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Galileo was Wrong: The Geometrical Design 
of Masonry Arches 
Abstract. Since antiquity master builders have always used 
simple geometrical rules for designing arches. Typically, for a 
certain form, the thickness is a fraction of the span. This is a 
proportional design independent of the scale: the same ratio 
thickness/span applies for spans of  10m or 100m. Rules of the 
same kind were also used for more complex problems, such as 
the design of a buttress for a cross-vault. Galileo attacked this 
kind of proportional design in his Dialogues. He stated the so-
called square-cube law: internal stresses grow linearly with scale 
and therefore the elements of the structures must become 
thicker in proportion. This law has been accepted many times 
uncritically by historians of engineering, who have considered 
the traditional geometrical design as unscientific and incorrect. 
In fact, Galileo’s law applies only to strength problems. Stability 
problems, such as the masonry arch problem, are governed by 
geometry. Therefore, Galileo was wrong in applying his 
reasoning to masonry buildings 

Introduction 

Arches are the essential element of masonry construction. They were invented 
some 6,000 years ago in Mesopotamia. The first arches were small; they were used 
to cover tombs. It is fascinating to look at the structural experimentation which 
developed over the course of 2,000 years before the arches emerged from the earth 
and began to form part of architecture proper [Besenval 1984; El-Naggar 1999]. 
The barns of the Ramesseum (thirteenth century BC) were covered by barrel vaults 
and the Hanging Gardens of Babylon (seventh century BC) where, in fact, 
supported on a system of arches and vaults. In Europe the Etruscans where among 
the first to use stone arches of moderate size, but it was in Imperial Rome, when 
the arch and the vault began to form an essential part of architecture, that the spans 
grew in order of magnitude, reaching the 43m of the Pantheon. Since then and up 
to the nineteenth century arches and vaults were at the heart of structural design: 
AAll the aspects of architecture are derived from the vault@, said Auguste Choisy, 
and the history of the different architectonic styles is also the history of how to 
solve the technical problem of building arches and vaults of different forms in 
brick, stone and mortar. 

An arch thrusts: the stones, trying to fall down due to the force of gravity, 
produce inclined forces which are transmitted within the masonry down the 
springings (fig. 1). The forces must be inclined to give vertical equilibrium, but at 
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the same time they produce a horizontal component. The vertical loads increase 
from top (the keystone) to the springings, but the horizontal component remains 
constant all through the arch to maintain horizontal equilibrium. At the springings 
of the arch there is, then, an inclined force which must be resisted by the 
buttresses. The structural design of masonry architecture deals with two 
fundamental problems: 1) To design arches which will stand; 2) To build 
buttresses which will withstand their thrust. Roman solutions are very different 
from Gothic or Baroque solutions, but the problem remains the same: to obtain a 
safe state of equilibrium which will guarantee the life of the building for centuries 
or millennia. 

 

Fig. 1. (a) Etruscan voussoir arch [Durm 1885]; (b) Equilibrium of the stones in an 
arch. The inclined forces are transmitted within the arch and at the abutments there 
is always a thrust with a horizontal component (uniform through the entire arch) 
which must be resisted 

The question is, how were arches and buttresses designed? The scientific theory 
of structures was applied only during the nineteenth  century and this fact leaves 
almost all historical architecture outside the realm of this branch of modern applied 
mechanics. However, it is evident that the great buildings of the past could not 
have been built without some kind of knowledge: the master builders used a theory 
of a different kind, based in the critical observation of masonry building processes. 
This Anon-scientific@ theory must have been rich and complex, because its 
application resulted in the Pantheon, the Gothic cathedrals and the Hagia Sophia. 

Proportional design of arches, vaults and buttresses. We know that this traditional 
theory, or the particular expression of it in every particular epoch, was condensed 
in the form of structural rules. For example, to design an arch of a certain form, the 
relevant parameter is the thickness, and this was always obtained as a fraction of the 
span. The same occurs with the buttresses, whose depth was calculated, again, as 
fraction of the span. Of course, the rules were specific for each structural type: the 
Gothic rules for buttresses give the depth of the buttresses as nearly 1/4 of the span; 
Renaissance rules give between 1/3 and 1/2 of the span. Gothic vaults are much 
lighter than Renaissance vaults, but the approach is the same.  
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The beginning of one of the manuscripts which have survived from the late 
Gothic period (Vom des Chores Mass (The measure of the Choir) published in 
[Coenen 1990]) expresses the method in a clear way:  

The building follows precise laws and all its parts are ruled, in such a 
way that all its elements are related with the whole building and the 
whole building is related with each one of its parts. The Choir is the 
fundament and the origin of all the rules, and from its span we obtain 
not only the thickness of its wall, but also the templates of the 
imposts and of all the elements of the work. 

 

 
Fig. 2. Late Gothic structural design of a church and its elements. Left, the span is 
the Agreat module@ from which all the elements are derived (letters superposed on an 
original Gothic drawing from [Koepf 1969]). Right, the wall thickness (span/10) is 
the Alittle module@ from which the ribs, mullions and imposts are obtained, 
employing the ad quadratum technique of rotating squares [Hecht 1979]. 

