https://online.fliphtml5.com/fsnu/jqyh/

UNIVERSITY OF PENNSYLVANIA
DEPARTMENT OF ELECTRICAL AND SYSTEMS ENGINEERING
ESE 171 -DIGITAL DESIGN LABORATORY

VHDL Test Bench Tutorial

Purpose

The goal of this tutorial is to demonstrate how to automate the verification of a
larger, more complicated module with many possible input cases through the use of
a VHDL test bench.

Background Information

Test bench waveforms, which you have been using to simulate each of the modules
you have designed so far, are quick to create and easy to use: you merely need to
click on a graphical waveform to set inputs, and after running a simulation, the
output values also appear on waveforms. This form of simulation has a few obvious
limitations that create additional difficulty the engineer:

- You are required to validate that the output is correct yourself from a
waveform, which is easy for simple circuits like a full adder, but would be
more difficult for something complex like a floating-point multiplier, and is
very prone to human error (or, more likely, laziness).

- You are required to manually set test cases for the inputs, which is fine for a
simple combinational circuit, but for even a simple 4-bit adder, you have 8
total input bits (2 inputs, each 4 bits), corresponding to 278 = 256 possible
input cases, and it is very time-consuming to test each one.

An option that is more commonly used among engineers working with a HDL (VHDL,
Verilog) is called a “test bench”. A test bench is essentially a “program” that tells
the simulator (in our case, the Xilinx ISE Simulator, which will be referred to as
ISim) what values to set the inputs to, and what outputs are expected for those
inputs. Thanks to standard programming constructs like loops, iterating through a
large set of inputs becomes much easier for the engineer trying to test their design.

For the purposes of this tutorial, the following VHDL elements will be discussed in the
context of simulation and verification. For the impatient, an actual example of how
to use all of these together is provided below, as most of these statements are fairly
intuitive in practice. Note that anything surrounded in brackets is optional and does
not need to be provided for the statement to be syntactically correct.

1o0of9

https://online.fliphtml5.com/fsnu/jqyh/

1. The wait statement: wait [sensitivity] [condition];

This statement can take many forms. The most useful in this context is to
wait for a specific amount of time, which is accomplished by the following
example:

wait for 10ns:

This statement instructs the simulator to simulate the behavior of the module
for 10ns. When testing combinational logic, you generally need to insert a
“wait for X;” statement (where X is some duration of time, e.g. 10ns) in order
for the simulator to calculate outputs based on the value of the inputs. Note
that “wait;” by itself will just pause the simulator until the user tells it to
continue manually. Additionally, for our purposes, the length of time you
choose to wait does not matter, as this simulation does not account for any
delay from inputs to outputs.

There are many other ways to use the wait statement: one important use is
clocking for sequential circuits, which will be covered in Lab 6.

2. The report statement: report string [severity type];

This statement simply prints out the specified string to the Xilinx console (at
the bottom of the screen). Strings are, as with many programming languages
like C and Java, represented in double quotes. The line below

report "Test completed™;

will print the string “Test completed” to the terminal (without quotes). The
severity argument merely allows you to specify whether what you are
reporting is a NOTE, WARNING, ERROR, or FAILURE.

3. The assert statement: assert condition [report string] [severity type];

This statement serves as the core of our test benches. It allows us to test
that values match what we expect them to be, and when they are not (the
condition is false) we can also have a report statement give the user an
ERROR or WARNING.

Consider the following example from a tester for a full adder (inputs of A and B,
output of S and Co) that will set the inputs to A = ‘0’ and B = ‘'1’, wait for the
simulator to update the output, and then assert that both outputs are correct.

A<= '0';

R R

wait for 10ms:

assexrt S = 'l' report "E
assert Co = '0' report "E

r S" severity ERROR;

» Co"™ severity ERROR:

The following tutorial procedure will demonstrate how to use these statements to
develop test benches for your own modules.

Updated February 12, 2012 2

20f9

30f9

https://online.fliphtml5.com/fsnu/jqyh/

Tutorial Procedure

The best way to learn to write your own VHDL test benches is to see an example.
For the purposes of this tutorial, we will create a test bench for the four-bit adder

used in Lab 4.
For the impatient, actions that you need to perform have key words in bold.
1. With the project containing your four-bit adder open in the Xilinx ISE, right

click under the sources window and select New Source...

2. From the list of options given, select "VHDL Test Bench”. Name the new
module appropriately, and select Next. See the image below for an
example.

2 al
5 New Source Wizard - Select Source Type ﬂ

[V] Add to project

3. In the next screen, select the module for your four-bit adder from the list
selected, and select Next. In this case, the name of the four-bit adder is
“my4add”. See the image below for an example.

