, for example, one observes that in the x direction the spacing

is much larger than in the y direction it can explain why the program may fail to run. This

may be due to the following reason. If the aspect ratio is severe the set of nearest neighbors

might all be along a vertical line and the max-ent shape function generation routines fail. Or

if they do not fail the global stiffness matrix may not have sufficient interdependence along

the x direction. If this happens the solution is to increase the support radius parameter α

or change the mesh to have an aspect ratio closer to 1.0, which tends to be more efficient.

Second, triangles are easily generated from the quadrilateral elements merely by adding

diagonals. The resulting triangular data structure is then in a usable form for input to the

reverse Cuthill McGee algorithm. Third, it is helpful to plot the mesh grid in the deformed
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configuration and verify that spurious modes are avoided. Essentially, it is a visualization

tool.

Some output to file is written during preprocessing. Hence if the program crashes dur-

ing preprocessing sometimes it is helpful to look at the preliminary output which lends

clues to errors in the input. Specifically, “xnodes.txt” provides the nodal coordinates,

“elements.txt” provides the element connectivity, and “th.txt” provides the specified thick-

nesses for every node in the domain. Matlab scripts are used to load these files and plot

information to visually verify correct input.

The support radius is generated for every node in the domain. It is somewhat arbitrary,

but it is computationally best to keep the support radius as small as possible. In this

dissertation the support radius for a particular node is chosen as α times the distance to

the fifth nearest neighboring node.

The elastic modulus matrix is generated for the case of plane stress. This is later used

to initialize the stored modulus matrix for every node in the domain.

The generation of the Voronoi diagrams is completed by a Voronoi diagram generator

provided on the internet by O’Sullivan (http://www.skynet.ie/%7Esos/masters.htm).

The program in its given form only generates a Voronoi diagram for the nodes. The output

consists of the list of Voronoi diagram lines or cell edges. Hence, to make this information

useful the following items are implemented.

1. The user input boundary of the discretized domain clips any Voronoi diagram edges

that cross it and the list of edges is augmented to include the boundary edges. This

is necessary for every cell on the boundary.

2. For each node a list of Voronoi cell edges is generated in counter-clockwise order.

3. The length of every Voronoi cell edge is calculated and stored.
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4. The coordinates of the second endpoint of every Voronoi cell edge in counter-clockwise

order is determined from the list of edges for every node.

5. The vector components of the unit normal to every Voronoi cell edge is generated in

counter-clockwise order.

6. The Voronoi cell area of every node in the domain is calculated. This is done as

follows. Each Voronoi cell edge and the node associated with the Voronoi cell make

a triangle. The Voronoi cell area is then just the sum of triangular areas. For an

example Voronoi cell with triangular subcells, see Figure 4.3(b). The formula for area

of an arbitrary triangle in space is A = (s(s − a)(s − b)(s − c))0.5, where a, b, c are

the three triangle side lengths and s = 0.5(a+ b+ c).

7. The coordinates for the centroid of every Voronoi cell is calculated. This is accom-

plished by the following method. Each Voronoi cell has N vertices. Let (xi, yi) be

the coordinates for vertex i. Upon defining the vertex coordinates (xN , yN )=(x0, y0),

the x and y coordinates of the centroid are found by the following expressions

Cx =
1

6A

N−1
∑

i=0

(xi+xi+1)(xiyi+1−xi+1yi), Cy =
1

6A

N−1
∑

i=0

(yi+ yi+1)(xiyi+1−xi+1yi),

(G.1)

where A is the Voronoi cell area.

8. The Voronoi diagram edges are written to the file “voronoi.txt”. If necessary a matlab

script is used to plot the diagram to verify it is generated correctly.

9. The Voronoi cell centroid coordinates are also written to the file “voronoicent.txt”.

With the exception of Voronoi cell centroid, all of these items associated with the generated

Voronoi diagram are required for nodal integration. It took a significant amount of work
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to generate the information indicated above. A significant and difficult amount of com-

putational geometry is associated with matching Voronoi edges to nodes and constructing

the list of edges in counter-clockwise order for each node. It was also very challenging to

clip the Voronoi edges that crossed the boundary and augment the edge list with boundary

edges. It does not appear that a Voronoi diagram generator exists that already provides

all of this information in an organized form.

Constructing a neighbor list for every node in the domain is beneficial for bookkeeping,

computational efficiency and reduction of memory use. If such a list is known for every node

only those nodes need be used during construction of the stiffness matrix. Furthermore,

only the bIa values in the neighbor list associated with the nodes need be stored in memory.

Thus a neighbor list and number of neighbors for each node allows for a helpful bookkeeping

scheme. The scheme implemented for constructing the neighbor list, for a given node L,

is as follows. First, determine the distance, dfv, from node L to its farthest Voronoi cell

vertex. Second, check every node M in the domain and include node M as a neighbor if

the support radius, ρM plus dfv is greater than the distance, dLM , from node L to node

M (see Figure G.3). This scheme is guaranteed to work. Certain nodes, that are not true

neighbors, are likely included in this scheme because of the liberal use of the distance to

the farthest Voronoi cell vertex. However, these extra “neighbors” are few, have minimal

effect on computational efficiency and have zero contribution when assembling the stiffness

matrix.

The bIa(x) values are generated and stored for every node in the domain based on

integration around the Voronoi cells. These are used every time the stiffness matrix is

generated during the analysis. The bcIa(x) values are generated and stored for every triangle

in every node’s Voronoi cell. These values are used to stabilize the stiffness matrix every

time it is generated.
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Figure G.3: Geometry used to determine list of neighbors for node L.

The total force vector is created. This vector contains the forces due to the tractions

if the entire load Pmax is applied to the structure. In fact, for the load control scheme all

traction magnitudes are referred to Pmax and are scaled as necessary by the traction load

factor. For the displacement control scheme the total force vector is still constructed, but

the final load is dependent on the specified displacement control at the chosen degree of

freedom of a selected node.

G.1.3 Analysis

The nonlinear analysis takes place within the analysis phase. After initialization of the

necessary variables the analysis begins with the loop over each load step. The basic al-

gorithm is equivalent to that given previously in Section 5.2.5 and hence is not repeated

here. Essentially the analysis provides an implicit Newton-Raphson scheme at the global

level and an implicit Newton-Raphson scheme with radial return at the constitutive level

when inelastic material behavior is included. During the analysis information is printed

to screen to indicate progress. Information written to screen sometimes provides clues to
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the problem if the program crashes. During the nonlinear analysis the current load step

number is printed to screen followed by the global equilibrium residual during each itera-

tion. After the iterations for a given load increment satisfy the equilibrium tolerance the

number of iterations required is printed to screen. This allows the user to observe the rate

of convergence and observe when convergence problems possibly arise. The time required

for the analysis is output to screen at the end. Until the user hits return, it is possible to

scroll back up in the console window and look over various phases of the analysis.

G.1.4 Postprocessing

The following standard output of results is currently part of the analysis program. The

load versus displacement response is written to the file “pvsu.txt”. Stresses and strains at

the end of the analysis are given in the files “sigmaxx.txt” and “strainxx.txt”. The final x

and y nodal displacements are written to the file “disp.txt”.

Given the pre and post processing output the following information is plotted by using

matlab scripts.

1. Load versus displacement (nplot.m)

2. Structure deflected shape (eplot.m)

3. Stresses, σxx, σyy and σxy (splot.m)

4. Strains, εxx, εyy and εxy (explot.m)

5. Voronoi diagram (vplot.m)

6. Thickness plot (thplot.m)