The span of the vault of the choir, let us call it s , is a Agreat module@ and all the 
dimensions of the structural elements are obtained as fractions of it. The wall 
should be s /10 and the buttresses three times this quantity, i.e., 3s /10. The 
templates of the ribs and the mullions of the windows were also obtained from the 
wall thickness (fig. 2).  

There were other rules for buttress design as well which have survived through 
the successive copies and re-elaborations of the medieval stone-cutting manuals, 
part of which were incorporated in Renaissance and Baroque stone-cutting 
handbooks. In fig. 3 a geometrical rule is represented. The intrados of the 
transverse arch of the vault is divided in three parts and a line is traced joining one 
of the points with the springings. Then the same distance is taken as the 
prolongation of the line and this point gives the depth of the buttress.  
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Fig. 3. Gothic geometrical rule for buttress design. Above, explanation of the rule 
[Derand 1643]. Below, application of the rule to two different buildings drawn to 
the same scale: the cathedral of Gerona and the Sainte Chapelle of Paris [Huerta 
2004]. 
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Rules of the same kind, arithmetical or geometrical, were employed in other 
periods as well – the Renaissance, Baroque, etc. – until in the nineteenth century 
masonry architecture began an accelerated decay, due to the appearance of new 
materials (iron, steel, reinforced concrete) and new structural types (frames, trusses, 
thin shells). However, structural design rules were also used all through the 
nineteenth century.  

The essential characteristic of all these rules is that they are Aproportional@ and 
that they control the overall form of the structure of the building. It is a 
Ageometrical design@, which was considered to be correct for a building of any size.  

Galileo and the “square-cube law” 

Galileo (1564–1642) was the first to treat structural problems in a scientific way. 
During his forced reclusion in Arcetri, he wrote a book entitled Discorsi e 
Dimostrazioni Matematiche intorno à due nuove sicenze Attenenti alla Mecanica 
& i movimenti Locali  (Dialogues Concerning Two New Sciences), published in 
1638 (fig. 4). The two sciences were the Strength of Materials and the Cinematics, 
two topics less problematic than cosmology. It is the strength of materials which 
interests us.  

Fig. 4. Left, portrait of Galileo Galilei. Right, first page of the Dialogues (Discorsi) of 
1638 
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Galileo was trying, for the first time, to draw scientific conclusions about the 
strength of beams, a problem of evident practical interest. However, just from the 
beginning he exposes the result of his researches and mounts an attack on medieval 
proportional design (this and the following quotations are from the 1954 
translation of Crew and de Salvio): 

Therefore, Sagredo, you would do well to change the opinion which 
you, and perhaps also many other students of mechanics, have 
entertained concerning the ability of machines and structures to resist 
external disturbances, thinking that when they are built of the same 
material and maintain the same ratio between parts, they are able 
equally, or rather proportionally, to resist or yield to such external 
disturbances and blows. For we can demonstrate by geometry that the 
large machine is not proportionally stronger that the small. Finally we 
may say that, for every machine and structure, whether artificial or 
natural, there is set a necessary limit beyond which neither art nor 
nature can pass; it is here understood, of course, that the material is 
the same and the proportion preserved. 

The strength of beams. Galileo, however, considers only the case of simple 
bending. It is obvious that a column of any material will possess an absolute 
strength, the force necessary to break the column in tension. This force is 
proportional to the area of the cross-section (fig. 5, left). Now, Galileo is interested 
in obtaining the strength of a beam for which the absolute strength is known. 
Galileo chooses the simple case of a cantilever beam. 

 

 
Fig. 5. Left, hypothetical trial to ascertain the absolute strength of a 
column. Right, the problem of the cantilever: How much weight 
could the cantilever sustain? [Galileo 1638] 
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He considers that the moment of resistance will be the result of multiplying the 
absolute strength by half the depth of the beam, as if a “hinge” (fulcrum) will form 
in the lower part of the critical section, where the beam is embedded into the wall. 
The analysis of Galileo is incorrect, as he forgets the necessary horizontal force to 
establish the equilibrium of horizontal forces: a member in bending must have 
both tension and compression areas. The correct solution was hinted at fifty years 
after by Mariotte in 1686; the first correct analysis was made by Parent in 1713; in 
1773 Coulomb presented a complete description of simple bending theory. 
However, Galileo’s error persisted in some handbooks until after 1800. The 
problem has been fully discussed in [Heyman 1998]. 

The square-cube law. However, Galileo was right about the form of the equation: 
for a given material and a certain cross-section, the bending strength is 
proportional to the product of its area by its depth. Galileo, then, applies himself 
to a comparison of the strength of beams of the same material and section but of 
different sizes.  If the only load is the self-weight of the beam, Galileo realized that 
this load will grow with the third power of the linear dimensions, if the beam scales 
up maintaining its geometrical form. However, the strength will grow with the 
second power, the square, of the linear dimensions. As a consequence a structure 
becomes “weaker” as it grows in size, the reserve of strength diminishing linearly 
with size. If one wants to maintain the same strength, then, the cross-section must 
become thicker.  