Updated February 12, 2012 3

https://online.fliphtml5.com/fsnu/jqyh/

. #55| New Source Wizard - Associate Source g

]Sdedamwkhﬁi&toassodatehenewm. I

myfa

4. Select Finish on the next screen to create the test bench.

Take a minute to skim through the VHDL file that was created for you. Itis
not expected that you understand most of this file: quite the contrary, as
you will not cover most of the elements in the auto-generated file until later
in the course. You should be able to recognize a few things, though. The
next few steps of this tutorial will highlight the elements of this file that are
important to you now.

6. Under the architecture section (between ARCHITECTURE and BEGIN), you
should see a declaration for the module you are trying to test. This should
look something like the following:

ARCHITECTURE behavior OF my4add_test IS
-- Component Declaration for the Unit Under Test (UUI)

COMPONENT my4add

PORT (
A : IN std_logic_vector(3 downto 0):
B : IN =std logic_vector(3 downto 0):
Ci : IN std logic;
S : OUT =atd logic_vector (3 downto 0):
Co : OUT std_logic
):?

END CCMPONENT:;

The auto-generated VHDL you see above is called a component declaration.
When you want to use instances of other lower-level modules (either

schematic or HDL) in a VHDL file, you need to explicitly declare the inputs and
outputs (ports) in this manner.

Updated February 12, 2012 4

4 0of 9

https://online.fliphtml5.com/fsnu/jqyh/

A good analogue for a component declaration is the creation of a schematic
symbol when using instances of your own modules in a schematic. One thing
to note here is that in VHDL, a component declaration like the one shown
above is all you need. You do not need to create a schematic symbol to
include one of your own modules in a VHDL file (which you would need to do
with schematic entry).

7. Under the behavioral description (lines following BEGIN), you should see
some VHDL similar to the following:

BEGIN

-- Instantiate the Unit Under Test (UUI)
uut: my4add PORT MAP (

A=A,

B => B,

Ci=Ci,

S = S,

Co => Co

)z

The above code is an example of how to actually create an instance of our 4-
bit adder. You will cover exactly what this does in more detail later in Lab 6.
For now, suffice to say that you have access to signals A, B, and Ci that
correspond to the inputs to the 4-bit adder, and signals S and Co that are the
outputs from the 4-bit adder.

Also, note that the acronym UUT is a very common testing and validation
term that stands for unit under test, which is the module being evaluated by
the given tester.

8. Immediately after the above instantiation code, you should see short code
block like the following.

-— %#%%* Test Bench - User Defined Section **+
tb : PROCESS
BEGIN

WAIT; -- will wait forever

END PROCESS:
-- %*%*%* End Test Bench - User Defined Section *¥*

This is an example of a VHDL process, which, for the purpose of this tutorial,
will contain all of your VHDL code to simulate the four-bit adder. We will
cover VHDL processes in more detail in Lab 6.

Updated February 12, 2012 5

50f9

https://online.fliphtml5.com/fsnu/jqyh/

9. Add simple wait for 100ms and report commands to the Test Bench
process in between the BEGIN and END PROCESS lines as shown in the
following example:

-=- %*%% Test Bench - User Defined Section *%*
tb : PROCESS
BEGIN

-- Hold reset state for 100ms

wait for 100ms;

WAIT; -- will wait forever
END PROCESS;
-- #*%% End Test Bench - User Defined Section *#w

10. Much like regular VHDL modules, you also have the ability to check the
syntax of a VHDL test bench. With your test bench module highlighted,
select Behavioral Check Syntax under the processes tab.

11. Now, it's time to actually execute the VHDL test bench. To do this, select
Simulate Behavioral Model under the processes tab.

12. This will open the simulator window. Note that the first 1000ns of your
simulation have been executed automatically. In order to run the
remainder, click in the Sim Console at the bottom of the screen, type “run
all” (without quotes) and press enter. You should see the following output:

| — . - w
P Sim Object:

MM | [mydeddvhd | [mydadd test vhd Smudation

') This is a Lite version of ISE Simulator (ISim).

Simulator is doing circuit initialization process.
Finished circuit initialization process.

P2 run all
at 100.000 ms: Note: Hello, world (/my4add test/).
s

' [—
@L[g | © Erors I 1\ Wamings IaTdShen I {26 Find in Files | [&] Sim Console - my4add_test
Updated February 12, 2012 6

6 0of9

https://online.fliphtml5.com/fsnu/jqyh/

13. Now it's time to make the simulator do something interesting. In order to
accomplish this, we will be using a for loop in combination with the wait,
report, and assert statements.

Add a loop similar to the following to your test bench, and re-run it.

-= %*&% Test Bench - User Defined Section **¥
tb : PROCESS
BEGIN

-= Initialize values (very important!)

