These problems focus on two components that are discussed in the first few sections of chapter 6 in the Brown text. The goal here is to become familiar with them.

The first part is the 4-to-1 multiplexer (4:1 mux for short). In class last week we showed logic for creating one. The second part is a 2-to-4 binary decoder (2:4 decoder). Symbols for these parts are:

1) Show how the function $Y=A \bar{B}+\bar{A} B$ can be implemented (i.e. draw a circuit) using only a 4:1 mux.
2) Show how a 2-bit binary decoder and some other gates (AND, OR, NAND, NOR, INV) can be used to create a 4-to-1 multiplexer.
3) Use one 2-bit, i.e. a 2:4, binary decoder and one two-input OR gate to create a circuit for this function: $Y=A B+\bar{A} \bar{B}$
4) Create a circuit using one 4:1 mux and one inverter to implement this function:

$$
Y=\bar{A} B C+A B \bar{C}+\bar{A} \bar{B}
$$

Note: If a constant logic zero is needed then place a ground symbol $\underset{\sim}{\perp}$ on an input of a logic part or alternatively use a zero in quotes: " 0 ".

If a constant logic one is needed then place the characters Vdd on the gate input. Alternatively use a one in quotes: " 1 "