Galileo realized that this argument was a big discovery and immediately 
explained the consequences: “From what has already been demonstrated, you can 
plainly see the impossibility of increasing the size of structures to vast dimensions 
either in art or in nature”.  Therefore it will be impossible to build “ships, palaces, 
or temples of enormous size”. Also, the size of an animal cannot be increased “for 
this increase in height can be accomplished only by employing a material which is 
harder and stronger than usual or by enlarging the size of the bones, thus changing 
their shape until the form and appearance of the animals suggest a monstrosity”. 
Galileo then compares the deformation which will produce an increase of size of 
three times in the bone of an animal (fig. 6). The drawing explains the argument 
much better than the discussion in the text, and has been reproduced hundreds of 
times in texts about structures or biology. 

 
Fig. 6. The effect of an increase of size in the bones of an animal, if bone strength is 
considered to be constant 
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It is this reasoning which prompted Galileo’s attack on proportional design at 
the beginning of his book. Galileo extends his conclusions about the strength of 
beams of different sizes to any structure, either natural or artificial. The argument 
is today called the “square-cube law” and it is still considered by many engineers as 
an irrefutable demonstration of the impossibility of proportional design.  (For a 
discussion of the influence of scale in structural design see [Aroca 1999]. 

The shadow of Galileo. We said in the previous section that architects and 
engineers have always used proportional rules in masonry architecture design. If we 
accept Galileo’s argument all of these rules are incorrect. Galileo’s conclusion has 
been accepted by many historians of engineering and has conditioned in a negative 
way the appreciation of the traditional proportional design rules. For example, 
Parsons said :  

There were no means of testing materials to determine their resistance 
to strain and consequently, the designer could not estimate the 
strength of a member nor did he have a theory by which he would 
compute the amount of strain that a member would be called to bear. 
There was, therefore, a vicious circle of ignorance [Parsons 1939] (my 
italics).   

And Benvenuto wrote:  

…  il dimensionamiento in chiave geometrica restò sino a tempi 
recenti, il criterio più seguito dagli architetti: il persistente 
pregiuduzio che solo Galileo cominciò a smuovere, secondo il quale 
strutture geometricamente  simili dovrebbero avere identiche 
proprietà statiche …  aveva condotto numerosi tratattisti a definire in 
linguaggio geometrico la figura delle volte [Benvenuto 1981] (my 
italics).  

Robert Mark, commenting on the design of Hagia Sophia, remarks on the same 
argument: “Geometry did play a major role in their conceptual design [of Hagia 
Sophia]; however, as no less an observer than Galileo also commented, geometry 
alone can never ensure structural success” [Mark 1990]. Some authors wonder 
themselves how it was possible, with such an erroneous approach, that the great 
buildings of the past were built; Harold Dorn wrote “… It is a tribute to their skill 
that with this assortment of anthropomorphic analogies, qualitative generalizations, 
traditional arithmetical proportions, rules-of-thumb and an intuitive (and 
incorrect) arch ‘theory’, Renaissance builders erected magisterial and lasting 
structures” [Dorn 1970].  

A contradiction. Dorn hinted at the heart of the problem. If we consider as correct 
Galileo’s argument we face a contradiction: 
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The great master builders of the past used proportional design rules, 
which are essentially incorrect. 

Using these rules they built the masterpieces of architecture and 
engineering of the past. 

It is not reasonable to believe that the masterpieces of historical architecture, 
which have survived for centuries or millennia, were designed following an 
incorrect approach. So, perhaps, the matter should be reconsidered.  

In what follows we will make a short outline of the fundamental aspects of 
masonry structural design. 

The design of masonry arches and vaulted structures 

The matter may be best discussed with reference to the fundamental element of 
masonry architecture: the arch. We have seen that in a voussoir arch in equilibrium 
(see fig. 1 above), the stones transmit a thrust and that this thrust must be 
contained within the arch, to obtain a set of compressive stress equivalent to the 
thrust. The line obtained by joining the points of application of the thrust in every 
joint (the locus of these points) is the line of thrust.  To understand the concept it 
is only necessary to have some familiarity with the parallelogram of forces. 
Traditionally two approaches have demonstrated its usefulness in arch analysis: the 
first is to consider the equilibrium of a semi-arch; the second is the analogy with 
the statics of hanging chains  and cables. 

 
Fig. 7. Left, line of thrust in a semi-arch. The external horizontal thrust at the 
keystone is composed with the weights of the successive voussoirs defining a “path” 
of transmission of the forces [Snell 1846]. Right, the corresponding polygon of forces 
(added by the author) 
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Two half-arches: “A  strength formed by two weaknesses”. Consider the half-arch 
in fig. 7. It will clearly collapse, unless a force is applied in some point of the 
section at the keystone. If we apply an adequate horizontal thrust inside this 
section, then, as the figure shows, the thrust will be composed of the weight of 
every voussoir and the trajectory of the thrust will form the line of thrust drawn. In 
the original drawing the resolution of forces is made in the same drawing; however, 
as the horizontal thrust remains constant, all the lines may be gathered in one 
“force polygon” (added by the present author on the right of the figure). Then, 
using the terminology of graphical statics, the thrust line is an inverted funicular 
polygon, drawn tracing parallel lines to the force polygon. Note that in every joint 
the thrust is contained within the limits of the masonry. It is evident that by 
changing the value of the horizontal thrust we will obtain infinite lines of thrust 
within the arch. Also, we may change the point within the joint. 

