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Motivation

Motivation

@ Goal to advance
collapse simulation —

technology Pamases] —
@ Current FE technology L=
unsatisfactory for large A
deformations at collapse A ///\>>A
limit states o ///%%//
@ To explore feasibility of e B

meshfree approach
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Coupled finite element and meshfree method .
Formulation

Numerical implementation

Outline

e Coupled finite element and meshfree method
@ Formulation
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Coupled finite element and meshfree method Rl

Numerical implementation

MLS Shape Functions Derivation

@ Start with displacement approximation
Z ¢a(X)da=p'd

@ Shape function ¢, is of the form (Belytschko et al 1996)
Pa(X) = PT(Xa)a(X)W(Xa)a

where P(x) = {1 x y}T is a linear basis in two dimensions,
a(x) is a vector of unknowns to be determined and
w(x) > 0 is a weighting function
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Coupled finite element and meshfree method .
Formulation

Numerical implementation

MLS Shape Functions Derivation

@ The ¢’s must satisfy reproducing conditions
n
P(x) = ZP(Xa)¢a(X)
a=1

@ Substitution of ¢ into P(x) and solving for « yields
a(x) = A (x)P(x)

@ Finally, substituting « into ¢4 gives

da(X) = PT(xa) A~ (X)P(x)W(Xa) |

where A= Y7 P(x,)PT(xa)w(x,)
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Coupled finite element and meshfree method Rl

Numerical implementation

Enforcing boundary conditions

@ MLS (meshfree) shape functions do not have the
Kronecker-delta property

@ Hence MLS shape functions are blended with quadrilateral
FE shape functions at essential B.C’s

@ Then essential boundary conditions are enforced on the
finite element nodes in the standard way

@ The blending technique proposed by Huerta and
Fernandez-Méndez (2004) is adopted
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Coupled finite element and meshfree method

Formulation
Numerical implementation

Weigth function for node 5 1D MLS shape functions
1 1
08 M 08 Shape Function
Node 5
5 0.6 g 0.6
c ko
2 04 2 0.4
z 2
s
3 02 % 0.2]
Radius of support p = 0.3125
05 02 0.4 06 08 0% 02 0.4 06 0.8 1

1D Blending example

Shape Function

—
MLS Shape Functions ~ Blended ~ FE Shape
Region __Functions

0% 02 0.4 06 0.8 1
x

‘aw, Kunnath & Sukum Meshfree Inelastic Frame Al




Coupled finite element and meshfree method .
Formulation

Numerical implementation

Nodal Integration

@ Smoothed strain tensor for node a (per Chen et al (2001))

1 1
8,'j(Xa) = 2Aa/ (uiJ + UJ'J') dVv = 2/4‘3/3 (u,-nj + an,') as
@ Strain-displacement relation

E(Xa) = Bb(Xa)db =Bd

o
I o

Yaw, Kunnath & Sukumar Meshfree Inelastic Frame Analysis



Coupled finite element and meshfree method

Formulation
Numerical implementation

Nodal Integration

@ Strain-displacement definitions

3
e =[e11e02 2¢12)7 and  dy=[dy dap]”
bb1 (Xa) 0

By(xa) = 0 bpa(Xa)

bp2(Xa) bp1(Xa)

1
bb,'(Xa) = Afa < d)b(x)n,-(x) as

@ Nodally integrated stiffness matrix

n
Kpe = Bj(Xa)CBc(Xa)Aat

a=1
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Coupled finite element and meshfree method ) .
Formulation

Numerical implementation

Outline

e Coupled finite element and meshfree method

@ Numerical implementation
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Coupled finite element and meshfree method ) .
Formulation

Numerical implementation

Stabilization of Nodal Integration

@ Nodal integration w/o stabilization leads to
a. hourglass modes
b. spurious low energy modes
c. and locking
@ Following Puso and Solberg (2006) stabilization is
provided to the stiffness matrix as follows:

KS — (1 _ OZS)KMLS—FO(SKFE,

where K¢ is the stabilized matrix and as = 0.05 is called
the stabilization factor
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Coupled finite element and meshfree method ) .
Formulation

Numerical implementation

Nonlinear analysis

@ Loads applied incrementally

@ At global level a Newton-Raphson scheme is used to
iterate the linearized system of equations until equilibrium
is achieved

t(v v int(v
KLl — 3, 1)

@ At the constitutive level for J2 plasticity a radial return
scheme is used (Simo and Hughes (1998))
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Application to wide-flange steel sections

Meshfree analysis of wide-flange steel sections

@ Based on the meshfree nodal discretization of a beam a
Voronoi diagram is generated.

@ A thickness is specified for each Voronoi cell.

@ To get wide-flange behavior a web thickness and a flange
thickness is specified.

— e t,,- d

trl | | t
fololololololololololololololololololole

°Flange thickness bf specified

-Web thicknes tw specified
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Linear elastic cantilever |I-beam

Inela Probl
Validation of methodology elEsiB IFrRlslEne

Outline

e Validation of methodology
@ Linear elastic cantilever I-beam
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Linear elastic cantilever |I-beam

Validation of methodology SEES S

Linear elastic cantilever |-beam

Results for normalized tip displacement and maximum bending
stress, where dieor. = 0.0308 in and opeor. = 25.0 Ksi.

Grid 6/ dtheor. (IN) | oxx/Ttheor. (KSi)
11 x 3 1.045 0.77
21 x5 1.025 0.89
31 <7 1.016 0.94 b ’
41 x9 1.012 0.95
51 x 11 1.010 0.96
61 x 13 1.009 0.97
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Linear elastic cantilever I-beam

Validation of methodology Il Eie g Bl

Outline

e Validation of methodology

@ Inelastic Problems
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Linear elastic cantilever I-beam
Inelastic Problems

Validation of methodology

Elasto-plastic cantilever I-beam

J2 plasticity with linear hardening
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Linear elastic cantilever I-beam

Validation of methodology ITElEsie Festems

Frame corner connection: Load deflection response
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Linear elastic cantilever I-beam
Inelastic Problems

Validation of methodology

Frame corner connection: Displacement and stress
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Validation of methodology

Inelastic frame analysis
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Linear elastic cantilever I-beam

Inelastic Problems
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Conclusions

Conclusions

@ Demonstrated feasiblity of wide-flange beam analysis
under plane stress

@ A coupled FE and meshfree method shows promise for
inelastic frame analysis

@ Demonstrated success of Maxent shape functions

@ Further research is ongoing to extend this for large
deformations to enable collapse simulations.

Yaw, Kunnath & Sukumar Meshfree Inelastic Frame Analysis



	Motivation
	Coupled finite element and meshfree method
	Formulation
	Numerical implementation

	Application to wide-flange steel sections
	Validation of methodology
	Linear elastic cantilever I-beam
	Inelastic Problems

	Conclusions

