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FIGURE 4.27
NOR/INV logic cireuit for the optimized POS system of Fig. 4.25.

making use of all shared PIs in the table of Fig. 4.26a together with the required additional
p-term cover yields a combined gate/input tally of 7/22.

Comparing the POS and SOP results with optimum system cOVers of cardinality 4 and
5, respectively, it is clear that the POS result is the more optimum (gate/input tally of
6/15 or 10/19 including inverters). Shown in Fig. 4.27 is the optimal NOR/INV logic
implementation of the POS results given by Eqgs. (4.37).

The simple search method used here to obtain optimum results becomes quite tedious
when applied to multiple output systems more complicated than those just described. For
example, a four-input/four-output SOP optimization problem would require at least 10
ANDed fourth-order K-maps, including one for each of six ANDed pairs. For systems this
large and larger it is recommended that a computer optimization program (Appendix B) be
used, particularly if a guaranteed optimum cover is sought. Optimum coVer, as used here,
means the least number of gates required for implementation of the multiple output system.
Obviously, the number of inverters required and fan-in considerations must also be taken
into account when appraising the total hardware cost.

4.6 ENTERED VARIABLE K-MAP MINIMIZATION

Conspicuously absent in the foregoing discussions on K-map function minimization is the
treatment of function minimization in K-maps of lesser order than the number of variables of
the function. An example of this would be the function reduction of five or more variables in
a fourth-order K-map. In this section these problems are discussed by the subject of entered
variable (EV) mapping, whichis a “Jogical” and very useful extension of the conventional
(1’s and 0’s) mapping methods developed previously.

Properly used, EV K-maps can significantly facilitate the function reduction process.
But function reduction is not the only use to which EV K-maps can be put advantageously.
Frequently, the specifications of a logic design problem lend themselves quite naturally
to EV map representation from which useful information can be obtained directly. Many
examples of this are provided in subsequent chapters. In fact, EV (entered variable) K-maps
are the most common form of graphical representation used in this text.

If N is the number of variables in the function, then map entered variables originate
when a conventional Nth-order K-map is compressed into a K-map of order n < N with
terms of (N — n) variables entered into the appropriate cells of the nth-order K-map. Thus,
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(2) Truth table for function Y in Eq. (4.39) showing subfunctions for a first-order map compression.
(b), () Second and first-order EV K-maps showing submaps and minimum SOP cover extracted in
minterm code.

each cell of the nth-order K-map becomes a submap of order (N — ), hence K-maps within
K-maps.
To illustrate, consider the three-variable function

YA, B, C) = Zm(l, 3,4,5,6), (4.39)

which has been placed in a truth table and mapped into a second-order EV K-map, as shown
in Figs. 4.28a and 4.28b. The subfunctions indicated to the right of the truth table are also
represented as first-order submaps corresponding to the cells 0, 1, 2, and 3 in the EV K-map
of Fig. 4.28b. The minimum cover is then obtained by looping out the cell entries, as shown
by the shaded loops, giving the minimum result

Ysop = AC + AC + AB. (4.40)

Notice that the term AC covers only the C in the 1 = C + C of cell 2. This requires that
the C in the 1 be covered by one of the two OPIs, AB or BC, and the former is chosen.
The same result can be obtained from a second-order compression if the expression of
Eq. (4.39) is compressed into a first-order K-map. This is done in Fig. 4.28¢, where B
and C are now the EVs. The minimum cover is indicated by the shaded loops, yielding
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the expression in Eq. (4.40). The OPI BC is not easily seen in the first-order EV K-map,
but can be found by observing the 1’s representing BC in the two submaps shown in
Fig. 4.28c.

Map Key 1t has already been pointed out that each cell of the compressed nth-order
K-map represents a submap of order (N — n) for an N > n variable function. Thus, each
submap covers 2¥ =" possible minterms or maxterms. This leads to the conclusion that any
compressed nth-order K-map, representing a function of N > n variables, has a Map Key
defined by

MapKey =2"" N >n 4.41)

The Map Key has the special property that when multiplied by a cell code number of
the compressed nth-order K-map there results the code number of the first minterm or
maxterm possible for that cell. Furthermore, the Map Key also gives the maximum number
of minterms or maxterms that can be represented by a given cell of the compressed nth-order
K-map. These facts may be summarized as follows:

Conventional K-map: Map Key =1 (no EVs, 1’s and 0’s only)
First-order compression K-map: Map Key =2 (one EV)
Second-order compression K-map: Map Key =4 (two EVs)
Third-order compression K-map: Map Key = 8 (three EVs), etc.