-- Loop over all values of A and check sum

for I in 0 to 15 loop
-- Wait for output to update
wait for 10ns;
-- Test output. B is held at 0
assert S = A report "Erroxr, sum i
-—- Increment to next value of A
A<=A + "0001";

end loop;

-- Echo to user that test is finished

report "T
WAIT; -- will wait forever
END PROCESS:;
-— %*¥% End Test Bench - User Defined Section #wvw

Note that the variable “I"” in the VHDL above does not have to be declared
elsewhere. Also, make note of the syntax of are the “end loop;” which
terminates the loop, and the use of the '+’ operator for addition of signals
(other arithmetic operators such as **’ work as well!).

Warning: do not use a signal name (in this case, “"A”, "B”, etc.) as the
variable name in a for loop (in this case, “I")!

14. As with any VHDL module you write, you should now run Behavioral Check
Syntax again to validate your changes. This will fail, with an error about
not knowing what to do with the “+” operator in this context. In order to fix
this, we need to include a library that knows how the “+” operator works on
STD_LOGIC_VECTOR’S. Add the line “"USE ieee.std logic unsigned.all;"”
to the top of your test bench, as shown below:

LIBRARY ieee;

USE ieee.std logic 1164.ALL:

USE ieee.numeric_std.ALL;

-—= ADD THE FOLLOWING LINE

USE ieee.std logic unsigned.all:

LIBRARY UNISIM;
USE UNISIM.Vcomponents.ALL;

Note: if Check Syntax does not give an error, add this line anyway!

Updated February 12, 2012 7

7 0of 9

https://online.fliphtml5.com/fsnu/jqyh/

15. Run Behavioral Check Syntax again to make sure the problem was fixed.

16. To ensure that this does in fact test the output of the adder (and it isn’t just
a script that does nothing), change the assert line above to: assert s = B
.. and rerun your test bench. You should now get an error on the console.
Once you do, change the assert statement back to normal (S = A).

Now, modify your VHDL test bench code to cycle through all possible input
values of A and B and check that the sum is correct for each case.

Hint: use a second “nested” for loop inside the one provided above to cycle
through all 16 values of B for each value of A.

While you should try to do this on your own, a working example is
provided on the next page should you get stuck.

17. (Optional - not required) It is important to note that there is one key
feature our test bench is missing. Suppose that an error did occur in our
module: we would be told there was an error, but we would have no idea
what input conditions caused it, or what the incorrect output was, so we
would have no idea how to fix it! In order to remedy this, we will modify the
report line to print out the values of A and B, in addition to the incorrect
sum S, when there is an error.

Unfortunately, printing out the value of a vector in VHDL is not
straightforward. The IEEE libraries define the function image for most VHDL
types (std logic, integer, etc.), which generates a text string that
corresponds to the printed value of that variable, but unfortunately they do
not do so for the std logic_vector type.

In order to get around this limitation, we will convert our std logic vector
signals to unsigned integers using the unsigned and to_integer functions,
and then use image function on the resulting integer to generate a text
string. For an example of how this works, see the following line, which
reports the value of the std logic vector signal A:

report integer'image (to integer (unsigned((A)))):

You can also concatenate strings using the “&” operator. The result is a
string composed of the strings on both sides of the operator combined. For
example, the following will print out "A = 10” as a note:

A <= "1010";
wait for 1Ons;
report "A = " & integer'image(to_integer (unsigned((A)))):

You can use these two techniques (concatenation and the image function) to
make the error reports of your test bench as detailed as you would like.

You are not required to include detailed reporting code like this
example in your own tests.

Updated February 12, 2012 8

8 0of9

https://online.fliphtml5.com/fsnu/jqyh/

Completed example of a VHDL test bench for the four-bit adder:

-= %%* Test Bench - User Defined Section *¥¥
tb : PROCESS
BEGIN

-= Initialize input signals

A <= "Q000";

B <= "0000";

Ci<= "0

-- Loop over all values of A
for I in 0 to 15 loop
-=- Loop over all values of B
for J in 0 to 15 loop
-- Wait for output to update
wait for 10ns;
-- Check value of Sum
assert (S = A + B) report "Expected sum of " &
integer'image(to_integer (unsigned((A + B)))) & " for A =" &
integer'image(to_integer (unsigned((A)))) & " and B = " &
integer'image (to_integer (unsigned((B)))) & ", but was " &
integer'image(to_integer (unsigned((S)))) severity ERROR:
-- Increment to the next value of B
B <= B + "0001";
end loop:
-- Increment to next value of A
A<= A + "0001";
end loop:

-- Echo to user that test is finished
report "Test completed”;
waic;
END PROCESS:;
-— #%% Fnd Test Bench - User Defined Section ##w

Updated February 12, 2012 9

90of 9