Now, we may imagine that we put another symmetrical semi-arch (a mirror 
reflection), on the other side. The horizontal thrust of the two semi-arches will 
equilibrate, no matter which line of thrust is considered: to use Leonardo’s 
expression “an arch is a strength formed by two weaknesses”. A semi-arch alone 
will collapse, but two “collapsing” semi-arches form a stable arch. It should be 
noted that the complete arch can be in equilibrium in infinite states of internal 
compression: in technical terms, the arch is statically redundant or “hyperstatic”. 

The cable analogy: “As hangs the flexible line . . .”. Another way to understand the 
behaviour of masonry arches was proposed by Robert Hooke: “As hangs the 
flexible line, so but inverted will stand the rigid arch”  [Hooke 1675] (fig. 8). The 
equilibrium of cables and arches is the same problem, and this was Hooke’s genial 
analysis. Another English mathematician, David Gregory, completed Hooke’s 
assertion: “None but the catenaria is the figure of a true legitimate arch, or fornix. 
And when an arch of any other figure is supported, it is because in its thickness 
some catenaria is included”.   

 
Fig. 8. (a) The arch as an inverted chain or cable. (b) The voussoirs of the arch may 
be imagined to be hanging from an imaginary chain, which represents the state of 
equilibrium. As the masonry must work in compression, the inverted “chain” must 
be contained within the arch [Heyman 1995] 
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The “material” masonry. The two previous analyses assume a material of certain 
properties,  a “unilateral” material which can resist compression, but not tension. 
This condition “forced” the location of the thrusts within the masonry, to avoid 
tension. Traditional, unreinforced, masonry is just a pile of stones or bricks, 
disposed following some geometrical arrangement (the “bonding”), normally with 
mortar filling the joint or voids between the stones (sometimes there is no mortar). 
Roman concrete, where the volume of mortar is comparable to that occupied by 
the small stones, is also a type of masonry, and so is pisé (stiff earth or clay rammed 
until it becomes firm). In fact, any combination of stone, bricks, mortar or earth 
can lead to a successful kind of masonry. In fig. 9a, taken from a building 
handbook of ca. 1900, some types of masonry have been drawn. But in a common 
building we can find maybe a dozen different kinds of masonry (fig. 9b). Many 
times a structural element is a combination of several different masonries; this is 
typical of thick masonry walls with two external ashlar “shells” and a core made of 
rubble. Again, the number of combinations is almost unlimited. 

 
Fig. 9. (a) Different kinds of masonry [Warth 1903]. (b) Internal structure of a 
medieval building [Viollet-le-Duc 1854] 

The question is: Where is the isotropic, homogeneous, elastic material of the 
classical elastic theory of structures? Nowhere. Masonry is essentially anisotropic, 
discontinuous, and heterogeneous; as for the elastic constants, one may ask, where?  
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In the external ashlar stone  or in the rubble filling or in the mortar? It is easy to 
test a stone specimen to obtain, for example, the crushing strength. At the end of 
the nineteenth century thousands of tests were made on stone, brick and mortar. 
But when it came to ascertain the strength of the material “masonry” only vary 
vague indications, with enormous safety coefficients, were given (for stone tests see 
for example [Debo 1901]; for a critical discussion of the matter see [Huerta 
2004]). 

The essential characteristic of masonry is that it has good compressive strength 
and almost no tensile strength. Also, the stones maintain their position (no sliding 
occurs) due to the high friction coefficient (ca. 0.5). Heyman [1966, 1995] has 
systematized these observations into three Principles of Limit Analysis of Masonry: 
1) Masonry has an infinite compressive strength; 2) Masonry has no tensile 
strength; 3) Sliding is impossible. These principles are reasonable and easy to 
check; they have been accepted, implicitly or explicitly, by all the masonry 
designers (architects and engineers) of the past centuries.  

 

 

Figure 10. Left, collapse of semicircular arch due to a point load [Heyman 1995]. 
Right, first attempts to demonstrate the way of collapse of masonry arches [Danyzy 
1732]. 

Collapse of masonry arches. If the material has these properties (and most types of 
masonry do), then the analysis of masonry structures may be included within the 
frame of Limit Analysis (or plastic theory) as Professor Heyman showed in 1966. 
The proof is complex, but the essence of the matter lies in that for a material of 
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these properties, collapse will only occur when a sufficient number of hinges form 
which converts the structure into a cinematically admissible mechanism. The 
“hinges” are the points where the line of thrust touches the limit of the masonry.   

Fig. 10, left, shows the process of collapse of an arch which supports an 
increasingly growing point load: the form of the “hanging chain” is modified until 
there is only one line of thrust inside the arch, touching alternatively the intrados 
or intrados; at the bottom the corresponding four-bar collapse mechanism is 
shown. The same applies to more complex structures. As a matter of interest, on 
the right side of the same figure appear the first essays made by the French scientist 
and engineer Danyzy in 1732, which demonstrate this mode of collapse.  

