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1 Schrödinger’s Equation

One-Dimensional, Time-Dependent version

Schrödinger’s equation originates from conservation of energy.

−h̄2

2m
∂2Ψ
∂x2

+ VΨ = ih̄
∂Ψ
∂t

(1)

The first term has to do with Kinetic energy, the second is closely related
to Potential energy, and the sum of the two is something like total energy.
Ψ is called the wavefunction. In the one-dimensional case, Ψ = Ψ(x, t) and
V = V (x).

We can solve equation (1) by the method of separation of variables.
Assume Ψ(x, t) is a product of functions of x and t alone:

Ψ(x, t) = ψ(x)φ(t) (2)

Plug this into equation (1) to obtain

−h̄2

2m
φ(t)

d2ψ

dx2
+ V (x)ψ(x)φ(t) = ih̄ψ(x)

dφ

dt
. (3)

Divide both sides of (3) by ψ(x)φ(t):

−h̄2

2m

(
1
ψ

d2ψ

dx2

)
+ V (x) = ih̄

1
φ

dφ

dt
(4)

The two sides of equation (4) are equal, but they depend on entirely different
variables. The only way for this to be true is for both sides to equal some
constant, G.

Solving the time-dependent portion of the separated equation (4) we
obtain

ih̄
1
φ

dφ

dt
= G =⇒ φ(t) = e−

i
h̄
Gt . (5)

This is similar to the form of an electromagnetic wave, e−iωt. By analogy,

ω =
E

h̄
=⇒ G = E

therefore the solution to the time-dependent Schrödinger equation is

Ψ(x, t) = ψ(x)e−
i
h̄
Et (6)

1



Time-Independent version

The time-independent § equation is similar:

−h̄2

2m
d2ψ

dx2
+ (V (x)− E)φ = 0 . (7)

This may be extended to three dimensions as

−h̄2

2m
∇2ψ + (V (x, y, z)− E)φ(x, y, z) = 0 . (8)

2 Born Interpretation of the Wavefunction

The intensity of an electromagnetic wave is proportional to the square of
the E or B field. If we use the photon model of light instead of the wave
model, then that intensity at any location should be proportional to the
probability of finding a photon there. Reasoning by analogy from this, Max
Born suggested that the probability density for a particle is given by

P (x) = |Ψ|2 = Ψ∗(x)Ψ(x) , (9)

where Ψ∗ is the complex conjugate of Ψ.
If the particle exists, then the probability of finding it somewhere is

exactly one. This ‘startling’ observation leads to the normalization of the
wavefunction ∫ ∞

−∞
Ψ∗Ψ dx = 1 . (10)

Probability theory tells us that the expected value, or expectation value,
of a measurement of some parameter Q is

〈Q〉 =

∫∞
−∞QP (x) dx∫∞
−∞ P (x) dx

(11)

Thus for a particle, with normalized wavefunction, the expectation value of
position x becomes

〈x〉 =
∫ ∞

−∞
Ψ∗xΨ dx . (12)

For electromagnetic waves of the form ei(kx−ωt),

−ih̄ ∂
∂x

[
ei(kx−ωt)

]
= h̄kei(kx−ωt) = px

[
ei(kx−ωt)

]
. (13)
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Therefore we associate the operator −ih̄ ∂
∂x with momentum px. With a

normalized wavefunction,

〈px〉 =
∫ ∞

−∞
Ψ∗

(
−ih̄ ∂

∂x

)
Ψ dx . (14)

Notice the importance of operator position!

Example 2.1 (Momentum of a Free Particle)
For a particle unconstrained by any potential (V (x) = 0), the
time-independent Schrödinger equation (7) becomes

− h̄2

2m
d2ψ

dx2
− Eψ = 0 (15)

The general solution is

ψ(x) = Ae
i
h̄

√
2mEx +Be−

i
h̄

√
2mEx . (16)

From (6), the time-dependent wave function is

Ψ(x, t) = ψ(x)e−
i
h̄
Et

= Ae
i
h̄
(
√

2mEx−Et) +Be−
i
h̄
(
√

2mEx+Et) . (17)

This represents two waves, one (A) moving in the +x direction
and one (B) moving in the −x direction. If we know that the
particle is moving in the +x direction we can set B = 0.

