
1

EXTERNAL INTERRUPTS
 EXAMPLE USING A GPIO PORT

2

Refresher: Program Requirements & Design

 Req1: When Switch SW is pressed, ISR will increment count variable
 Req2: Main code will light LEDs according to count value in binary sequence (Blue: 4,

Green: 2, Red: 1)
 Req3: Main code will toggle its debug line DBG_MAIN each time it executes
 Req4: ISR will raise its debug line DBG_ISR (and lower main’s debug line DBG_MAIN)

whenever it is executing

ISR count Main

(does initialization,
then updates LED
based on count)

SW

RGB
LED

Global Variable

ISR Task

3

KL25Z GPIO Ports with Interrupts
 Port A (PTA)

through Port E (PTE)

 Not all port bits are
available (package-
dependent)

 Ports A and D
support interrupts

4

FREEDOM KL25Z Physical Set-up

DBG_ISR
DBG_Main

Switch Input

Ground

5

Building a Program – Break into Pieces
 First break into threads, then break thread into steps

 Main thread:
◦ First initialize system

 initialize switch: configure the port connected to the switches to be input
 initialize LEDs: configure the ports connected to the LEDs to be outputs
 initialize interrupts: initialize the interrupt controller

 Then repeat
◦ Update LEDs based on count

 Switch Interrupt thread:
◦ Update count

 Determine which variables ISRs will share with main thread
 This is how ISR will send information to main thread
 Mark these shared variables as volatile (more details ahead)
 Ensure access to the shared variables is atomic (more details ahead)

6

Where Do the Pieces Go?
 main

 top level of main thread code

 switches
 #defines for switch connections
 declaration of count variable
 Code to initialize switch and interrupt hardware
 ISR for switch

 LEDs
 #defines for LED connections
 Code to initialize and light LEDs

 debug_signals
 #defines for debug signal locations
 Code to initialize and control debug lines

7

Configure MCU to Respond to the Interrupt

 Set up peripheral module to generate interrupt
 We’ll use Port Module in this example

 Set up NVIC

 Set global interrupt enable
 Use CMSIS Macro __enable_irq();
 This flag does not enable all interrupts; instead, it is an easy way to disable

interrupts
◦ Could also be called “don’t disable all interrupts”

8

Port Module

 Port Module connects
external pins to NVIC (and other devices)

 Relevant registers
 PCR - Pin control register (32 per port)

◦ Each register corresponds to an input pin
 ISFR - Interrupt status flag register (one per port)

◦ Each bit corresponds to an input pin
◦ Bit is set to 1 if an interrupt has been detected

Port Module

9

Pin Control Register

 ISF indicates if interrupt has been
detected - different way to access
same data as ISFR

 IRQC field of PCR defines behavior for
external hardware interrupts

 Can also trigger direct memory access
(not covered here)

IRQC Configuration
0000 Interrupt Disabled
…. DMA, reserved
1000 Interrupt when logic zero
1001 Interrupt on rising edge
1010 Interrupt on falling edge
1011 Interrupt on either edge
1100 Interrupt when logic one
… reserved

10

CMSIS C Support for PCR

 MKL25Z4.h defines PORT_Type structure with a PCR field (array of 32 integers)

/** PORT - Register Layout Typedef */
typedef struct {
 __IO uint32_t PCR[32]; /** Pin Control Register n, array offset: 0x0, array step: 0x4 */
 __O uint32_t GPCLR; /** Global Pin Control Low Register, offset: 0x80 */
 __O uint32_t GPCHR; /** Global Pin Control High Register, offset: 0x84 */
 uint8_t RESERVED_0[24];
 __IO uint32_t ISFR; /** Interrupt Status Flag Register, offset: 0xA0 */
} PORT_Type;

11

CMSIS C Support for PCR

 Header file defines pointers to PORT_Type registers
 /* PORT - Peripheral instance base addresses */
 /** Peripheral PORTA base address */
 #define PORTA_BASE (0x40049000u)
 /** Peripheral PORTA base pointer */
 #define PORTA ((PORT_Type *)PORTA_BASE)

 Also defines macros and constants
 #define PORT_PCR_MUX_MASK 0x700u
 #define PORT_PCR_MUX_SHIFT 8
 #define PORT_PCR_MUX(x) (((uint32_t)(((uint32_t)
 (x))<<PORT_PCR_MUX_SHIFT)) &PORT_PCR_MUX_MASK)

12

CMSIS C Support for PCR

 Header file defines pointers to PORT_Type registers
 /* PORT - Peripheral instance base addresses */
 /** Peripheral PORTA base address */
 #define PORTA_BASE (0x40049000u)
 /** Peripheral PORTA base pointer */
 #define PORTA ((PORT_Type *)PORTA_BASE)

 Also defines macros and constants
 #define PORT_PCR_MUX_MASK 0x700u

 #define PORT_PCR_MUX_SHIFT 8

 #define PORT_PCR_MUX(x) (((uint32_t)(((uint32_t)(x))<<PORT_PCR_MUX_SHIFT)) & PORT_PCR_MUX_MASK)