The Safe Theorem. Now, within the frame of Limit Analysis, it can be 
demonstrated that if it is possible to draw a line of thrust within an arch, then this 
arch is safe, i. e., it will not collapse. This is a corollary of the Safe Theorem (or 
Lower Bound Theorem) of Limit Analysis. The theory of Limit Analysis, also 
called the Plastic Theory, was developed during the 1930s–1950s and it constitutes 
the fundamental contribution to the theory of structures in the twentieth century 
(in the same way as Elastic Theory was the main contribution in the nineteenth 
century). Professor Heyman has shown that the Fundamental Theorems, originally 
derived for steel frames, can be translated to masonry structures. His work has put 
the theory of masonry structures within the frame of the modern theory of 
structures; he has exposed with great clarity and intellectual rigour the 
consequences of this translation. The theory of plasticity itself is difficult, but, as 
sometimes occurs, the consequences are quite easy to understand. For example, the 
condition that the line of thrust must be contained within the arch leads to purely 
geometrical statements. 

The limit arch. An arch of sufficient thickness will contain infinite lines of thrust, 
for example the arch in fig. 11a. If we reduce the thickness of the arch, the form of 
the line of thrust will suffer no change, but it is evident that for a certain thickness 
only one line will be contained within the arch: this arch is the limit arch and its 
thickness is the limit thickness (fig. 11b).The limit thickness can be expressed 
conveniently as a certain fraction of the span. For a semicircular arch the limit 
thickness is nearly 1/18 of the span.  That means that a masonry arch thinner than 
this proportion cannot be built; the arch will become a mechanism, collapsing (fig. 
11c).  Thus, the limit arch forms the point of departure for the design of a safe 
arch: we will obtain geometrical safety by “thickening” the limit arch.  

There are two approaches for the design of a safe arch: the “strength” approach 
and the “stability” approach. In both approaches the limit arch is the point of 
departure. If we want to follow a condition of strength, the thickness should be 
increased until the stresses reach a certain “admissible” value obtained dividing the 
crushing stress by a certain coefficient. If we are concerned with a possible failure 
by lack of stability (the formation of a collapse mechanism), then we increase the 
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thickness multiplying it by a certain geometrical factor of safety (this concept has 
been introduced by [Heyman 1969]). In the case of arches, a typical value is 2 or 3; 
so a safe arch will have double the thickness of the limit arch.  

 

 
 Fig. 11.  (a) An arch of sufficient thickness contains comfortably infinite lines of 
thrust. One has been drawn. (b) Diminishing the thickness, we arrive at the limit 
thickness, where only one line can be drawn within the arch. (c) At t he points where 
the line touches the limit of the masonry a “hinge” forms. The arch is in 
mathematical equilibrium [Heyman 1995] 

Masonry arch design: Strength versus Stability. The problem is which condition 
governs the design. Maybe the best thing is to take an example. Consider an arch 
of stone of 18m span. The limit arch will have a thickness of very nearly 1m. 

Strength: if the arch is going to be made of medium sandstone (20 kN/m3) with 
an admissible working stress of, say, 4 N/mm² (1/5 of a crushing strength of 20 
N/mm²). Then, it is easy to calculate (considering a uniform stress distribution) 
that the required increase of thickness will be of 80mm or 0.5% of the span. (In 
fig. 12b the increase of thickness has been exaggerated: in fact the increase will be 
within the thickness of the lines of intrados and extrados in fig. 12a.) The arch is so 
near the limit thickness that it is on the verge of collapse; in fact, by inspection, the 
overall form of the arch has not changed.  
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Stability: the usual geometrical factor of 2 or 3 (the last value represented in fig. 
12c) will impose a substantial change in the form of the arch, which will be easily 
recognised by inspection. Any master mason will know, just seeing it, that the arch 
is not only safe, but that it has a surplus (the usual geometrical factor of safety for 
arches is 2). 

 
Fig. 12. Design of a masonry arch. (a) The limit arch; (b) Design by “strength”; the 
increase of thickness should guarantee admissible stresses; (c) Design by “stability”; 
the increase of thickness should afford a geometrical safety to the arch  

The strength criterion is unsafe: the stresses will be low but the arch will be 
dangerously near of the collapse situation. Of course, the calculations have been 
made for an arch of 18m. For greater arches the stresses will grow linearly, and the 
increase of thickness will be correspondingly greater.  

Limit spans for masonry. For a certain span, the thickness by strength will coincide 
with the thickness by stability and this point will mark the limit of the span of the 
arch. For a geometrical factor of safety of 2 (and considering a rectangular block of 
stresses at the base) this maximum span will be:  

γ
σ

π
adms 2

max =  

where admσ  is the maximum admissible working stress for the material and  γ is 
the specific weight of the masonry. For the above stated data, maxs = 128m and the 
absolute maximum span for the crushing strength will be 5 times this span, or 
640m. With stones of a better quality, correspondingly greater spans may be built.  
The dimensions are well above the usual dimensions of bridges. The largest span of 
an stone arch bridge is that of Fong-Huan, in China, built in 1972, with 120m 
[Fernández Troyano 1999].   In concrete (with no longitudinal reinforcement) it is 
the bridge of Caille in Cruseilles (1928) with 139.8m. The quantity γσ adm , 
which is a length, represents the limit height of a column of uniform section built 
with this material; this quantity was used in the nineteenth century as a measure of 
the strength of the materials and, also, as an indication of the maximum sizes 
which can be attained (fig. 13).   
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Fig. 13. Table of the strength of stones and bricks. On the second column from the 
right, the limit height in meters has been calculated [Collignon 1885]  
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Engineers of the past were well aware of the possibility of building great spans in 
masonry. The bridge over the Adda in Trezzo, built in 1370–77 (demolished in 
1416 for military reasons) had a span of 72 m (this span was surpassed only after 
1900). But perhaps the best example of the confidence that enormous spans can be 
made is found in a design of Leonardo  da Vinci, ca. 1500, for a bridge of one arch 
over the Golden Horn in Istanbul (fig. 14, left). Leonardo’s bridge would have had 
a span of 240 m and in the manuscripts he shows concern only for the problems of 
centering. Stüssi [1953] undertook an exhaustive analysis of Leonardo’s design and 
concluded that it would have been feasible. Stüssi obtained a maximum stress of 10 
N/mm² for a material with a specific weight of 28 kN/m3 (fig. 14, right). 

