Homework \# 2 solutions
17.2 (a) Capacitor C is charged to 10 V and the switch closes at $t=0$, thus
$v_{O}(0+)=10 \mathrm{~V}$
Capacitor C then discharges through R exponentially with $v_{O}(\infty)=0$

$$
\begin{aligned}
& v_{O}(t)=0-(0-10) e^{-t / \tau} \\
& \Rightarrow v_{O}(t)=10 e^{-t / \tau}
\end{aligned}
$$

(b) For $C=100 \mathrm{pF}$ and $R=1 \mathrm{k} \Omega$, we have

$$
\begin{aligned}
& \tau=100 \times 10^{-12} \times 1 \times 10^{3}=100 \mathrm{~ns} \\
& t_{P H L}=0.69 \tau=0.69 \times 100=69 \mathrm{~ns} \\
& t_{f}=2.22 \tau=2.2 \times 100=220 \mathrm{~ns}
\end{aligned}
$$

In part b of prob. 17.2, the time for the output to go from 90% to 10%, i.e. fall time, is found. You can find the time it takes to drop from 100% to 10%, then find the time to drop from 100% to 90% and subtract the two. In the solution above they are using 2.2 x tau which is $|\ln (.1)|-|\ln (.9)|$ and tau is RC

To obtain $t_{P L H}$, consider the situation in Fig. 1(a).

Figure 1(a)

Figure 1(b)

Here, PD has just opened (at $t=0$), leaving $v_{0}=0 \mathrm{~V}$ at $t=0+$. Capacitor C then charges through the "on" resistance of the pull-up switch, $R_{\text {onu }}$, toward $V_{D D}$, thus
$v_{O}(t)=V_{\infty}-\left(V_{\infty}-V_{0+}\right) e^{-t / \tau}$
$=V_{D D}-\left(V_{D D}-0\right) e^{-t / \tau}$
$=V_{D D}\left(1-e^{-t / \tau}\right)$
At $t=t_{P L H}, v_{O}=V_{D D} / 2$, thus
$\frac{V_{D D}}{2}=V_{D D}\left(1-e^{-t_{P L H} / \tau}\right)$
$\Rightarrow e^{-t_{P L H} / \tau}=0.5$
$\Rightarrow t_{P L H}=\tau \ln 2=0.69 \tau$
For $C=20 \mathrm{fF}, R_{\text {onu }}=2 \mathrm{k} \Omega$, then
$t_{P L H}=0.69 \times 20 \times 10^{-15} \times 2 \times 10^{3}$
$=27.6 \mathrm{ps}$
Next we determine $t_{P H L}$ by considering the situation depicted in Fig. 1(b). Here, PU has just opened, leaving $v_{O}(0+)=V_{D D}$. Capacitor C then discharges through the on resistance of the pull-down switch, $R_{\text {ond }}$, toward 0 V , thus $v_{O}(\infty)=0$, thus
$v_{O}=0-\left(0-V_{D D}\right) e^{-t / \tau}$
$=V_{D D} e^{-t / \tau}$
At $t=t_{P H L}, v_{O}=V_{D D} / 2$ and we get
$\frac{V_{D D}}{2}=V_{D D} e^{-t_{P H L} / \tau}$
$\Rightarrow t_{P H L}=0.69 \tau$
Here,

$$
\begin{aligned}
& \tau=C R_{\text {ond }} \\
& =20 \times 10^{-15} \times 1 \times 10^{3}=20 \mathrm{ps}
\end{aligned}
$$

Thus,
$t_{P H L}=0.69 \times 20 \simeq 13.8 \mathrm{ps}$
The propagation delay t_{P} can now be obtained as

$$
\begin{aligned}
& t_{P}=\frac{1}{2}\left(t_{P L H}+t_{P H L}\right) \\
& =\frac{1}{2}(27.6+13.8)=20.7 \mathrm{ps}
\end{aligned}
$$

17.6 (a) $t_{P}=\frac{1}{2}\left(t_{P L H}+t_{P H L}\right)$

Since $t_{P}=45 \mathrm{ps}$, then
$t_{P L H}+t_{P H L}=90 \mathrm{ps}$
Now, since $I_{\text {charge }}$ is half $I_{\text {discharge }}$, then
$t_{P L H}=2 t_{P H L}$
Using (1) together with (2) yields
$t_{P L H}=60 \mathrm{ps}$
$t_{P H L}=30 \mathrm{ps}$
(b) Since the propagation delay is directly proportional to C, then the increase in propagation delay by 50%, when the capacitance is increased by 0.1 pF , indicates that the original total capacitance is 0.2 pF .
(c) The reduction of propagation delays by 40% when the load inverter is removed indicates that the load inverter was contributing 40% of the total capacitance found in (b), that is,
$C_{\text {out }}=0.12 \mathrm{pF}$
$C_{\text {load }}=0.08 \mathrm{pF}$

