Day Zero Notes for Digital Design Class

Digital Design class builds on topics from Digital Logic class. Because it likely has been 9
months since you thought about designing logic circuits it is important to do a little review. Class
will begin with a quiz the first day of class that covers topics that should have been learned in
digital logic class. Thus you should review the topics listed below before coming to class.

The first part of digital logic class covered combinational logic which includes boolean algebra,
logic functions, minimizing logic expressions for efficient circuit implementation, etc. Various
combinational logic circuits were then designed and constructed using basic logic gates. The
later part of digital logic class introduced sequential logic circuits, i.e. state machines, and how to

design them.

Here are topics that need review. Make sure you understand each.

> Boolean algebra axioms, theorems, and properties [1]:

la.
1b.
2a.
2b.
3a.

3b.
4a.

4b.

10a.
10b.
l1a.
11b.
12a.
12b.
13a.

Axioms

Bill=0
1+1=1
1«l=1
0+0=0
0-1=1-0=0
1+0=0+1=1
Ifx=0,thenx =1
Ifx=1,thenx =0

‘Properties
Y ipegn
x+y=y+x
x-(y-2)=&-y)2
x+(y+2=C+y) +z2
x-(y+=x-y+x-z
x+y-z=Kx+y) - x+2)
xX+x:-y=Xx

Theorems
5. x-0=0
5b. x+1=1
6. xul =%
6b. x¥0=x
Td. X2k —=2%
b. x+x=x
Ba. X.x=0
8h. x+x=1
9. X=x
Commutative
Associative
Distributive
Absorption

Properties continued

13b. x-(x+y)=x

14a. x:y+x-y=x Combining

14b. (x+y)-x+y)==x

15a. x"'y=x+Y DeMorgan’s theorem
15b. x4+y=Xx-y

16a. x+X-y=x+4Y

16b. x- X+y)=x-y

17a. x-y+y-z+x-z2=x-y+x-2 Consensus

17b. (x+y)-0+2) - T+2)=Kx+y) - x+2)

> Boolean expressions; SOP (sum of products); POS (product of sums)
F=BC+AC+BC = (B+C)A+B+C))
Prove that these two expressions, SOP and POS,
_Sop pos / are equivalent using Boolean properties and
theorems. Both expressions should produce
the same function.

> Canonical Boolean expressions
Canonical expressions have all variables in each term. For example a three variable
canonical function could be: - _ 45c 4+ Agc + ABC + ABE

> Basic logic gates: AND, OR, NAND, NOR, XOR, NOT. Know the truth tables for these.

AB|F ABJ|F ABJF ABJF AB|F
000 000 001 001 000
010 011 011 010 011
100 10 |1 10 |1 10]0 10 [1
1111 1111 1110 1110 1110
AND OR NAND NOR XOR

> DeMorgan’s theorem and its application to drawing logic diagrams:
These two gates are identical hardware but are performing different logic functions. Be
able to convert gates as needed using DeMorgan’s theorem. Recall that when drawing a

logic diagram the body of the symbol must show the logic function being performed by
that gate. Thus use DeMorgan to achieve this..

> Function minimization using regular K-Maps for functions with two, three or four variables.
(We will not use regular K-maps to minimize functions with more than four variables.)

Example K-map. What is the minimized function found using this 3-variable map?
bc
060 01 11 10

olo |o | 11]0
111 o [11 [F=?

> Function minimization using Entered Variable maps (i.e. EV maps)
Example entered variable K-map. What is the minimized function from this map?

b 0

a
00
11 1

> To understand how a state machine operates I find a block diagram of a generic state machine
helpful. T hope this diagram prompts your memory to recall the functional parts of a state

machine:

external
inputs

Synchronous state machine model

next-state
forming logic

memory

—

3

output
forming logic

—3 outputs

clock J

Recall that the name Synchronous State Machine is used because transitions from one state to
another only occur on a clock edge, hence the machine is synchronized with the clock. This
model is called a Moore state machine model because the outputs depend only on what state
the machine is in. Can you name and describe a state machine whose outputs depend not
only on state but also on external inputs?

You should have been introduced to state diagrams which are a prime way of describing the
operation of a state machine. There are various ways to draw them. Below is an example section
of a state diagram illustrating the way we will draw state diagrams in this class. You must use
this style for homework, exams, and lab work. Get use to it.

state identifier

state number

holding branch

branching condition X

#ON if Y #START
V/ _v_/
output signal. output signal.
It is asserted It is asserted
during this state during this state.
if input Y is asserted. The # symbol
The # symbol denotes an output

denotes an output

This is known as a
Mealy output

(circles denote states)

Templates should be used in this class for hand drawn logic diagrams.

[1] Boolean laws scanned from Fundamentals of Digital Logic with VHDL Design 3™ ed.
by Brown and Vranesic. McGraw Hill.

L.Aamodt