 
Fig. 14. Left, Leonardo de Vinci’s design for an arch bridge with a span of 240 m, 
over the Golden Horn in Istanbul (ca. 1500). Right, Stüssi’s analysis 

Stresses in masonry buildings. In buildings the same thing occurs. Even in the 
greatest structures built the calculated mean stresses in the most loaded parts (in 
general the columns)  are still quite moderate, as can be seen in Table 1 below. For 
example, in the main piers of St. Peters, which supports a dome and drum with a 
total weight of 400,000 kN,  the mean stress is 1.7 N/mm².  A similar structure 
three times bigger could have been built, but would it have had any meaning? 

In conclusion, it is a fact that for historical masonry structures, the stresses are 
an order or two orders of magnitude below the crushing strengths of the masonry 
and, therefore, the problem of masonry design is not governed by strength but by 
stability. 

 Stability governs the design, which means that the objective is to design safe 
formsl. Considerable savings of material may be obtained by choosing adequate 
“geometries”. Economy was, of course, the second main structural concern of old 
master builders. Until recent times, the search for economical structures and 
economical building procedures has been a constant. Choisy showed his surprise 
when he discovered in 1873 that precisely this striving for economy was the key to 
a deeper understanding of the Imperial Roman building processes. 
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BUILDINGS Mean stress 
N/mm² 

Columns, church of Toussaint d’Angers 4.4 
Main pillars, French Pantheon (St. 
Genevieve), Paris 

2.9 

Main pillars, Hagia Sophia   2.2 
Main pillars, cathedral of Palma de Mallorca 2.2 
Main pillars, St. Paul, London 1.9 
Main pillars, St. Peters. Rome 1.7 
Main pillars, Church des Invalides , Paris 1.4 
Main pillars in the cathedral of Beauvais 1.3 
Base of the tambour of the Roman Pantheon 0.6 

BRIDGES  
Bridge of Morbegno (s = 70 m) 7.0 
Bridge of Plauen (s = 90 m) 6.9 
Bridge of Villeneuve (s = 96 m) 5.7 
Viaduct of Salcano, Göritz (s = 85 m) 5.1 
Bridge over the Rocky River (s = 85 m) 4.4 
Bridge of Luxemburg (s = 85 m) 4.8 

Table 1. Mean stresses in some of the biggest masonry structures. In almost every 
case the mean stress is at least an order of magnitude below the crushing strength of 
the corresponding masonry [Huerta 2004] 

Geometry and structural economy: two case studies of arch design. As an example 
of the importance of design for considerable savings in material without a 
diminution of the safety, a simple case will be investigated: the design of a simple 
barrel vault on rectangular buttresses. The first thing is to design the vault with an 
adequate geometrical safety. For a semicircular arch the limit thickness is nearly t = 
1/18. But for segmental arches with an opening angle of less than 180° the limit 
thickness diminishes very rapidly (fig. 15, left).  

The design strategy to use “thin” vaults safely is to reduce the height of the arch, 
filling the haunches of the vault with good masonry up to a certain height.  In fig. 
15, above, two designs have been drawn of vaults with the same geometrical safety 
factor of 3 (thickness 3 times the limit): a good filling of the haunches up to half 
the height of the vault permits a reduction of the division of the thickness of the 
vault by 4. The thrust of the vault is, therefore, also divided by nearly the same 
factor and the buttresses (for a height equal to the span) may be reduced from 
nearly 1/3 of the span to nearly 1/4 of the span. The total amount of masonry 
(vault plus buttresses) is reduced by 40%. This remarkable economy is the result of 
just putting some rubble masonry between the haunches and the wall. 
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Figure 15. Above, limit thickness of circular segmental angles, depending on the 
opening semi-angle [Heyman 1995]. Below, effect of the reduction of the opening 
angle by filling the haunches with good masonry [Huerta 2004]. 

