Undamped Vibration of a Beam

Louie L. Yaw

Walla Walla University
Engineering Department

PDE Class Presentation June 5, 2009

Problem - Undamped Transverse Beam Vibration

Derivation of PDE

- Sum Forces Vertically, choosing + up

$$
\begin{equation*}
V-\left(V+\frac{\partial V}{\partial x} d x\right)+p(x, t) d x-m(x) d x \frac{\partial^{2} u}{\partial t^{2}}=0 \tag{1}
\end{equation*}
$$

- Sum Moments about o, choosing CCW as + rotation
$-M-V d x+p(x, t) \epsilon_{1} d x^{2}+m(x) \epsilon_{2} d x^{2} \frac{\partial^{2} u}{\partial t^{2}}+M+\frac{\partial M}{\partial x} d x=0$
Simplifying (1), and in (2) ignoring higher order terms in the limit as $d x \longrightarrow 0$ gives

$$
\begin{equation*}
\frac{\partial V}{\partial x}=p(x, t)-m(x) \frac{\partial^{2} u}{\partial t^{2}}, \quad \text { and } \quad V=\frac{\partial M}{\partial x} \tag{3}
\end{equation*}
$$

Derivation of PDE

- From mechanics of materials class, moment curvature relation (given here to save time)

$$
\begin{equation*}
M=E l(x) \frac{\partial^{2} u}{\partial x^{2}} \tag{4}
\end{equation*}
$$

- Substituting equation two of (3) and equation (4) into equation one of (3) and rearranging yields

$$
\begin{equation*}
m(x) \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left[E l(x) \frac{\partial^{2} u}{\partial x^{2}}\right]=p(x, t) \tag{5}
\end{equation*}
$$

- Equation (5) is the PDE governing the motion $u(x, t)$, subject to the external forcing function $p(x, t)$.

Solving the PDE

- Analytical solution difficult or impossible to obtain due to $m(x)$ and $I(x)$.
- Numerical methods such as Finite Element Method or Finite Differences can solve the PDE.
- Can simplify the PDE to demonstrate analytical methods by the following assumptions:
- $m(x)=m=$ constant along the beam length
- $I(x)=I=$ constant along the beam length
- $p(x, t)=0$, ie, no forcing function

Solving the PDE

- After simplifying assumptions the governing PDE (5) becomes

$$
\begin{equation*}
m \frac{\partial^{2} u}{\partial t^{2}}+E I \frac{\partial^{4} u}{\partial x^{4}}=0 \tag{6}
\end{equation*}
$$

- To make things pretty at the end, define $a^{2}=E I / m$, so that

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+a^{2} \frac{\partial^{4} u}{\partial x^{4}}=0 \tag{7}
\end{equation*}
$$

Solving the PDE

- Assume a solution of the following form

$$
\begin{equation*}
u(x, t)=\phi(x) q(t) \tag{8}
\end{equation*}
$$

- Substitute (8) into the PDE (7) to get

$$
\begin{equation*}
\phi \frac{\partial^{2} q}{\partial t^{2}}+a^{2} q \frac{\partial^{4} \phi}{\partial x^{4}}=0 \tag{9}
\end{equation*}
$$

- By separation of variables, observe that I.h.s and r.h.s must equal a constant, β^{4}

$$
\begin{equation*}
-\frac{1}{a^{2} q} \frac{\partial^{2} q}{\partial t^{2}}=\frac{1}{\phi} \frac{\partial^{4} \phi}{\partial x^{4}}=\beta^{4} \tag{1}
\end{equation*}
$$

Walla Walla (6). University

Solving the PDE

- From (10), two ODE's are obtained

$$
\begin{gather*}
\frac{\partial^{4} \phi}{\partial x^{4}}-\beta^{4} \phi=0 \tag{11}\\
\frac{\partial^{2} q}{\partial t^{2}}+\beta^{4} a^{2} q=0 \tag{12}
\end{gather*}
$$

- The respective solutions are

$$
\begin{gather*}
\phi(x)=A \sinh \beta x+B \cosh \beta x+C \sin \beta x+D \cos \beta x \tag{13}\\
q(t)=E \sin a \beta^{2} t+F \cos a \beta^{2} t \tag{14}
\end{gather*}
$$

- \therefore solution of the PDE (6) is $u(x, t)=\phi(x) q(t)$.

