17.2 (a) Capacitor C is charged to 10 V and the switch closes at t = 0, thus

$$v_O(0+) = 10 \text{ V}$$

Capacitor *C* then discharges through *R* exponentially with $v_O(\infty) = 0$

$$v_O(t) = 0 - (0 - 10) e^{-t/\tau}$$

$$\Rightarrow v_O(t) = 10e^{-t/\tau}$$

(b) For C = 100 pF and $R = 1 \text{ k}\Omega$, we have

$$\tau = 100 \times 10^{-12} \times 1 \times 10^3 = 100 \text{ ns}$$

$$t_{PHL} = 0.69\tau = 0.69 \times 100 = 69$$
 ns

$$t_f = 2.22\tau = 2.2 \times 100 = 220 \text{ ns}$$

In part b of prob. 17.2, the time for the output to go from 90% to 10%, i.e. fall time, is found. You can find the time it takes to drop from 100% to 10%, then find the time to drop from 100% to 90% and subtract the two. In the solution above they are using 2.2 x tau which is $|\ln(.1)| - |\ln(.9)|$ and tau is RC

To obtain t_{PLH} , consider the situation in Fig. 1(a). Here, PD has just opened (at t = 0), leaving $v_0 = 0$ V at t = 0+. Capacitor C then charges through the "on" resistance of the pull-up switch, R_{onu} , toward V_{DD} , thus

$$v_{O}(t) = V_{\infty} - (V_{\infty} - V_{0+})e^{-t/\tau}$$

= $V_{DD} - (V_{DD} - 0)e^{-t/\tau}$
= $V_{DD}(1 - e^{-t/\tau})$
At $t = t_{PLH}$, $v_{O} = V_{DD}/2$, thus
 $\frac{V_{DD}}{2} = V_{DD}(1 - e^{-t_{PLH}/\tau})$
 $\Rightarrow e^{-t_{PLH}/\tau} = 0.5$
 $\Rightarrow t_{PLH} = \tau \ln 2 = 0.69\tau$
For $C = 20$ fF, $R_{onu} = 2$ k Ω , then
 $t_{PLH} = 0.69 \times 20 \times 10^{-15} \times 2 \times 10^{3}$
 $= 27.6$ ps

Next we determine t_{PHL} by considering the situation depicted in Fig. 1(b). Here, PU has just opened, leaving $v_O(0+) = V_{DD}$. Capacitor *C* then discharges through the on resistance of the pull-down switch, R_{ond} , toward 0 V, thus $v_O(\infty) = 0$, thus

$$v_O = 0 - (0 - V_{DD}) e^{-t/\tau}$$

$$= V_{DD}e^{-ij}$$

At $t = t_{PHL}$, $v_O = V_{DD}/2$ and we get

$$\frac{V_{DD}}{2} = V_{DD} e^{-t_{PHL}/\tau}$$

 $\Rightarrow t_{PHL} = 0.69\tau$

Here,

$$au = CR_{\mathrm{ond}}$$

 $= 20 \times 10^{-15} \times 1 \times 10^3 = 20 \text{ ps}$

Thus,

 $t_{PHL} = 0.69 \times 20 \simeq 13.8 \text{ ps}$

The propagation delay t_P can now be obtained as

$$t_P = \frac{1}{2}(t_{PLH} + t_{PHL})$$
$$= \frac{1}{2}(27.6 + 13.8) = 20.7 \text{ ps}$$

17.6 (a)
$$t_P = \frac{1}{2}(t_{PLH} + t_{PHL})$$

Since $t_P = 45$ ps, then

 $t_{PLH} + t_{PHL} = 90 \text{ ps} \tag{1}$

Now, since I_{charge} is half $I_{discharge}$, then

$$t_{PLH} = 2t_{PHL} \tag{2}$$

Using (1) together with (2) yields

 $t_{PLH} = 60 \text{ ps}$

 $t_{PHL} = 30 \text{ ps}$

(b) Since the propagation delay is directly proportional to C, then the increase in propagation delay by 50%, when the capacitance is increased by 0.1 pF, indicates that the original total capacitance is 0.2 pF.

(c) The reduction of propagation delays by 40% when the load inverter is removed indicates that the load inverter was contributing 40% of the total capacitance found in (b), that is,

 $C_{\rm out} = 0.12 \ \rm pF$

 $C_{\text{load}} = 0.08 \text{ pF}$