Another example of the same kind of geometrical design is that of pointed 
arches.  A pointed arch has, in general, a smaller limit thickness than the 
corresponding semicircular arch of the same span. However, a simple filling of the 
haunches will not reduce the limit thickness with the same rapidity as in a 
semicircular arch, due to the solution of continuity at the top. In fact, to achieve 
good results a pointed load is needed at the tip of the arch. This load will “break” 
the smoothness of the line of thrust, better adapting it to the form of the arch. In 
the drawing by Hatzel (fig. 16, left) on the left side the line of thrust has been 
drawn; it is evident that it will be impossible to introduce it within the arch whose 
thickness is less than the limit thickness. However, on the right side a weight has 
been added on top; now the line of thrust coincides almost perfectly with the 
middle line and goes out in the lower half, where some filling should be put on the 
haunches to allow the thrust pass to the buttress system. 
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Figure 16. Left, equilibration of a pointed arch by adding a weight on its top [Hatzel 
1849]. Right, collapse of pointed arches of insufficient thickness and their 
equilibration by loading them adequately [Ungewitter 1890] 

 
Fig. 17. Puente del Diablo (devil’s bridge) in Martorell; thirteenth century, on 
Roman springings. The tower at the top of the bridge helps to stabilise the thin ring 
of the arch (after [Sánchez Taramas in Muller 1769]) 

This was well known by the Gothic master builders and the heavy, sometimes 
richly sculpted, keystones of pointed arches and cross vaults serve a structural as 
well as a decorative function. Tosca, commenting on the design of pointed 
medieval arches, said: “These arches correspond to the Gothic order, and though 
being beautiful, they are weak near the haunches … particularly if they have no 
load on the keystone” [Tosca 1707]. Mohrmann was also well aware of this when 
explaining the statics of medieval arches in his 1890 edition of Ungewitter’s 
manual and his drawings explain clearly Tosca’s assertion (fig. 16, right). 
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Bridge builders were also aware of this. The medieval Puente del Diablo (devil’s 
bridge) in Martorell shows a little tower on the keystone (fig. 17). The 
construction serves to control the passage through the bridge but it also plays a 
fundamental role in stabilising the thin ring of the arch. If, for example, during 
some work of restoration the tower were to be removed to be re-built afterwards, 
this may prove to be a dangerous operation. 

The “ideal” arch. Now we may make a short digression about the “ideal” form of 
the arch. Is it the catenary, as was maintained by Hooke and Gregory, and later by 
many others up until the present day? In a catenarian arch all the voussoirs are 
different as the radius of curvature changes from point to point. It is difficult to 
build the centering and if the arch is made of stones, every stone will need a 
different template. The Gothic approach is cleverer: you choose a geometrical form 
made of circular arcs and then you load this arch to make it “catenarian”. The 
rubble filling and the stone at the top have almost no cost. A “catenarian” 
architecture like that of Gaudí is, in fact, quite expensive in comparison with 
Gothic architecture. We will leave the matter here, because to pursue it we must 
enter in the realm of architectural design which, of course, involves many other 
aspects besides that of structural efficiency (for a discussion of Gaudí’s structural 
design see [Huerta  2003]). 

A wonder of equilibrium: the cathedral of Palma de Mallorca. Up to now we have 
discussed just simple examples of the kind of geometrical design which is 
characteristic of masonry architecture. Of course, in a building of some scale many 
different structural problems are present and the master builder must take into 
account all of them and, eventually, produce an integrated design. The degree of 
subtlety which can be found in some projects is amazing. A good example is that of 
the cathedral of Palma de Mallorca (fig. 18).  

 
Fig. 18. Cross and longitudinal section of the cathedral of Palma de Mallorca 
[Domenge 1999] 

This is one of the biggest Gothic cathedrals: the main nave has a span of 20m 
and a height of 42m. The nave columns are extraordinary slender and must 
support at the top the thrust of the lateral aisles. How is it possible for such a 
slender column to function as a buttress?  
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Fig. 19. (a) Static analysis of the global equilibrium of the cathedral of Palma de 
Mallorca’s cathedral. (b) Statical analysis of the vault’s thrusts [Rubió i Bellver 1912]; 
(c) and (d) Loads on top of the crossing and transverse arches (redrawn by the author 
after [Rubió i Bellver 1912]) 
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The question cannot be answered without climbing to the extrados of the high 
vaults. There one may see pyramids of stone on top of the crossing arches, heavy 
transverse walls on the transverse arches, extraordinarily thick ribs, etc. The 
unknown master used a typical Gothic device: buttressing by loading. The weight 
on top of the columns is increased extraordinarily so that the thrust of the lateral 
aisle only deviates slightly the vertical direction of the loads. Of course, these 
extraordinary loads produce a lateral thrust and the external buttresses which 
receive it are the biggest of all Gothic architecture, with a depth (8m) approaching 
one half of the span. In 1912 Rubió i Bellver, a disciple of Gaudí, published a static 
analysis of the cathedral and this analysis confirms the qualitative comments made 
before. In Rubio’s drawing of the trajectory of the thrusts, with the different forces 
drawn to scale, it is easy to see the equilibrating effect of the added loads (fig. 19).  

We have considered the problem of masonry arch design in some detail in order 
to show the importance of the geometry on the arch’s safety. The example of 
Palma de Mallorca illustrates how this kind of geometrical design is at the heart of 
masonry design. This depends on the Safe Theorem of Limit Analysis which, as 
Professor Heyman has said, is “the rock on which the whole theory of structural 
design is now seen to be based” [Heyman 1999].  The main corollary of this 
theorem leads to the “approach of equilibrium” and, for a masonry structure, the 
problem of obtaining a compressive state of equilibrium is a geometrical problem. 
Citing again Heyman: “The key to the understanding of masonry is to be found in 
a correct understanding of geometry” [1995]. 

