
ENGR-355
Software strategy for the class project

The class project definition describes a device that will digitize an EKG waveform (from an
analog input), determine the time between beats, and display the rate. Because we have a
processor, A/D converter, D/A converter and other I/O hardware in the microcontroller it is
possible to implement other desired features. While conceptually additional features may seem
simple it still takes time to implement and debug them. Thus I recommend that you design your
software with a structure that allows basic functionality to be achieved first and then add
additional features as time allows.

Modularity is a key concept to keep in mind. Note that we started programming on our
embedded system by creating functions (we can call these modules) for writing information to
the LCD display, enabling and using the PIT, etc. I suggest that you continue to use a modular
approach.

Regarding the overall structure of your program, recall the concepts from chapter 3. Create task
modules that can be called from a scheduler. The scheduler can be structured as a state machine
which should make it reasonable to understand, implement, and debug.

EKG waveform details

As you likely know, the voltage of an EKG signal obtained using electrodes attached to a person
is small, approximately one millivolt peak-to-peak. Since our ADC has an input range of about
0 to 3volts an amplifier with a gain of 1000 or more would be needed to scale the EKG signal to
the range of our converter. However, our circuit does not have a high gain amplifier. Rather, we
assume that the EKG signal has been amplified before connecting it to our circuit. We will use a
simulated EKG signal for testing our system and confirming operation. The Agilent 33250
signal generators have a button labeled Arb (Arbitrary) which means this generator can read a set
of data from memory and create most any shape waveform that can be created with a finite
number of data points. Built in is an EKG waveform. We will use that to test our project.

NOTE: Before connecting the signal generator to your project set the peak-to-peek voltage and
the offset voltage so the waveform voltage is always positive and never negative. Check the
waveform with the oscilloscope before connecting to the microcontroller A/D input.

The figure on the next page shows a typical EKG waveform annotated with letters like QRS that
refer to particular parts of the waveform. Note that the R wave is the dominant feature of the
waveform and thus should be the easiest to identify and use to determine heart rate in beats per
minute (BPM). While we only need to be concerned with finding the RR interval to determine
BPM the figure shows other intervals and timings of interest to a clinician who is evaluating
heart function.

(https://ecgwaves.com/topic/ecg-normal-p-wave-qrs-complex-st-segment-t-wave-j-point/)

As implied in the figure, to find the RR interval one could look for an R-wave top and then for
the next R wave top. However, that may not work well. I suggest that your algorithm might be
to determine the maximum value of the waveform (R wave maximum) and minimum of the
waveform (S wave minimum) to find the peak-to-peak magnitude and then set a target trigger
level at say 70-80% of peak (illustrated by the red dashed line in the figure) and look for a rising
voltage that crosses the target level (the red arrow). That starts a time interval (reset a count) and
a search begins for the next rising voltage that crosses the target level. When this second crossing
is found use the count value. If you just look for a peak level to find the first R wave and then
expect to find the exact same level for a second R wave you could miss the second R wave
because the magnitude of the R wave can shift a little from one beat to the next.

The rate at which the waveform is sampled needs to be fast enough so that if data points are
plotted it would graphically reproduce the waveform (the Nyquist sample rate is not the metric to
use here). A one millisecond interval between A/D samples is suggested. Use the PIT to measure
time and start A/D conversions. Configure the ADC to create an interrupt when conversion is
complete. You might not need data that often and if not just count and skip a sample or a few.
To determine if the waveform is rising or falling you will need to keep a running list of the
current value as well one or more prior values.

Do not send data to the LCD display from within an interrupt handler.

A strategy to detect the R waves of the EKG waveform and measure time between them might go
something like this. See figure below.

1) For some length of time, say 5 seconds which is nominally 5 beat times, search for the
maximum and minimum values coming from the ADC. Waveform magnitude = (max-min).
Set a positive going threshold at about 80% of waveform magnitude. Set a negative going
threshold at 70% of waveform magnitude.

2) Find when positive going on the waveform (current data point greater than previous might
work if there isn’t too much noise, otherwise looking back more a couple data points might
be better)

3) If positive going and magnitude changes from below the “going up threshold” to above the
threshold then reset a variable to zero that will count the number of time ticks to the next R
wave. Set a flag to denote crossing the threshold. Time ticks are the interval between A/D
conversions, i.e. the period of time that the PIT is set to.

4) Then to avoid being tricked by small up/down ADC data changes due to noise don’t allow
another rising edge detection until waveform magnitude falls below the going down
threshold by use of the flag variable. Rest the flag when going below the down threshold.
This is what we call hysteresis.

5) Don’t write to the LCD from within the IRQ handler.