Solving a Boundary Value Problem (BVP)

- To solve a realistic problem, boundary conditions must be specified
- The six boundary conditions (BC's) are
(1) @ $x=0, u(0, t)=\phi(0) q(t)=0$
(2) $@ x=L, u(L, t)=\phi(L) q(t)=0$
(3) @ $x=0, u^{\prime \prime}(0, t)=\phi^{\prime \prime}(0) q(t)=0$
(4) $@ x=L, u^{\prime \prime}(L, t)=\phi^{\prime \prime}(L) q(t)=0$
(5) @ $t=0, \dot{u}(x, 0)=\phi(x) \dot{q}(0)=0$
(6) @ $t=0, u(x, 0)=G x(L-x), G$ specified constant

Applying the boundary conditions to $\phi(x)$

- Applying the first four boundary conditions yield the following results
(1) $\phi(0)=B+D=0$
(2) $\phi(L)=A \sinh \beta L+B \cosh \beta L+C \sin \beta L+D \cos \beta L=0$
(3) $\phi^{\prime \prime}(0)=B \beta^{2}-D \beta^{2}=0 \quad \Rightarrow \quad B-D=0$
(4) $\phi^{\prime \prime}(L)=\boldsymbol{A} \beta^{2} \sinh \beta L+B \beta^{2} \cosh \beta L$
$-C \beta^{2} \sin \beta L-D \beta^{2} \cos \beta L=0$
- From BC's (1) and (3), $B=0$ and hence $D=0$

Applying the boundary conditions to $\phi(x)$

- From BC's (2) and (4)
$A \sinh \beta L+C \sin \beta L=0$
$A \sinh \beta L-C \sin \beta L=0$
- The above results imply

$$
\begin{equation*}
A \sinh \beta L=0 \quad \text { and } \quad C \sin \beta L=0 \tag{15}
\end{equation*}
$$

- From the first expression of (15), $A=0$. If $A=0$ is not chosen, $\beta=0$ is required and this leads to $\phi(x)=0$ for all x which is the at rest condition (not very interesting).
- Using the remaining case (since $A=0$), either $C=0$ or $\sin \beta L=0$. Choosing $C=0$ isn't an option since that leads to $\phi(x)=0$ for all x which is the uninteresting at rest condition.

Applying the boundary conditions to $\phi(x)$

- Therefore, must have $\sin \beta L=0$, which implies $\beta L=n \pi$.
- After solving for β, the n solutions (which satisfy the B.C's) for $\phi(x)$ are

$$
\begin{equation*}
\phi_{n}(x)=C_{n} \sin \frac{n \pi x}{L} \tag{16}
\end{equation*}
$$

- This implies that the beam vibrates in the following natural mode shapes for $n=1,2,3,4 \ldots$

Applying boundary condition (5)

- Applying BC (5) yields

$$
\begin{equation*}
\dot{q}(0)=-a \beta^{2} E \sin a \beta^{2} 0+a \beta^{2} F \cos a \beta^{2} 0=0 \tag{17}
\end{equation*}
$$

- The sine term equals zero and hence $F=0$. As a result

$$
\begin{equation*}
q(t)=E \cos a \beta^{2} t \tag{18}
\end{equation*}
$$

- In light of the fact that $\beta=n \pi / L$

$$
\begin{equation*}
q_{n}(t)=E_{n} \cos \frac{a n^{2} \pi^{2} t}{L^{2}} \tag{19}
\end{equation*}
$$

Applying boundary condition (6)

- Combining (16) and (19) and defining $b_{n}=C_{n} E_{n}$ yields

$$
\begin{equation*}
u_{n}(x, t)=\phi_{n}(x) q_{n}(t)=b_{n} \sin \frac{n \pi x}{L} \cos \frac{a n^{2} \pi^{2} t}{L^{2}} \tag{20}
\end{equation*}
$$

- Equation (20) satisfies the PDE and the first 5 BC's for any value of n and arbitrary constants b_{n}. As a result, any linear combination of (20) also satisfies the requirements so that

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \cos \frac{a n^{2} \pi^{2} t}{L^{2}} \tag{21}
\end{equation*}
$$

Applying the boundary condition (6)

- To satisfy $\mathrm{BC}(6)$ the following must be true

$$
\begin{equation*}
u(x, 0)=G x(L-x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \tag{22}
\end{equation*}
$$

- Hence, the b_{n} are the sine Fourier coefficients for $G x(L-x)$. That is

$$
\begin{align*}
b_{n} & =\frac{2}{L} \int_{0}^{L} G x(L-x) \sin \frac{n \pi x}{L} d x \tag{23}\\
& =\frac{8 G L^{2}}{n^{3} \pi^{3}} \quad \text { for } n \text { odd } \tag{24}\\
& =0 \quad \text { for } n \text { even } \tag{25}
\end{align*}
$$

Final solution of the BVP

- Using the results of (21) and (23) gives the final solution of the BVP.

$$
\begin{equation*}
u(x, t)=\sum_{n=1,3,5, \ldots}^{\infty} \frac{8 G L^{2}}{n^{3} \pi^{3}} \sin \frac{n \pi x}{L} \cos \frac{a n^{2} \pi^{2} t}{L^{2}} \tag{26}
\end{equation*}
$$

- Comments:
- Recall $a^{2}=E I / m$ which is known
- G specifies initial amplitude at $t=0$, hence is known
- By observing the cosine term of (26) it is concluded that the natural frequencies for the beam are

$$
\omega_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \sqrt{\frac{E l}{m}}
$$

- Reference: Miller, Kenneth S., "Partial Differential Equations in Engineering Problems", Prentice-Hall, Englewood Cliffs, NJ, 1953.