As an example, the first-order compressed K-map in Fig. 4.28b has a Map Key of
23-2 =2 So each of its cells represents two possible minterms (first-order submaps) begin-
ning with minterm code number equal to (Map Key = 2) x (Cell Number). This is evident
from an inspection of the truth table in Fig. 4.28a. Similarly, the second-order compression in
Fig. 4.28c has aMap Key of 2°~! = 4. Therefore, each cell represents four possible minterms
represented by the conventional second-order submaps shown to the sides of Fig. 4.28¢.

The compressed K-maps in Fig. 4.28 can also be read in maxterm code as indicated by
the shaded loops in Fig. 4.29. In this case the logic 1 in cell 2 must be excluded. The result
for either the first-order or second-order compressed K-maps is

Ypos = (A + B + CYA + C). (4.42)
B
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Second- and first-order EV K-maps showing minimum POS cover for function ¥ extracted in maxterm
code.
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(a) Conventional K-map for function ¥ of Eq. (4.39). (b) Second-order EV K-map with entered
variable A showing minimum cover for Y as extracted in minterm code.

That Ypoy in Eq. (4.40) and Ysgp in Eq. (4.42) are algebraically equal is made evident by
carrying out the following Boolean manipulation:

A+B+CA+C)=AC+AC +[AB +B(,

where the two p-terms in brackets are OPIs, thereby rendering one to be redundant.

In the second-order K-maps of Figs. 4.28 and 4.29, C is taken to be the EV. However,
any of the three variables could have been chosen as the EV in the first-order compres-
sion K-maps. As an example, variable A is the EV in Fig. 4.30, where the columns in
the conventional K-map of (a) form the submaps of the cells in the compressed K-map
of Fig. 4.30b. Minimum cover extracted in minterm code then yields the same result as
Eq. (4.40). Or, if extracted in maxterm code, Eq. (4.42) would result. Thus, one concludes
that the choice of EV's in a compressed K-map does not affect the extracted minimum result.

Reduced but nonminimum functions can be easily compressed into EV K-maps. This is
demonstrated by mapping the four-variable function

X =BCD + AB +ACD + ABCD + ABC (4.43)

into the third-order EV K-maps shown in Fig. 4.31, where the Map Key is 2. Here, D is
the EV and 1 = (D + D). Figure 4.31a shows the p-terms (loops) exactly as presented in
Eq. (4.43). However, regrouping of the logic adjacencies permits minimum SOP and POS
cover to be extracted. This is done in Figs. 4.31b and 4.31c, yielding

Xsop =AD -|-ACl +AB

- s = 4.44)
Xpos=(A+ B+ D)A + C),
where the expressions for Xsop and Xpps represent gate/input tallies of 4/9 and 3/7, res-
pectively, excluding possible inverters.

The four-variable function X in Eq. (4.43) can also be minimized in a second-order EV
K-map. Shown in Fig. 4.32 is the second-order compression and minimum SOP and POS
cover for this function, giving the same results as in Eqs. (4.44). Notice that after covering
the D in cell 1 of Fig. 4.32a, it is necessary to cover all that remains in cell O by looping
out the 1 as an island to give AB. In this case the 1 has the value | = C + C = D + D.

Clearly, the 1 in cell O cannot be used in extracting minimum cover in maxterm code.
4
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FIGURE 4.31
(a) First-order compression plot of the function X in Eq. (4.43) showing original p-terms. (b) Minimum

SOP cover. (¢) Minimum POS cover.

4.6.1 Incompletely Specified Functions

The EV mapping method is further illustrated by compressing the incompletely specified
function

f@A,B,C, D)= Zm(S, 6,9,10,11) +¢(0,1,4,7,8) (4.45)
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FIGURE 4.32
Second-order compressions of the function X showing (a) minimum SOP cover and (b) minimum

POS cover.
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(a) First-order compression plot and submaps for the function f in Eq. (4.45). (b) Minimum SOP
cover and (¢) minimum POS cover.

into the third-order K-map in Fig. 4.33a, a first-order compression with a Map Key of 2.
Here, the subfunctions are presented in their simplest form yet preserving all canonical
information. In Figs. 4.33b and 4.33c¢ are shown the minimum SOP and POS covers for this
function, which produce the expressions

fsop =BD + ABC + AB

I (4.46)
fros=(@A+ B+ D)B + D)A + B),

both of which have a gate/input tally of 4/10. In extracting the minimum expressions of
Egs. (4.46), the loop-out protocol is first applied to the entered variable D and then applied
to the 1’s or 0’s.