Now we can find the expectation value of the momentum.

〈px〉 =

∫∞
−∞Ψ∗ (

−ih̄ ∂
∂x

)
Ψ dx∫∞

−∞Ψ∗Ψ dx

=

√
2mE

∫∞
−∞Ψ∗Ψ dx∫∞

−∞Ψ∗Ψ dx
=
√

2mE (18)

This is exactly what we would expect from classical (Newtonian)
physics.
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3 Boundary Conditions on Wave Functions

Since the expectation value of x must be finite, ψ must be finite. The
expectation value of px must also be finite, so dψ

dx must be finite. Since dψ
dx

is finite, ψ must be continuous. Next, since from equation (7)

d2ψ

dx2
=

2m
h̄2 (V − E)ψ (19)

and the energy must be finite, d
2ψ
dx2 is finite which implies that dψ

dx is continu-
ous. Finally, both ψ and dψ

dx must be single-valued or we must abandon any
hope of correspondence to reality.

In summary, both ψ and dψ
dx must be finite, continuous, and single-valued

at all points. We can use these constraints as boundary conditions to help
us solve the Schrödinger equation.

Example 3.1 (Potential Barrier Vo < E)
Solve the time-independent Schrödinger equation (7) in regions
1 and 2 separately, then use the boundary conditions on ψ at
x = 0 to match the solutions.

Region 2Region 1

x=0

V

Vo
E

Figure 1: Particle of energy E incident on a region with Vo < E

In region 1 (x < 0),

− h̄2

2m
d2ψ1

dx2
= Eψ1 =⇒ ψ1(x) = Aeik1x +Be−ik1x (20)

where

k1 ≡
√

2mE
h̄

. (21)
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In region 2 (x > 0)

− h̄2

2m
d2ψ2

dx2
+ V ψ2 = Eψ2 =⇒ ψ2(x) = Ceik2x +De−ik2x (22)

where

k2 ≡
√

2m(E − V )
h̄

. (23)

Now apply boundary conditions. The first, and simplest, is to
note that in region 2 the solution should represent a wave mov-
ing to the right only ; so D = 0. Next, apply the condition of
continuity of ψ and dψ

dx at x = 0:

ψ1|x=0 = ψ2|x=0 =⇒ A+B = C (24)
dψ1

dx

∣∣∣∣
x=0

=
dψ2

dx

∣∣∣∣
x=0

=⇒ ik1(A−B) = ik2C . (25)

Find B and C in terms of A:

A+B = C =⇒ 2A =
(

1 +
k2

k1

)
C

=⇒ C =
2k1

k1 + k2
A (26)

A−B =
k2

k1
C =⇒

(
1− k1

k2

)
A+

(
1 +

k1

k2

)
B = 0

=⇒ B =
k1 − k2

k1 + k2
A (27)

In principle, A should be determined by applying the normal-
ization condition (10) to ψ, but for unbounded traveling wave
solutions this is a bit tricky. Instead, find the probability of
the particle being transmitted and being reflected. In order to
do this, we need to know the flux of the particles incident on
the barrier. Current density is the flux of the charge density
(J = ρv), so we need to multiply the probability density |ψ|2 by
the velocity of the particle p

m = h̄k
m .

The reflected portion of the wave function is given by Be−ik1x in
region 1. The incident wave is given by Aeik1x. The probability
of reflection, the reflection coefficient, is then

R ≡ k1|B|2

k1|A|2
=

(k1 − k2)
2

(k1 + k2)
2 . (28)
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Similarly, the transmission coefficient is

T ≡ k2|C|2

k1|A|2
=
k2

k1

(2k1)2

(k1 + k2)2
. (29)

You may verify that R+ T = 1.