(Same slide as previous. Text size adjusted)

13

14

15

16

17

Switch Interrupt Initialization
void init_switch(void) {

/*enable clock for port D */
 SIM->SCGC5 |= SIM_SCGC5_PORTD_MASK;

/*Select GPIO and enable pull-up resistors and
 interrupts on falling edges for pin connected to switch */

 PORTD->PCR[SW_POS] |= PORT_PCR_MUX(1) |
 PORT_PCR_PS_MASK | PORT_PCR_PE_MASK | PORT_PCR_IRQC(0x0a);

/*Set port D switch bit to inputs */
 PTD->PDDR &= ~MASK(SW_POS);

/*Enable Interrupts */
 NVIC_SetPriority(PORTD_IRQn, 128);
 NVIC_ClearPendingIRQ(PORTD_IRQn);
 NVIC_EnableIRQ(PORTD_IRQn);

}

18

Main Function

int main (void) {

init_switch();
init_RGB_LEDs();
init_debug_signals();
__enable_irq();

while (1) {
DEBUG_PORT->PTOR = MASK(DBG_MAIN_POS);
control_RGB_LEDs(count&1, count&2, count&4);
__wfi(); // sleep now, wait for interrupt

}
}

19

Write Interrupt Service Routine
 No arguments or return values – void is only valid type
 Keep it short and simple

 Much easier to debug
 Improves system response time

 Name the ISR according to CMSIS-CORE system exception names
 PORTD_IRQHandler, RTC_IRQHandler, etc.
 The linker will load the vector table with this handler rather than the default handler

 Clear pending interrupts
 Call NVIC_ClearPendingIRQ(IRQnum)

 Read interrupt status flag register to determine source of interrupt
 Clear interrupt status flag register by writing to PORTD->ISFR

20

ISR

void PORTD_IRQHandler(void) {
 DEBUG_PORT->PSOR = MASK(DBG_ISR_POS);

 // clear pending interrupts
 NVIC_ClearPendingIRQ(PORTD_IRQn);

 if ((PORTD->ISFR & MASK(SW_POS))) {
 count++;
 }

 // clear status flags
 PORTD->ISFR = 0xffffffff;
 DEBUG_PORT->PCOR = MASK(DBG_ISR_POS);

}

Note: DEBUG_PORT is not defined in the system header file. It is which ever port you choose
 likewise, DBG_ISR_POS is not pre-defined, it is the port bit you choose

21

Evaluate Basic Operation

 Build program

 Load onto development board

 Start debugger

 Run

 Press switch, verify LED changes color

22

Examine Saved State in ISR

 Set breakpoint in ISR

 Run program

 Press switch, verify debugger stops at breakpoint

 Examine stack and registers

23

At Start of ISR
 Examine memory
 What is SP’s value? See

processor registers window

24

Step through ISR to End
 PC = 0x0000_048C
 Return address stored on stack: 0x0000_0333

25

Return from Interrupt to Main function
 PC = 0x0000_0332

26

PROGRAM DESIGN WITH
INTERRUPTS

27

Program Design with Interrupts

 How much work to do in ISR?

 Should ISRs re-enable interrupts?

 How to communicate between ISR and other threads?
 Data buffering
 Data integrity and race conditions

28

How Much Work Is Done in ISR?

 Trade-off: Faster response for ISR code will delay completion of other
code

 In system with multiple ISRs with short deadlines, perform critical work
in ISR and buffer partial results for later processing

29

SHARING DATA SAFELY BETWEEN
ISRS AND OTHER THREADS

30

Overview

 Volatile data – can be updated outside of the program’s immediate
control

 Non-atomic shared data – can be interrupted partway through read or
write, is vulnerable to race conditions

31

Volatile Data
 Compilers assume that variables in memory do not change

spontaneously, and optimize based on that belief
 Don’t reload a variable from memory if current function hasn’t changed it
 Read variable from memory into register (faster access)
 Write back to memory at end of the procedure, or before a procedure call, or when

compiler runs out of free registers

 This optimization can fail
 Example: reading from input port, polling for key press

◦ while (SW_0) ; will read from SW_0 once and reuse that value
◦ Will generate an infinite loop triggered by SW_0 being true

 Variables for which it fails
 Memory-mapped peripheral register – register changes on its own
 Global variables modified by an ISR – ISR changes the variable
 Global variables in a multithreaded application – another thread or ISR changes the

variable

32

The Volatile Directive

 Need to tell compiler which variables may change outside of its control
 Use volatile keyword to force compiler to reload these vars from memory for

each use
volatile unsigned int num_ints;

 Pointer to a volatile int

volatile int * var; // or

int volatile * var;

 Now each C source read of a variable (e.g. status register) will result in an
assembly language LDR instruction

 Good explanation in Nigel Jones’ “Volatile,” Embedded Systems Programming
July 2001

