A First Look at Microcontroller Configuration

Kinetis L-Series KL25Z128VLK4

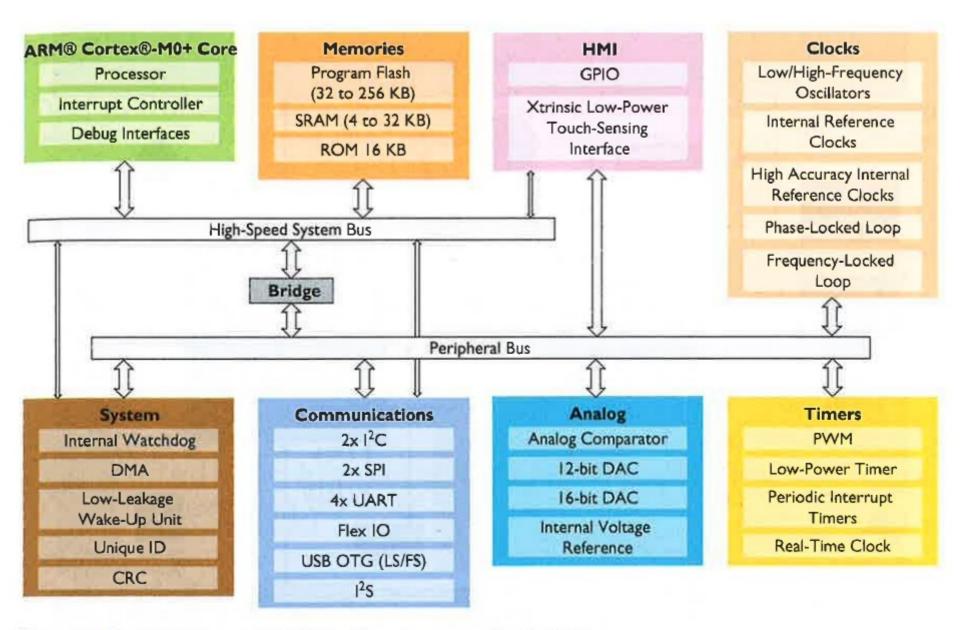


Figure 1.17 NXP Kinetis KL25Z family microcontroller (MCU).

NXP Processor and FRDM-KL25Z Development Board Documentation

- [1] NXP Kinetis KL25 processor sub-family data sheet (pdf)
 [2] NXP Kinetis KL25 processor sub-family reference manual (pdf)

 - [3] FRDM-KL25Z development board schematics (pdf)
 [4] FRDM-KL25Z development board user manual (pdf)
 - [5] Setting up Keil software for a FRDM-KL25Z development board (pdf)
 - [6] Header file MKL25Z4.h (.h)

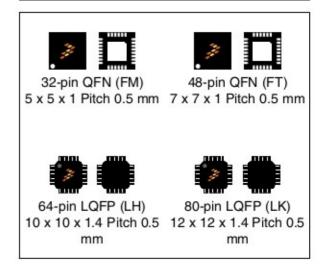
Freescale Semiconductor, Inc.

Data Sheet: Technical Data

Document Number: KL25P80M48SF0

Rev 5 08/2014

Kinetis KL25 Sub-Family


48 MHz Cortex-M0+ Based Microcontroller with USB

Designed with efficiency in mind. Compatible with all other Kinetis L families as well as Kinetis K2x family. General purpose MCU with USB 2.0, featuring market leading ultra low-power to provide developers an appropriate entry-level 32-bit solution.

This product offers:

- Run power consumption down to 47 μA/MHz in very low power run mode
- Static power consumption down to 2 μA with full state retention and 4 μs wakeup
- Ultra-efficient Cortex-M0+ processor running up to 48 MHz with industry leading throughput
- Memory option is up to 128 KB flash and 16 KB RAM
- Energy-saving architecture is optimized for low power with 90 nm TFS technology, clock and power gating techniques, and zero wait state flash memory controller

MKL25ZxxVFM4 MKL25ZxxVFT4 MKL25ZxxVLH4 MKL25ZxxVLK4

Performance

48 MHz ARM® Cortex®-M0+ core

Memories and memory interfaces

- · Up to 128 KB program flash memory
- . Up to 16 KB SRAM

Human-machine interface

- Low-power hardware touch sensor interface (TSI)
- Up to 66 general-purpose input/output (GPIO)