4 Kronig-Penney model

Imagine a one-dimensional potential lattice with spacing L, such as fig-
ure 2. This is a simple one-dimensional analogue to a crystal—the three-
dimensional version is similar but much more complicated mathematically.
To make things as simple as possible, we will assume that the potential Vo is
in the form of a step function, rather than a more realistic Coulomb poten-
tial. (In the final analysis of this model (equation 48), we will take a limit
that renders the form of our potential irrelevant anyway.)

0

V

Vo

-b a a+b

. . .. . .

Figure 2: One-dimensional potential lattice

− h̄2

2m
d2ψ1

dx2
− Eψ1 = 0 0 < x < a (30)

− h̄2

2m
d2ψ2

dx2
+ (Vo − E)ψ2 = 0 − b < x < 0 (31)

The boundary conditions on ψ are

ψ(x) = ψ(x+ L) (32)
ψ∗ψ|x = ψ∗ψ|x+d (33)
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One form of solution that meets these conditions is ψ(x) = eikxu(x), where
u(x) = u(x+ d). Applying condition (32) to this solution, we obtain

eik(x+L)u(x+ L) = eikxu(x) =⇒ eikL = 1 =⇒ k =
2nπ
L

(34)

Now transform equations (30) and (31) into differential equations in terms
of u(x).

dψ

dx
= eikxu′ + ikeikxu (35)

d2ψ

dx2
= eikxu′′ + 2ikeikxu′ − k2eikxu (36)

Define

α2 ≡ 2mE
h̄2 (37)

β2 ≡ 2m(Vo − E)
h̄2 (38)

Now equations (30) and (31) become

u′′1 + 2iku′1 + (α2 − k2)u1 = 0 0 < x < a (39)

u′′2 + 2iku′2 − (β2 + k2)u2 = 0 − b < x < 0 (40)

And the solutions are

u1(x) = Ae(−ikx+iαx) +Be(−ikx−iαx) 0 < x < a (41)

u2(x) = Ce(−ikx+βx) +De(−ikx−βx) − b < x < 0 . (42)

The boundary conditions—continuity—on ψ and dψ
dx hold at all points. Of

particular interest to us for this derivation are points a and −b. Substituting
u1 and u2 into the boundary conditions gives us

A+B = C +D (43)
(−ik + iα)A+ (−ik − iα)B = (−ik + β)C + (−ik − β)D (44)

Ae(−ika+iαa) +Be(−ika−iαa) = Ce(ikb−βb) +De(ikb+βb) (45)

(−ik + iα)Ae(−ika+iαa) + (−ik − iα)Be(−ika−iαa)

= (−ik + β)Ce(ikb−βb) + (−ik − β)De(ikb+βb) (46)
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Put this into matrix form, and set the determinant of the coefficients equal
to zero. (This ensures a non-trivial solution, according to Kramer’s Rule.)
Solve this determinant as best we can to obtain

β2 − α2

2αβ
sinh(βb) sin(αa) + cosh(βb) cos(αa) = cos (k(b+ a)) (47)

Now for the tricky part. Let the width of the potential region b → 0
while letting the potential Vo → ∞ in such a way that bVo = constant but
βb→ 0. (Remember the definition (38) of β.) This is equivalent to making
our lattice out of very small hard pointlike objects. (Nuclei?) Take the limit
of (47) as βb→ 0. In this limit, (47) becomes

β2b

2α
sin(αa) + cos(αa) = cos(ka) (48)

which can be re-written as

P sinc(αa) + cos(αa) = cos(ka) (49)

where

P ≡ aβ2b

2
. (50)

This is most easily understood in graphical form. (Figure 3) The right-
hand side of (49) only allows solutions in the region between -1 and 1. The
shaded regions of figure 3 are the regions where solutions to the Schrödinger
equation exist. Since a is a constant, it is α that determines whether the
region is an allowed region or not. It can be seen from the definition of α
(37) that energy is the only variable, so the existence of solutions depends
on the energy of the particle.

Conclusion: Energy bands exist in periodic structures.
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Psinc(αa) + cos(αa)

-1 ≤ cos(ka) ≤ 1
1

-1
0

Figure 3: Kronig-Penney model in the point-potential limit
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