33

Non-Atomic Shared Data
 Want to keep track of current

time and date

 Use 1 Hz interrupt from timer

 System
 TimerVal structure tracks time

and days since some reference
event

 TimerVal’s fields are updated
by periodic 1 Hz timer ISR

void GetDateTime(DateTimeType * DT){
 DT->day = TimerVal.day;
 DT->hour = TimerVal.hour;
 DT->minute = TimerVal.minute;
 DT->second = TimerVal.second;
}

void DateTimeISR(void){
 TimerVal.second++;
 if (TimerVal.second > 59){
 TimerVal.second = 0;
 TimerVal.minute++;
 if (TimerVal.minute > 59) {
 TimerVal.minute = 0;
 TimerVal.hour++;
 if (TimerVal.hour > 23) {

TimerVal.hour = 0;
 TimerVal.day++;
 … etc.
 }

34

Example: Checking the Time
 Problem

 An interrupt at the wrong time will lead to half-updated data in DT

 Failure Case
 TimerVal is {10, 23, 59, 59} (10th day, 23:59:59)
 Task code calls GetDateTime(), which starts copying the TimerVal fields to DT: day =

10, hour = 23
 A timer interrupt occurs, which updates TimerVal to {11, 0, 0, 0}
 GetDateTime() resumes executing, copying the remaining TimerVal fields to DT:

minute = 0, second = 0
 DT now has a time stamp of {10, 23, 0, 0}.
 The system thinks time just jumped backwards one hour!

 Fundamental problem – “race condition”
 Preemption enables ISR to interrupt other code and possibly overwrite data
 Must ensure atomic (indivisible) access to the object

◦ Native atomic object size depends on processor’s instruction set and word size.
◦ Is 32 bits for ARM

35

Examining the Problem More Closely
 Must protect any data object which both

 (1) requires multiple instructions to read or write (non-atomic access),
and
 (2) is potentially written by an ISR

 How many tasks/ISRs can write to the data object?
 One? Then we have one-way communication

◦ Must ensure the data isn’t overwritten partway through being read
 Writer and reader don’t interrupt each other

 More than one?
◦ Must ensure the data isn’t overwritten partway through being read

 Writer and reader don’t interrupt each other

◦ Must ensure the data isn’t overwritten partway through being written
 Writers don’t interrupt each other

36

Definitions

 Race condition: Anomalous behavior due to unexpected critical
dependence on the relative timing of events. Result of example code
depends on the relative timing of the read and write operations.

 Critical section: A section of code which creates a possible race
condition. The code section can only be executed by one process at a
time. Some synchronization mechanism is required at the entry and exit
of the critical section to ensure exclusive use.

37

Solution: Briefly Disable Preemption
 Prevent preemption within

critical section
 If an ISR can write to the

shared data object, need to
disable interrupts

 save current interrupt
masking state in m

 disable interrupts
 Restore previous state

afterwards (interrupts
may have already been
disabled for another reason)

 Use CMSIS-CORE to save,
control and restore interrupt
masking state

 Avoid if possible
 Disabling interrupts delays response to all other processing requests
 Make this time as short as possible (e.g. a few instructions)

void GetDateTime(DateTimeType * DT){
 uint32_t m;

 m = __get_PRIMASK();
 __disable_irq();

 DT->day = TimerVal.day;
 DT->hour = TimerVal.hour;
 DT->minute = TimerVal.minute;
 DT->second = TimerVal.second;
 __set_PRIMASK(m);
}

38

Summary for Sharing Data
 In thread/ISR diagram, identify shared data
 Determine which shared data is too large to be handled atomically by default

 This needs to be protected from preemption (e.g. disable interrupt(s), use
an RTOS synchronization mechanism)

 Declare (and initialize) shared variables as volatile in main file
 volatile int my_shared_var=0;

 Update extern.h to make these variables available to functions in other files
 volatile extern int my_shared_var;
 #include “extern.h” in every file which uses these shared variables

 When using long (non-atomic) shared data, save, disable and restore
interrupt masking status

 CMSIS-CORE interface: __disable_irq(), __get_PRIMASK(), __set_PRIMASK()

	Example Using Port Module and External Interrupts
	Refresher: Program Requirements & Design
	KL25Z GPIO Ports with Interrupts
	FREEDOM KL25Z Physical Set-up
	Building a Program – Break into Pieces
	Where Do the Pieces Go?
	Configure MCU to Respond to the Interrupt
	Port Module
	Pin Control Register
	CMSIS C Support for PCR
	CMSIS C Support for PCR
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Switch Interrupt Initialization
	Main Function
	Write Interrupt Service Routine
	ISR
	Evaluate Basic Operation
	Examine Saved State in ISR
	At Start of ISR
	Step through ISR to End
	Return from Interrupt to Main function
	Program Design with INterrupts
	Program Design with Interrupts
	How Much Work Is Done in ISR?
	Sharing Data Safely between ISRs and other Threads
	Overview
	Volatile Data
	The Volatile Directive
	Non-Atomic Shared Data
	Example: Checking the Time
	Examining the Problem More Closely
	Definitions
	Solution: Briefly Disable Preemption
	Summary for Sharing Data

