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Motivation

Goal to advance
collapse simulation
technology
Current FE technology
unsatisfactory for large
deformations at collapse
limit states
To explore feasibility of
meshfree approach
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MLS Shape Functions Derivation

Start with displacement approximation

uh(x) =
n∑

a=1

φa(x)da ≡ φT d

Shape function φa is of the form (Belytschko et al 1996)

φa(x) = PT (xa)α(x)w(xa),

where P(x) = {1 x y}T is a linear basis in two dimensions,
α(x) is a vector of unknowns to be determined and
w(x) ≥ 0 is a weighting function
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MLS Shape Functions Derivation

The φ’s must satisfy reproducing conditions

P(x) =
n∑

a=1

P(xa)φa(x)

Substitution of φa into P(x) and solving for α yields

α(x) = A−1(x)P(x)

Finally, substituting α into φa gives

φa(x) = PT (xa)A−1(x)P(x)w(xa) ,

where A =
∑n

a=1 P(xa)PT (xa)w(xa)
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Enforcing boundary conditions

MLS (meshfree) shape functions do not have the
Kronecker-delta property
Hence MLS shape functions are blended with quadrilateral
FE shape functions at essential B.C.’s
Then essential boundary conditions are enforced on the
finite element nodes in the standard way
The blending technique proposed by Huerta and
Fernández-Méndez (2004) is adopted
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Nodal Integration

Smoothed strain tensor for node a (per Chen et al (2001))

εij(xa) =
1

2Aa

∫
Va

(ui,j + uj,i) dV =
1

2Aa

∫
Sa

(uinj + ujni) dS

Strain-displacement relation

ε(xa) =
6∑

b=1

Bb(xa)db ≡ Bd
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Nodal Integration

Strain-displacement definitions

ε = [ε11 ε22 2ε12]
T and da = [da1 da2]

T

Bb(xa) =

 bb1(xa) 0
0 bb2(xa)

bb2(xa) bb1(xa)


Va

a = 1
Sa

n

3

4

5

6

x1

x2

2

bbi(xa) =
1

Aa

∫
Sa

φb(x)ni(x) dS

Nodally integrated stiffness matrix

K bc =
n∑

a=1

BT
b (xa)CBc(xa)Aat
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Stabilization of Nodal Integration

Nodal integration w/o stabilization leads to
a. hourglass modes
b. spurious low energy modes
c. and locking

Following Puso and Solberg (2006) stabilization is
provided to the stiffness matrix as follows:

K s = (1− αs)K MLS + αsK FE ,

where K s is the stabilized matrix and αs = 0.05 is called
the stabilization factor
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Nonlinear analysis

Loads applied incrementally
At global level a Newton-Raphson scheme is used to
iterate the linearized system of equations until equilibrium
is achieved

K t(ν)
n+1∆d (ν)

n = f ext
n+1 − f int(ν)

n+1

At the constitutive level for J2 plasticity a radial return
scheme is used (Simo and Hughes (1998))
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Meshfree analysis of wide-flange steel sections

Based on the meshfree nodal discretization of a beam a
Voronoi diagram is generated.
A thickness is specified for each Voronoi cell.
To get wide-flange behavior a web thickness and a flange
thickness is specified.
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Inelastic Problems

Linear elastic cantilever I-beam

Results for normalized tip displacement and maximum bending
stress, where δtheor . = 0.0308 in and σtheor . = 25.0 ksi.

Grid δ/δtheor . (in) σxx/σtheor . (ksi)
11× 3 1.045 0.77
21× 5 1.025 0.89
31× 7 1.016 0.94
41× 9 1.012 0.95
51× 11 1.010 0.96
61× 13 1.009 0.97

P
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Linear elastic cantilever I-beam
Inelastic Problems

Elasto-plastic cantilever I-beam

J2 plasticity with linear hardening
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Inelastic Problems

Frame corner connection: Load deflection response
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Linear elastic cantilever I-beam
Inelastic Problems

Frame corner connection: Displacement and stress
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Linear elastic cantilever I-beam
Inelastic Problems

Inelastic frame analysis
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Conclusions

Demonstrated feasiblity of wide-flange beam analysis
under plane stress
A coupled FE and meshfree method shows promise for
inelastic frame analysis
Demonstrated success of Maxent shape functions
Further research is ongoing to extend this for large
deformations to enable collapse simulations.
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