Some observations are necessary with regard to Fig. 4.33 and Eqs. (4.46). First, these
expressions are logically equivalent but are not algebraically equal. The reason is that the
don’t cares ¢4 and ¢ in cells 2 and 3 are used differently for the fsop and fpos. For
example, (¢7 + D)sop = 1 for ¢7 = 1 but (¢p7 + D)pos = D, since, in this case, ¢7 = 0.
Second, the extraction process involved some techniques in dealing with ¢’s that have
not been discussed heretofore. These techniques are set off for reference purposes by the
following:
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o Treat the don’t care (¢) as an entered variable — which it is.
« In simplifying incompletely specified subfunctions, apply the absorptive laws:

X+¢X=X+¢
X (g +X)=0X.

Concluding this section is the function

Subfunctions of the type (¢ + X) have an essential SOP component but no
essential POS component. (Proved by substituting the set {0, 1} for ¢.)

« Subfunctions of the type ¢ X have an essential POS component but no essential
SOP component. (Proved by substituting the set {0, 1} for ¢.)

Z(A, B,C, D)= ]"[M(z, 4,7,11, 12, 14, 15)

e Zm(O, 1,3,5,6,8,9,10, 13), (4.47)
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which is represented by the second-order EV K-maps in Fig. 4.34, where C and D are the
EVs and the Map Key is 4. This example is interesting because of the XOR function in
cell 1, which must be represented by both the SOP and POS defining relations, given in
Egs. (3.4), so as to extract minimum SOP and POS cover. To assist the reader in identifying
the subfunctions, second-order conventional submaps in C and D axes are shown for each
cell. Thus, the subfunction for cell 0 is Y m(0, 1,3)= C + D, while that for cell 1 is

A+B+C+D =

5 S5 _/ \ 7 POS
A+B+D
(b)

Second-order EV K-maps and submaps for Egs. (4.47) showing (a) minimum SOP cover and (b)

minimum POS cover.
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Y m(5,6) = C®D = CD+CD = (C + D)(C + D). The minimum SOP and POS results
are given by

Zsop =ABCD + ABD + ABD + CD + BC

_ e . T 4.48)
Zpos=A+B+C+D)B+C+D)B+C+D)A+B+ D)YA+C+D). (

From the results depicted in Fig. 4.34, certain conclusions are worth remembering and are
set off by the following:

¢ In minterm code, subfunctions of the type XY are subsets of forms of the type
X+7Y.

* In maxterm code, subfunctions of the type X + Y are subsets of forms of the
type XY.

What this means is that subfunctions of the type XY can be looped out from terms of the
type X + Y to produce reduced SOP cover. For reduced POS cover, subfunctions of the
type X + Y can be looped out from terms of the type XY (there are more 0’s in XY than in
X +Y ). For example, in Fig. 4.34 CD is looped out of both C + D and C + D to contribute
to minimum SOP cover. However, in Fig. 4.34b both C + D and C + D are looped out of
CD, leaving C + D to be covered by A + B + D.

4.7 FUNCTION REDUCTION OF FIVE OR MORE VARIABLES

Perhaps the most powerful application of the EV mapping method is the minimization or
reduction of functions having five or more variables. However, beyond eight variables the
EV method could become too tedious to be of value, given the computer methods available.
The subject of computer-aided minimization tools is covered in Appendix B.

Consider the function

FA,B,C,D,E) = Zm(3, 11, 12,19, 24, 25, 26, 27, 28, 30), (4.49)

which is to be compressed into a fourth-order K-map. Shown in Fig. 4.35 is the first-order
compression (Map Key = 2) and minimum SOP and POS cover for the five variable function
in Eqgs. (4.49). The minimized results are

Fsop = BCDE + CDE + ABE + ABC

_ o (4.50)
Fpos=(@A+D + E)C+E)}B+ E)A+C+ D)B + D),

which have gate input tallies of 5/17 and 6/17, respectively. Thus, the SOP result is the sim-

pler of the two. Also, since there are no don’t cares involved, the two expressions are algebrai-

cally equal. Thus, one expression can be derived from the other by Boolean manipulation.
A more complex example is presented in Fig. 4.36, where the six-variable function

ZA,B,C,D,E, F)
e Zm(O, 2,4,6,8,10, 12, 14, 16, 20, 23, 32, 34, 36, 38, 40,
42,44, 45, 46,49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63) 4.51)