Conclusion: The “error” of Galileo and “Navier’s  straitjacket” 

Galileo was the first to provide a theory which permitted the strength of a 
certain type of structural element – the simple beam – to be checked. He was the 
founder of the theory of structures. He was right in deducing that the strength of a 
certain section of a beam is proportional to the strength of the material and to the 
area and depth of its cross-section. Also correct is his observation that, given any 
structure which supports its own weight, if we multiply its “size” by a certain 
factor, maintaining the geometrical form of the structure, the loads grow with the 
cube of the factor, but the sections of the structural members grow with the square, 
and as their strength are proportional to the areas, either the structure becomes 
“weaker” or the members must be thickened. In modern terms: stresses grow 
linearly with the dimensions, that is, they are directly proportional to the scale 
factor. All this is completely correct and it is an extraordinary feat of genius that 
Galileo, working alone in his old age, not only founded the New Science of the 
Strength of Materials, but that also drew design conclusions: the square-cube law.  

Galileo realized that his discovery contradicted a traditional design approach, or 
rule: that of proportional design. He was well aware that it was an important 
discovery, which would affect the design of many types of structures: machines, 
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ships, beam and framed structures. The theory also permitted an explanation of 
some biological facts: why the bones of small animals are proportionally slender 
and, also, why small animals are proportionally stronger. He expressed his 
discovery so convincingly that his argument has reached the rank of “Law” in the 
books on structural design: “the square-cube law”. 

The law refers only to problems of the design of structures supporting mainly 
their own weight when the governing criterion is strength. This is, indeed, one of 
the three fundamental structural criteria: strength, deformation and stability. A 
structure should resist its loads without the breaking of any of its members. It also 
should not present unduly large deformations. Finally, the structural elements and 
the structure as a whole should not be unstable.  

In modern structures strength is usually the governing criterion. But, as we have 
seen, in historical constructions strength plays no role and it is stability which is 
relevant. Galileo was perhaps too quick to generalize his discovery to any structure, 
including specifically “palaces or temples”. He was wrong in applying his 
“strength” argument to masonry structures. But it is understandable that a scientist 
should look for universal laws. It is also understandable that he should be carried 
away by enthusiasm for a great discovery.  

But after more than three centuries it is remarkable that Galileo’s argument 
continues to be applied uncritically to structures where it is evident, in the 
etymological sense, that it does not apply, by simple comparison of structures of 
different sizes. In fact, any reader of books on the history of architecture would 
have problems in ascertaining the actual size of a building from a plan without 
scale. If we compare the form of the domes of San Biaggio in Montepulciano, St. 
Peters in Rome and Santa Maria del Fiore, drawing the three at the same size, we 
may see that the overall form and proportions are very similar (fig. 20).  

 
Fig. 20. Comparison of the form of three Renaissance domes: (a) San Biaggio in 
Montepulciano (14m); (b) St. Peters in Rome (42m); (c) Santa Maria del Fiore 
(42m). Note that, although the first dome is three times as small than the other two 
the form is very similar 
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However, the dome of San Biaggio has a span of 14m, 1/3 of the 42m of both St. 
Peters and Santa Maria del Fiore. Byzantine architecture is full of domes similar to 
that of Hagia Sophia and the geometry of cupola of the Pantheon has been 
reproduced hundreds of times. 

Now the question is why an argument which doesn’t coincide with the facts (the 
design of masonry architecture) has been used for three centuries and continues to 
be used. The first reason has been already mentioned: the argument is true. For any 
structure subject to its own weight, including masonry structures, internal stresses 
grow linearly with size in similar structures. What is not true is that stresses 
(strength) determine the design of masonry structures. 

The emphasis on strength and the opposition of the “actual” internal stresses in 
structures as the main objective of structural theory comes from the very 
development of the science of structures. Navier in his Leçons of 1826 stated 
explicitly the aims of the structural theory: the resolution of the three structural 
equations, those of equilibrium, of the elastic material and of compatibility, will 
give a unique solution for the internal forces within the structure. Then internal 
stresses will be calculated from them and, finally, these stresses will be compared 
with values of the strength of the material obtained in experimental tests. The 
focus is on obtaining the stresses and the complicated mathematical apparatus of 
the theory of elasticity and of the resolution of the system of equations precluded 
for almost one hundred years any criticism. Professor Heyman has called this frame 
of reference “Navier’s straitjacket” [1999]. Nowadays the Method of Finite 
Elements, the numerical resolution of the system of the three structural equations 
dividing the structure in “finite elements”, points in the same direction as the “old” 
classical elastic theory. Sometimes, of course, this has negative consequences in the 
field of structural intervention on historical buildings. As we have seen, many times 
the only way to assure the safety of a building is to “overload” some of its parts, as 
it occurred with the main columns in the cathedral of Palma de Mallorca. A 
reduction of weight, which “theoretically” always leads to a reduction of stresses, 
may lead to serious damage and, eventually, to the collapse of the structure. 

In summary, any engineer or architect with some formation in structural theory 
feels more comfortable within the frame of the strength approach of Galileo and 
the classical theory of structures. It requires an effort, and some study, to overcome 
our own prejudices and to accept that, for example, the medieval master masons, 
knowing nothing of mathematics, elastic theory and strength of materials, had a 
deeper understanding of masonry architecture than we engineers and architects of 
the twenty-first century do. However the masonry buildings of the past stand today 
as a proof of their knowledge and our ignorance.  
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