Notes about handling data from the A/D converter
rev 5/13/21

Power connections to the A/D converter are zero and +Vdd volts. Vdd is used as the reference
voltage and thus the range of analog voltages that can be measured is zero to Vdd. However, we
desire to sample an AC voltage which swings plus/minus about what we generally consider to be
“zero” volts. To work with our converter an AC “zero” voltage of 1/2 Vdd is created with a
voltage divider and capacitive coupling of the input signal to the opamp circuit ahead of the A/D
converter on the “AC” input of the A/D board. If you use the “DC” input you will need to add
1/2 Vdd DC to the AC signal (which is easily done if you are creating a test signal using the
Digilent Discovery unit’s Wavegen function) to keep the voltage greater than zero. In either case,
the unsigned value produced by the A/D converter will then be about 2048, if the AC signal has
a magnitude of zero, 4095, if the AC signal is at Vdd/2, and 0 if the AC signal is at -Vdd/2.

(Note: The resistors used to create the 1/2 Vdd offset for the AC input are high valued and

thus may create a long time constant for input to achieve 1/2 Vdd. If that is a problem use

the DC input and add DC offset to the AC in the signal generator setup)

The FIR algorithm assumes that we are multiplying and adding signed numbers. Thus the
unsigned 12-bit value created by the A/D converter must be changed to a signed number. And
we need 2's complement format. To do that subtract 2048 from the A/D value. Recall that
subtraction can be implemented by adding -2048 to the A/D value assuming 2's complement
format. In binary, 2048 is 100000000000 which is -2048 for a 12-bit number. Thus add 2048 to
the raw A/D value.

Using IEEE standard VHDL, the steps you need to properly do arithmetic for the FIR filter
circuit follows. (Reference: section 3.5.4 on pages 60 to 64 of the text). Note, in the comments
below that signals considered to be signed numbers have names starting with val.
1) At the top of your VHDL source file include the IEEE numeric library:
use ieee.numeric_std.all;
2) Define signals that will be numeric and used to hold the incoming data and signals that are
intermediate results:
signal adc_12bit vector : std logic_vector(11 downto 0); - - data coming from the A/D
signal val adc raw : signed(11 downto 0); - - A/D data converted to signed type
signal val adc no offset : signed(11 downto 0); - - data with offset removed
3) Use statements that will create a signed number and remove the offset thereby creating a
value that can then be written to RAM. Note that conversion functions signed and to_signed
are being used. In to-signed, the first parameter is an integer to be converted and the second
parameter specifies the bit length of the resulting binary integer.

val adc raw <= signed(adc 12bit vector);
val adc no_ offset <=val adc raw +to_signed(2048,12);

When doing addition and multiplication you should use signals that have been defined as signed
or unsigned rather than std logic vector. For example, assume you have library and signals
defined as follows:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use [IEEE.NUMERIC STD.ALL;

signal sigA, sigB, sigC : std logic vector(11 downto 0);



If you try to use this statement:

sigC <= sigA + sigB;
or this one:

sigC <=sigA + 1;
a Synthesis error will occur. You cannot add two std_logic signals.
Now you say, I googled and found that if the following library set is used than I can add
std logic_vectors:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD _LOGIC_ARITH.ALL,;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

signal sigA, sigB, sigC : std logic vector(11 downto 0);
sigC <= sigA + sigB;

or
sigC <=sigA + 1;

BUT, only if just unsigned or just signed numbers are used in your design, not both.

It turns out that IEEE.STD LOGIC ARITH.ALL is not an IEEE standard library but rather is a
non-official extension of IEEE.STD LOGIC 1164. A problem occurs if you need to have both
signed and unsigned signal vectors because of the overloading used.

For this lab the official IEEE.NUMERIC STD.ALL library must be used along with proper data
type conversion functions and overloading listed in tables 3.7 and 3.8 on page 62-63 of the
textbook By doing so you will explicitly state the type conversions you wish to occur and will
likely be more able to track down numeric problems when they occur.

The IEEE_STD LOGIC ARITH ALL and IEEE STD LOGIC UNSIGNED.ALL libraries
shall not be used for this lab.