Communication interfaces

 USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator

5.1 KL25 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	1	-	1	PTE0	DISABLED		PTE0		UART1_TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	
2	2	-		PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	-	-	-	PTE2	DISABLED		PTE2	SPI1_SCK					
4	_	-	_	PTE3	DISABLED		PTE3	SPI1_MISO			SPI1_MOSI		
5	_	_	1-	PTE4	DISABLED		PTE4	SPI1_PCS0					
6	_	_	_	PTE5	DISABLED		PTE5						
7	3	1	_	VDD	VDD	VDD							
8	4	2	2	VSS	VSS	VSS							
9	5	3	3	USB0_DP	USB0_DP	USB0_DP							
10	6	4	4	USB0_DM	USB0_DM	USB0_DM							

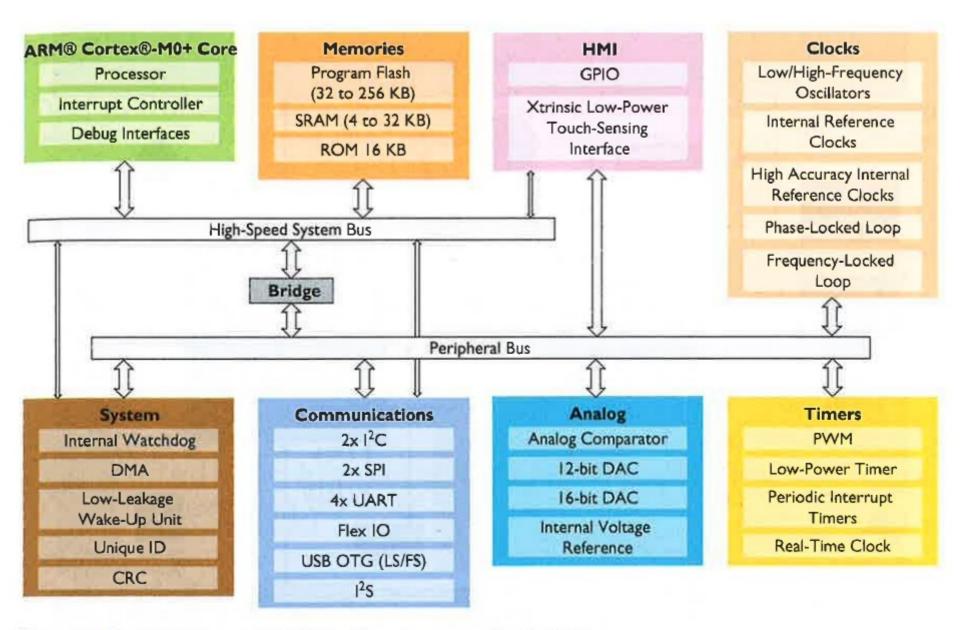


Figure 1.17 NXP Kinetis KL25Z family microcontroller (MCU).

Some of the circuits that need Input/Output pins

- A/D converter
- D/A converter
- UART (serial I/O)
- I2C
- USB
- SPI
- Input to start/stop a timer
- Pulse width modulation output from timer
- External clock input to timer
- Clock output copy of the system clock
- General Purpose Input Output GPIO
- and others

Some of the circuits that need Input/Output pins

- A/D converter
- D/A converter
- UART (serial I/O)
- I2C
- USB
- SPI
- Input to start/stop a timer
- Pulse width modulation output from timer
- External clock input to timer
- Clock output copy of the system clock
- General Purpose Input Output GPIO
- and others

How do all these functions relate to the physical pins on the chip?

First, there are five I/O ports defined in this microcontroller

PortA

PortB

PortC

PortD

PortE

Each with up to 32 bits

Which means in theory there could be up to $32 \times 5 = 160$ pins for I/O on the chip

But, not all are used. Limited to available physical pins

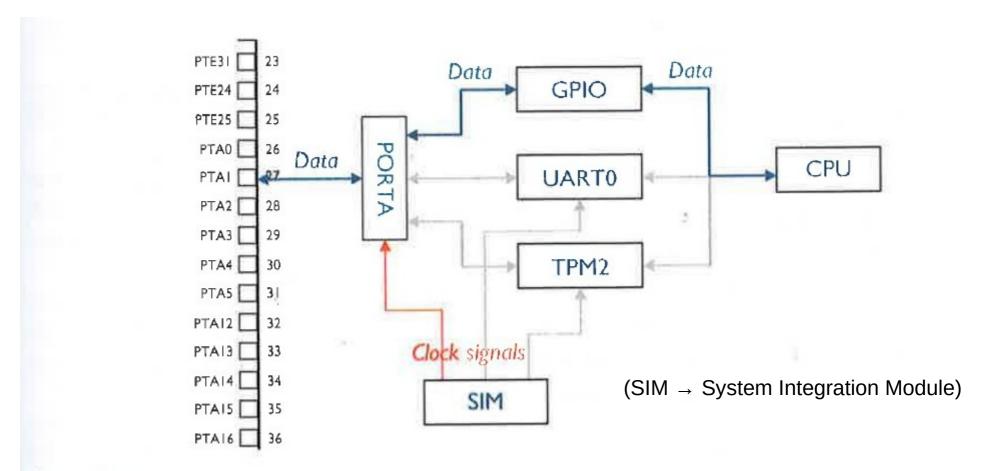


Figure 2.6 An overview of hardware between pin PTA1 and the CPU.

Pinout

80 LQFP	64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
44	36	28	21	PTB1	ADC0_SE9/ TSI0_CH6	ADC0_SE9/ TSI0_CH6	PTB1	I2C0_SDA	TPM1_CH1				
45	37	29	-	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	TPM2_CH0				
46	38	30		PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	TPM2_CH1				
47		1-	_	PTB8	DISABLED		PTB8		EXTRG_IN				
48	-	-		PTB9	DISABLED		PTB9						
49	1	1-	-	PTB10	DISABLED		PTB10	SPI1_PCS0					
50	-	-	_	PTB11	DISABLED		PTB11	SPI1_SCK					
51	39	31	_	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_MOSI	UARTO_RX	TPM_ CLKIN0	SPI1_MISO		
52	40	32	_	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_MISO	UARTO_TX	TPM_ CLKIN1	SPI1_MOSI		
53	41	-	_	PTB18	TSI0_CH11	TSI0_CH11	PTB18		TPM2_CH0				
54	42	-	-	PTB19	TSI0_CH12	TSI0_CH12	PTB19		TPM2_CH1				
55	43	33	=	PTC0	ADC0_SE14/ TSI0_CH13	ADC0_SE14/ TSI0_CH13	PTC0		EXTRG_IN		CMP0_OUT		
56	44	34	22	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_SE15/ TSI0_CH14	ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			

Also found in the family data sheet is electrical and timing info. for example, electrical:

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} - 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	٧	
V_{DDA}	Analog supply voltage	1.71	3.6	٧	_
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	٧	_
V _{SS} - V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	٧	_
V _{IH}	Input high voltage		9		_
	 2.7 V ≤ V_{DD} ≤ 3.6 V 	$0.7 \times V_{DD}$	_	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V	$0.75 \times V_{DD}$	-	٧	
V _{IL}	Input low voltage				_
	 2.7 V ≤ V_{DD} ≤ 3.6 V 		0.35 × V _{DD}	V	
	• 1.7 V ≤ V _{DD} ≤ 2.7 V		$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	0.06 × V _{DD}		٧	_
I _{ICIO}	IO pin negative DC injection current—single pin • V _{IN} < V _{SS} -0.3V	-3		mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins				_
	Negative current injection	-25		mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	٧	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	_	٧	_

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

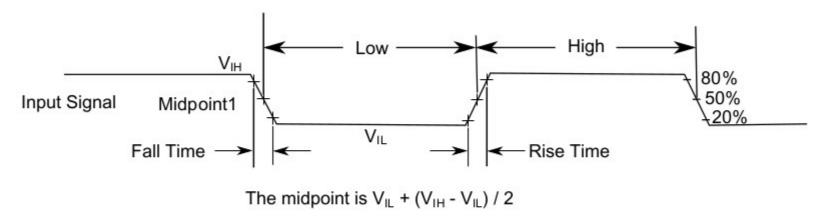


Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- C_L=30 pF loads
- · Slew rate disabled
- Normal drive strength

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹	4		9
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	1—1	1	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz


NXP Processor and FRDM-KL25Z Development Board Documentation

- [1] NXP Kinetis KL25 processor sub-family data sheet (pdf)
 [2] NXP Kinetis KL25 processor sub-family reference manual (pdf)
 [3] FRDM-KL25Z development board schematics (pdf)
 [4] FRDM-KL25Z development board user manual (pdf)

 - [5] Setting up Keil software for a FRDM-KL25Z development board (pdf)
 - [6] Header file MKL25Z4.h (.h)

KL25 Sub-Family Reference Manual

Supports: MKL25Z32VFM4, MKL25Z64VFM4, MKL25Z128VFM4, MKL25Z32VFT4, MKL25Z64VFT4, MKL25Z128VFT4, MKL25Z32VLH4, MKL25Z64VLH4, MKL25Z128VLH4, MKL25Z32VLK4, MKL25Z64VLK4, and MKL25Z128VLK4

Document Number: KL25P80M48SF0RM

Rev. 3, September 2012

➤ Chapter 1: About This Document	33
▶ Chapter 2: Introduction	35
▶ Chapter 3: Chip Configuration	45
▶ Chapter 4: Memory Map	105
▶ Chapter 5: Clock Distribution	115
▶ Chapter 6: Reset and Boot	127
▶ Chapter 7: Power Management	137
▶ Chapter 8: Security	149
▶ Chapter 9: Debug	151
 Chapter 10: Signal Multiplexing and Signal Descriptions 	159
 Chapter 11: Port control and interrupts (PORT) 	175
 Chapter 12: System integration module (SIM) 	191
 Chapter 13: System Mode Controller (SMC) 	217
 Chapter 14: Power Management Controller (PMC) 	237
▶ Chapter 15: Low-Leakage Wakeup Unit (LLWU)	245
▶ Chapter 16: Reset Control Module (RCM)	265
▶ Chapter 17: Bit Manipulation Engine (BME)	271
▶ Chapter 18: Miscellaneous Control Module (MCM)	291
▶ Chapter 19: Micro Trace Buffer (MTB)	299
 Chapter 20: Crossbar Switch Lite (AXBS-Lite) 	331
Chapter 21: Peripheral Bridge (AIPS-Lite)	335
▶ Chapter 22: Direct Memory Access Multiplexer (DMAMUX)	337
▶ Chapter 23: DMA Controller Module	349
 Chapter 24: Multipurpose Clock Generator (MCG) 	367
▶ Chapter 25: Oscillator (OSC)	405
▶ Chapter 26: Flash Memory Controller (FMC)	415
▶ Chapter 27: Flash Memory Module (FTFA)	419
 Chapter 28: Analog-to-Digital Converter (ADC) 	457
▶ Chapter 29: Comparator (CMP)	509
▶ Chapter 30: 12-bit Digital-to-Analog Converter (DAC)	537
▶ Chapter 31: Timer/PWM Module (TPM)	547
▶ Chapter 32: Periodic Interrupt Timer (PIT)	573
▶ Chapter 33: Low-Power Timer (LPTMR)	587
▶ Chapter 34: Real Time Clock (RTC)	597
▶ Chapter 35: Universal Serial Bus OTG Controller (USBOTG)	611
▶ Chapter 36: USB Voltage Regulator	651
▶ Chapter 37: Serial Peripheral Interface (SPI)	655

•	Chapter 22: Direct Memory Access Multiplexer (DMAMUX)	337
١	Chapter 23: DMA Controller Module	349
٠	Chapter 24: Multipurpose Clock Generator (MCG)	367
•	Chapter 25: Oscillator (OSC)	405
•	Chapter 26: Flash Memory Controller (FMC)	415

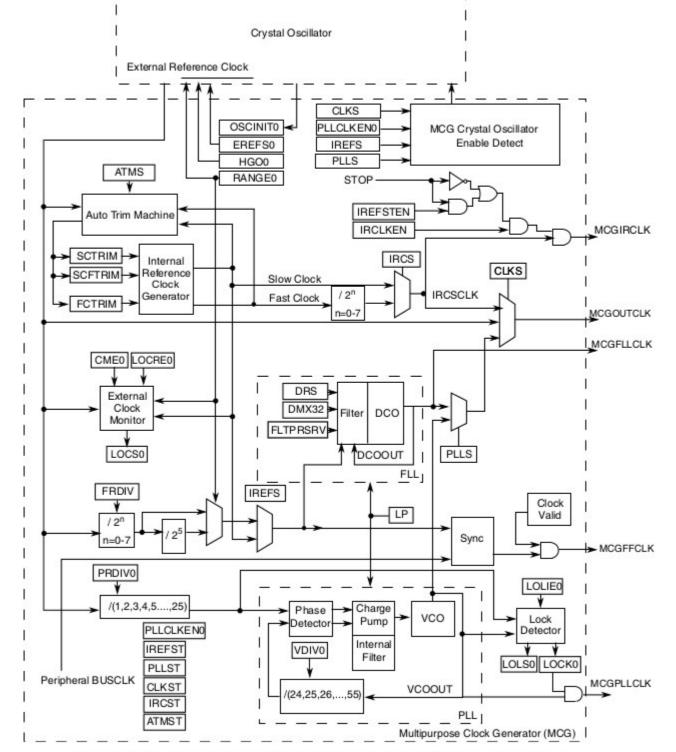


Figure 24-1. Multipurpose Clock Generator (MCG) block diagram

SIM memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
4004_7000	System Options Register 1 (SIM_SOPT1)	32	R/W	See section	12.2.1/183
4004_7004	SOPTI Configuration Register (SIM_SOPTICFG)	32	R/W	0000_0000h	12.2.2/184
4004_8004	System Options Register 2 (SIM_SOPT2)	32	R/W	0000_0000h	12.2.3/185
4004_800C	System Options Register 4 (SIM_SOPT4)	32	R/W	0000_0000h	12.2.4/187
4004_8010	System Options Register 5 (SIM_SOPT5)	32	R/W	0000_0000h	12.2.5/189
4004_8018	System Options Register 7 (SIM_SOPT7)	32	R/W	0000_0000h	12.2.6/190
4004_8024	System Device Identification Register (SIM_SDID)	32	R	Undefined	12.2.7/192
4004_8034	System Clock Gating Control Register 4 (SIM_SCGC4)	32	R/W	F000_0030h	12.2.8/193
4004_8038	System Clock Gating Control Register 5 (SIM_SCGC5)	32	R/W	0000_0180h	12.2.9/195
4004_803C	System Clock Gating Control Register 6 (SIM_SCGC6)	32	R/W	0000_0001h	12.2.10/197
4004_8040	System Clock Gating Control Register 7 (SIM_SCGC7)	32	R/W	0000_0100h	12.2.11/199

Figure 2.4 A portion of registers for the System Integration Module (SIM) peripheral [1, p. 182].

NXP Processor and FRDM-KL25Z Development Board Documentation

- [1] NXP Kinetis KL25 processor sub-family data sheet (pdf)
 [2] NXP Kinetis KL25 processor sub-family reference manual (pdf)
 [3] FRDM-KL25Z development board schematics (pdf)
 [4] FRDM-KL25Z development board user manual (pdf)

 - [5] Setting up Keil software for a FRDM-KL25Z development board (pdf)
 - [6] Header file MKL25Z4.h (.h)

I/O Header 5V 3.3V Vin CR2032 3.3V LDO 1/0 PWM x3 Mini-B USB USB D+/D-Touch Pad - Slider Mini-B USB UART D+/D-USB Kinetis L-Series SPI,GPIO → SWD Kinetis K-Series TSI KL25Z128VLK4 K20DX128VFM5 80 LQFP 10-pin RESET Debug 8 MHz Serial SPI 8 MHz Flash I2C, GPIO 1/0 10-pin Debug Inertial **OpenSDA** Sensor

I/O Header