Temperature Measurement

Glass thermometers - 3 calibrations

Constant volume thermometer

Pressure thermometer

Figure 8.3 Expansion thermometry: bimetallic strip.

Invar C = 1.7×10^{-8} m/m degree C Iron C = 1.2×10^{-5} m/m degree C

Resistive Temperature Detector - RTD

$$R = R_0 [1 + \alpha (T - T_0) + \beta (T - T_0)^2 + \cdots]$$

$$R = R_0 [1 + \alpha (T - T_0)]$$

Figure 8.4 Construction of a platinum RTD. (From R. P. Benedict, Fundamentals of Temperature, Pressure and Flow Measurements, 3d ed., Wiley, New York, 1984.)

RTD sensors

Sheathed thermistor probe

Thermistors

Thermocouple operation

When two wires composed of dissimilar metals are joined at both ends and one of the ends is heated, there is a continuous current which flows in the *thermoelectric* circuit. Thomas Seebeck made this discovery in 1821.

Define: relative Seebeck emf -> $\mathcal{E}_{AB}(T) \equiv \mathcal{E}_A(T) - \mathcal{E}_B(T)$ (of materials A and B)

Then
$$E = \mathcal{E}_{AB}(T_m) - \mathcal{E}_{AB}(T_{ref})$$

				Туре К		
	°C	0	5	10	15	20
Thermocouple	200	-5.891	-5.813	-5.730	-5.642	
	-175	-5.454	-5.354	-5.250	-5.141	-5.029
Voltage in millivolts	-150	-4.913	-4.793	-4.669	-4.542	-4.411
J	-125	-4.276	-4.138	-3.997	-3.852	-3.705
	-100	-3.554	-3.400	-3.243	-3.083	-2.920
	-75	-2.755	-2.587	-2.416	-2.243	-2.067
	-50	-1.889	-1.709	-1.527	-1.343	-1.156
	-25	-0.968	0.778	-0.586	-0.392	-0.197
Reference = $0 \deg C$	0	0.000	0.198	0.397	0.597	0.798
5	25	1.000	1.203	1.407	1.612	1.817
	50	2.023	2.230	2.437	2.644	2.851
	75	3.059	3.267	3.474	3.682	3.889
	100	4.096	4.303	4.509	4.715	4.920
	125	5.124	5.328	5.532	5.735	5.937
	150	6.138	6.340	6.540	6.741	6.941
	175	7.140	7.340	7.540	7.739	7.939
	200	8.139	8.338	8.539	8.739	8,940
	225	9.141	9.343	9.545	9.747	9.950
	250	10.153	10.357	10.561	10.766	10.971
	275	11.176	11.382	11.588	11.795	12.002
	300	12.209	12.416	12.624	12.832	13.040
	325	13.248	13.457	13.665	13.875	14.084
	350	14.293	14.503	14.713	14.923	15.133
	375	15.343	15.554	15.764	15.975	16.186

Law of intermediate metals

Insertion of an intermediate metal into a thermocouple circuit will not affect the net emf -

provided that the two junctions introduced by the third metal are at identical temperatures

(b)

Element with bead insulators

Element with ceramic-tubing insulators

Termocouple voltages - in millivolts

	Thermocouple Type								
Temperature °C (°F)	Chromel vs. Constantan E	Iron vs. Constantan J	Chromel vs. Alumel K	Pt/10% Rh vs. Platinum S	Copper vs. Constantan T				
-200 (-328)	-8.825	······	-5.891		-5.603				
-150 (-238)	-7.279		-4.913		-4.648				
-100(-148)	-5.237		-3.554		-3.379				
-50 (-58)	-2.787		-1.889	-0.236	-1.819				
0 (32)	0.000	0.000	0.000	0.000	0.000				
50 (122)	3.048	2.585	2.023	0.299	2.036				
100 (212)	6.319	5.269	4.096	0.646	4.279				
150 (302)	9.789	8.010	6.138	1.029	6.704				
200 (392)	13.421	10.779	8.139	1.441	9.288				
300 (572)	21.036	16.327	12.209	2.323	14.862				
400 (752)	28.946	21.848	16.397	3.259					
600 (1112)	45.093	33.102	24.906	5.239					
800 (1472)	61.017		33.275	7.345					
1000 (1832)			41.276	9.587					
1200 (2192)			48.838	11.951					
1400 (2552)				14.373					

TABLE 16.4: Thermocouple Voltage E in Millivolts versus Temperature T_m for Reference Junctions at $T_{ref} = 0^{\circ}$ C. Values Are Limited to the Recommended Range of Use [11]

$$E = [\mathcal{E}_{Cu}(T_{ref}) - \mathcal{E}_{Cu}(T_{meter})] + [\mathcal{E}_{A}(T_{m}) - \mathcal{E}_{A}(T_{ref})] + [\mathcal{E}_{B}(T_{ref}) - \mathcal{E}_{B}(T_{m})] + [\mathcal{E}_{Cu}(T_{meter}) - \mathcal{E}_{Cu}(T_{ref})] = \mathcal{E}_{AB}(T_{m}) - \mathcal{E}_{AB}(T_{ref})$$

$$E = \mathcal{E}_{\text{FeCn}}(T_m) - \mathcal{E}_{\text{FeCn}}(0^{\circ}\text{C})$$

(a)

(b)

Thermocouples can be connected in series Increases output voltage and averages

Thermocouples can be connected in parallel Creates an average of T1, T2, T3, T4

