1) Assume you need an $8: 1$ mux but you don't have one. However you do have two $4: 1$ muxes and a good selection of AND, OR, NAND, NOR, and INV gates. Draw a circuit diagram showing how two $4: 1$ muxes, plus a small amount of other logic, can be connected to form an 8:1 mux. (the graphical symbol for a $4: 1$ mux is shown in fig. 6.2 a in the text book).
2) A multiplexer can be used to generate a SOP function. Assume that you have three signals $\mathrm{a}, \mathrm{b}, \mathrm{c}$. The truth table for a desired SOP function of these signals is shown below. Draw a circuit using one $8: 1$ multiplexer that will create the desired SOP function g.
$g=a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c+a b c^{\prime}+a b c$

a	b	c	g
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3) Draw a circuit using one $4: 1$ mux and one inverter to implement the function defined by the truth table in problem 2.
