
ENGR-433
Notes about lab 2

I have shown the information contained in this note to many of you already, but some may not
have seen it. This is information I have on the white board but repeated here for your
convenience.

When doing design a first step is to have a good definition of the problem. For this lab, that was
given. For digital systems, a next step is often to break the larger problem into smaller functional
units and develop a block diagram showing these functional units and signals going between
them. The figure below illustrates a block diagram as it might appear for this lab (this is a first
draft, you might find details to add).

I recommend that you define details, i.e. function and specifications, for each block. That will
lead to further decomposition into either basic components or another block diagram of for lower
level function. In this lab, decomposition of the blocks shown above will mean choosing
components from the Xilinx library to implement the function of the block.

The controller should be a state machine. By creating a fully documented state diagram you will
document the functionality that the state machine needs to have and from the state diagram you
can directly create the next state logic. I recommend using one-hot-plus-one state encoding
because I think it will be easier to develop the next state logic. However, you can use binary
state encoding if you wish. You could draw the block diagram of a state machine to show the
decomposition of the controller block into the next-state logic, memory, and output logic if that
is helpful for your understanding of the problem.

Here is the start of a state diagram that I put on the board:

Please note that this is not the complete state diagram but illustrates how I would detect and react
to pressing the button. Keep in mind our objective: to measure the time between the first press of
the button and the second press of the button measured in 1/100 s of a second. Thus assume that
the state machine memory is clocked at 100hz and every 10 milliseconds a transition to a new
state could occur depending of course on the inputs to the state machine.

In state a we wait for the button to be pressed. When the button is presses we transition to state b.
When a person presses a button it most likely will be pressed for more than 10 ms and thus we
need to wait and look for it to be un-presses. That is what state b is for. Then in state c we wait

until the button is again pressed. Note that during state b and c the counter is enabled and is
counting time. In both state b and c it is possible that the count gets up to maximum, i.e. 99, and
then we need to transition to what might be termed an error state that will turn on the error LED
and wait for reset to be pressed. When reset is pressed we should go back to state a and start the
sequence over again. Caution: the state diagram is not complete as shown and branching
conditions may not be complete. Make sure your branching conditions satisfy the expected sum-
to-one and uniqueness requirements.

Another detail that I have pointed out is how to deal with the clock. A signal external to the
FPGA that we wish to use as a clock needs to route onto a global clock line which can be used to
drive the clock inputs on flip-flops. Use an ibufg rather than an ibuf to make that happen. After
being divided down, the signal is not automatically on a global clock line but needs to routed to a
global clock line so it can then be connected to the clock inputs of flip-flops and counters. Use a
bufg component to do that as shown in the diagram below:

