
December 2019 UM1718 Rev 31 1/363

1

UM1718
User manual

STM32CubeMX for STM32 configuration
and initialization C code generation

Introduction

STM32CubeMX is a graphical tool for STM32 microcontrollers. It is part of the STM32Cube
initiative (see Section 1) and is available as a standalone application as well as in the
STM32CubeIDE toolchain.

STM32CubeMX has the following key features:

• Easy microcontroller selection covering the whole STM32 portfolio

• Board selection from a list of STMicroelectronics boards

• Easy microcontroller configuration (pins, clock tree, peripherals, middleware) and
generation of the corresponding initialization C code

• Easy switching to another microcontroller by importing a previously-saved
configuration to a new MCU project

• Easy exporting of current configuration to a compatible MCU

• Generation of configuration reports

• Generation of embedded C projects for a selection of integrated development
environment tool chains. STM32CubeMX projects include the generated initialization C
code, MISRA 2004 compliant STM32 HAL drivers, the middleware stacks required for the
user configuration, and all the relevant files for opening and building the project in the
selected IDE.

• Power consumption calculation for a user-defined application sequence

• Self-updates allowing the user to keep STM32CubeMX up-to-date

• Download and update of STM32Cube embedded software required for user application
development (see Appendix E for details on the STM32Cube embedded software offer)

Although STM32CubeMX offers a user interface and generates C code compliant with
STM32 MCU design and firmware solutions, users need to refer to the product technical
documentation for details on actual implementations of microcontroller peripherals and
firmware.

The following documents are available from www.st.com:

• STM32 microcontroller reference manuals and datasheets

• STM32Cube HAL/LL driver user manuals for STM32F0 (UM1785), STM32F1
(UM1850), STM32F2 (UM1940), STM32F3 (UM1786), STM32F4 (UM1725), STM32F7
(UM1905), STM32G0 (UM2303), STM32G4 (UM2570), STM32H7 (UM2217),
STM32L0 (UM1749), STM32L1 (UM1816), STM32L4/L4+ (UM1884), STM32L5
(UM2659), STM32MP1 (https://wiki.st.com/stm32mpu) and STM32WB (UM2442).,

www.st.com

http://www.st.com

Contents UM1718

2/363 UM1718 Rev 31

Contents

1 STM32Cube overview . 17

2 Getting started with STM32CubeMX . 18

2.1 Principles . 18

2.2 Key features . 20

2.3 Rules and limitations . 22

3 Installing and running STM32CubeMX . 23

3.1 System requirements . 23

3.1.1 Supported operating systems and architectures 23

3.1.2 Memory prerequisites . 23

3.1.3 Software requirements . 23

3.2 Installing/uninstalling STM32CubeMX standalone version 23

3.2.1 Installing STM32CubeMX standalone version . 23

3.2.2 Installing STM32CubeMX from command line 25

3.2.3 Uninstalling STM32CubeMX standalone version 27

3.3 Launching STM32CubeMX . 28

3.3.1 Running STM32CubeMX as standalone application 28

3.3.2 Running STM32CubeMX in command-line mode 28

3.4 Getting updates using STM32CubeMX . 32

3.4.1 Updater configuration . 33

3.4.2 Installing STM32 MCU packages . 36

3.4.3 Installing STM32 MCU package patches . 37

3.4.4 Installing embedded software packs . 37

3.4.5 Removing already installed embedded software packages 42

3.4.6 Checking for updates . 44

4 STM32CubeMX user interface . 45

4.1 Home page . 46

4.1.1 File menu . 47

4.1.2 Window menu and Outputs tabs . 48

4.1.3 Help menu . 50

4.1.4 Social links . 50

4.2 New Project window . 51

UM1718 Rev 31 3/363

UM1718 Contents

8

4.2.1 MCU selector . 52

4.2.2 Board selector . 56

4.2.3 Cross selector . 56

4.3 Project page . 59

4.4 Pinout & Configuration view . 62

4.4.1 Component list . 63

4.4.2 Component Mode panel . 65

4.4.3 Pinout view . 66

4.4.4 Pinout menu and shortcuts . 67

4.4.5 Pinout view advanced actions . 69

4.4.6 Keep Current Signals Placement . 70

4.4.7 Pinning and labeling signals on pins . 71

4.4.8 Pinout for multi-bonding packages . 72

4.4.9 System view . 73

4.4.10 Component Configuration panel . 75

4.4.11 User Constants configuration window . 78

4.4.12 GPIO Configuration window . 83

4.4.13 DMA Configuration window . 85

4.4.14 NVIC Configuration window . 87

4.4.15 FreeRTOS configuration panel . 94

4.4.16 Setting HAL timebase source . 99

4.5 Pinout & Configuration view for STM32MP1 Series 103

4.5.1 Run time configuration . 104

4.5.2 Boot stages configuration . 105

4.6 Pinout & Configuration view for STM32H7 dual-core product lines 106

4.7 Enabling security in Pinout & Configuration view
(STM32L5 Series only) . 107

4.7.1 Privilege access for peripherals, GPIO EXTIs and DMA requests . . . 108

4.7.2 Secure/non-secure context assignment for
GPIO/Peripherals/Middleware . 112

4.7.3 NVIC and context assignment for peripherals interrupts 112

4.7.4 DMA (context assignment and privilege access settings) 112

4.7.5 GTZC . 114

4.7.6 OTFDEC . 115

4.8 Clock Configuration view .116

4.8.1 Clock tree configuration functions . 117

4.8.2 Securing clock resources (STM32L5 Series only) 120

Contents UM1718

4/363 UM1718 Rev 31

4.8.3 Recommendations . 123

4.8.4 STM32F43x/42x power-over drive feature . 124

4.8.5 Clock tree glossary . 125

4.9 Project Manager view . 126

4.9.1 Project tab . 127

4.9.2 Code Generator tab . 132

4.9.3 Advanced Settings tab . 135

4.10 Import Project window . 137

4.11 Set unused / Reset used GPIOs windows . 143

4.12 Update Manager windows . 145

4.13 Additional software component selection window 146

4.13.1 Introduction on software components . 147

4.13.2 Filter panel . 148

4.13.3 Packs panel . 148

4.13.4 Component dependencies panel . 149

4.13.5 Details and Warnings panel . 150

4.13.6 Updating the tree view for additional software components 152

4.14 About window . 154

5 STM32CubeMX tools . 155

5.1 Power Consumption Calculator view . 155

5.1.1 Building a power consumption sequence . 156

5.1.2 Configuring a step in the power sequence . 161

5.1.3 Managing user-defined power sequence and reviewing results 164

5.1.4 Power sequence step parameters glossary . 167

5.1.5 Battery glossary . 169

5.1.6 SMPS feature . 169

5.1.7 BLE support (STM32WB Series only) . 175

5.1.8 Example feature (STM32MP1 and STM32H7 dual-core only) 176

5.2 DDR Suite (for STM32MP1 Series only) . 178

5.2.1 DDR configuration . 179

5.2.2 Connection to the target and DDR register loading 183

5.2.3 DDR testing . 186

5.2.4 DDR tuning . 188

6 STM32CubeMX C Code generation overview 192

UM1718 Rev 31 5/363

UM1718 Contents

8

6.1 STM32Cube code generation using only HAL drivers
(default mode) . 192

6.2 STM32Cube code generation using Low Layer drivers 194

6.3 Custom code generation . 200

6.3.1 STM32CubeMX data model for FreeMarker user templates 200

6.3.2 Saving and selecting user templates . 201

6.3.3 Custom code generation . 201

6.4 Additional settings for C project generation . 203

7 Code generation for dual-core MCUs
(STM32H7 dual-core product lines only) . 207

8 Code generation with Trustzone enabled (STM32L5 Series only) . . 209

9 Device tree generation (STM32MP1 Series only) 213

9.1 Device tree overview . 213

9.2 STM32CubeMX Device tree generation . 215

9.2.1 Device tree generation for Linux kernel . 216

9.2.2 Device tree generation for U-boot . 217

9.2.3 Device tree generation for TF-A . 218

10 Support of additional software components using
CMSIS-Pack standard . 219

11 Tutorial 1: From pinout to project C code generation
using an MCU of the STM32F4 Series . 222

11.1 Creating a new STM32CubeMX Project . 222

11.2 Configuring the MCU pinout . 224

11.3 Saving the project . 227

11.4 Generating the report . 228

11.5 Configuring the MCU clock tree . 228

11.6 Configuring the MCU initialization parameters . 231

11.6.1 Initial conditions . 231

11.6.2 Configuring the peripherals . 232

11.6.3 Configuring the GPIOs . 234

11.6.4 Configuring the DMAs . 236

11.6.5 Configuring the middleware . 237

Contents UM1718

6/363 UM1718 Rev 31

11.7 Generating a complete C project . 241

11.7.1 Setting project options . 241

11.7.2 Downloading firmware package and generating the C code 242

11.8 Building and updating the C code project . 247

11.9 Switching to another MCU . 252

12 Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board . 253

13 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption and more 261

13.1 Tutorial overview . 261

13.2 Application example description . 262

13.3 Using the Power Consumption Calculator . 262

13.3.1 Creating a power sequence . 262

13.3.2 Optimizing application power consumption . 264

14 Tutorial 4 - Example of UART communications with
an STM32L053xx Nucleo board . 271

14.1 Tutorial overview . 271

14.2 Creating a new STM32CubeMX project and
selecting the Nucleo board . 271

14.3 Selecting the features from the Pinout view . 273

14.4 Configuring the MCU clock tree from the Clock Configuration view 275

14.5 Configuring the peripheral parameters from the Configuration view . . . 276

14.6 Configuring the project settings and generating the project 279

14.7 Updating the project with the user application code 280

14.8 Compiling and running the project . 281

14.9 Configuring Tera Term software as serial communication
client on the PC . 281

15 Tutorial 5: Exporting current project configuration to
a compatible MCU . 283

16 Tutorial 6 – Adding embedded software packs to user projects . . . 287

17 Tutorial 7 – Using the X-Cube-BLE1 software pack 290

UM1718 Rev 31 7/363

UM1718 Contents

8

18 FAQ . 302

18.1 On the Pinout configuration panel, why does STM32CubeMX
move some functions when I add a new peripheral mode? 302

18.2 How can I manually force a function remapping? 302

18.3 Why are some pins highlighted in yellow or in light green in
the Pinout view? Why cannot I change the function of some
pins (when I click some pins, nothing happens)? 302

18.4 Why do I get the error “Java 7 update 45” when installing
“Java 7 update 45” or a more recent version of the JRE? 302

18.5 Why does the RTC multiplexer remain inactive on the Clock tree view? 303

18.6 How can I select LSE and HSE as clock source and
change the frequency? . 304

18.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as an output? . 304

18.8 Ethernet configuration: why cannot I specify DP83848
or LAN8742A in some cases? . 305

Appendix A STM32CubeMX pin assignment rules . 306

A.1 Block consistency . 306

A.2 Block inter-dependency. 310

A.3 One block = one peripheral mode . 312

A.4 Block remapping (STM32F10x only) . 312

A.5 Function remapping. 313

A.6 Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked) 314

A.7 Setting and clearing a peripheral mode. 315

A.8 Mapping a function individually . 315

A.9 GPIO signals mapping . 315

Appendix B STM32CubeMX C code generation design
choices and limitations . 316

B.1 STM32CubeMX generated C code and user sections 316

B.2 STM32CubeMX design choices for peripheral initialization 316

B.3 STM32CubeMX design choices and limitations for
middleware initialization . 317

B.3.1 Overview. 317

Contents UM1718

8/363 UM1718 Rev 31

B.3.2 USB host. 318

B.3.3 USB device . 318

B.3.4 FatFs. 318

B.3.5 FreeRTOS. 319

B.3.6 LwIP . 320

B.3.7 Libjpeg . 322

B.3.8 Mbed TLS . 323

B.3.9 TouchSensing . 326

B.3.10 PDM2PCM . 329

B.3.11 STM32WPAN BLE/Thread (STM32WB Series only) 330

B.3.12 OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines) 334

Appendix C STM32 microcontrollers naming conventions 337

Appendix D STM32 microcontrollers power consumption parameters 339

D.1 Power modes . 339

D.1.1 STM32L1 Series . 339

D.1.2 STM32F4 Series. 340

D.1.3 STM32L0 Series . 341

D.2 Power consumption ranges. 342

D.2.1 STM32L1 Series features three VCORE ranges 342

D.2.2 STM32F4 Series features several VCORE scales 343

D.2.3 STM32L0 Series features three VCORE ranges 343

Appendix E STM32Cube embedded software packages 344

19 Revision history . 345

UM1718 Rev 31 9/363

UM1718 List of tables

9

List of tables

Table 1. Command line summary. 29
Table 2. Home page shortcuts . 47
Table 3. Window menu . 48
Table 4. Help menu shortcuts . 50
Table 5. Component list, mode icons and color schemes . 64
Table 6. Pinout menu and shortcuts . 67
Table 7. Configuration states . 74
Table 8. Peripheral and Middleware Configuration window buttons and tooltips 77
Table 9. Clock configuration view widgets . 120
Table 10. Clock Configuration security settings . 121
Table 11. Voltage scaling versus power over-drive and HCLK frequency . 125
Table 12. Relations between power over-drive and HCLK frequency . 125
Table 13. Glossary . 125
Table 14. Additional software window - Filter icons . 148
Table 15. Additional Software window – Packs panel columns . 149
Table 16. Additional Software window – Packs panel icons. 149
Table 17. Component dependencies panel contextual help . 150
Table 18. LL versus HAL code generation: drivers included in STM32CubeMX projects 195
Table 19. LL versus HAL code generation: STM32CubeMX generated header files 195
Table 20. LL versus HAL: STM32CubeMX generated source files . 196
Table 21. LL versus HAL: STM32CubeMX generated functions and function calls 196
Table 22. Files generated when TrustZone is enabled. 211
Table 23. Connection with hardware resources . 296
Table 24. Document revision history . 345

List of figures UM1718

10/363 UM1718 Rev 31

List of figures

Figure 1. Overview of STM32CubeMX C code generation flow. 19
Figure 2. Example of STM32CubeMX installation in interactive mode . 25
Figure 3. STM32Cube Installation Wizard . 26
Figure 4. Auto-install command line. 27
Figure 5. Displaying Windows default proxy settings. 32
Figure 6. Updater Settings window . 34
Figure 7. Connection Parameters tab - Manual Configuration of Proxy Server 35
Figure 8. Embedded Software Packages Manager window . 36
Figure 9. Managing embedded software packages - Help menu . 38
Figure 10. Managing embedded software packages - Adding new url . 39
Figure 11. Checking the validity of vendor pack.pdsc file url . 39
Figure 12. User-defined list of software packs. 40
Figure 13. Selecting an embedded software pack release . 40
Figure 14. License agreement acceptance . 41
Figure 15. Embedded software pack release - Successful installation . 42
Figure 16. Removing libraries . 43
Figure 17. Removing library confirmation message. 43
Figure 18. Library deletion progress window . 43
Figure 19. Help menu: checking for updates . 44
Figure 20. STM32CubeMX Home page. 46
Figure 21. Window menu . 49
Figure 22. Output view. 49
Figure 23. Link to social platforms . 50
Figure 24. New Project window shortcuts . 51
Figure 25. Enabling Trust-zone for STM32L5 Series. 52
Figure 26. New Project window - MCU selector. 52
Figure 27. Enabling graphics choice in MCU selector . 53
Figure 28. Marking an MCU as favorite . 54
Figure 29. New Project window - MCU list with close function . 55
Figure 30. New Project window - List showing close MCUs . 55
Figure 31. New Project window - Board selector . 56
Figure 32. Cross selector - Data refresh prerequisite . 57
Figure 33. Cross selector - Part number selection per vendor. 57
Figure 34. Cross selector - Partial part number selection completion . 58
Figure 35. Cross selector - Compare cart . 58
Figure 36. Cross selector - Part number selection for a new project . 59
Figure 37. STM32CubeMX Main window upon MCU selection . 60
Figure 38. STM32CubeMX Main window upon board selection (peripherals not initialized) 61
Figure 39. STM32CubeMX Main window upon board selection

(peripherals initialized with default configuration) . 62
Figure 40. Contextual Help window (default) . 63
Figure 41. Contextual Help detailed information . 64
Figure 42. Pinout view . 66
Figure 43. Modifying pin assignments from the Pinout view . 69
Figure 44. Example of remapping in case of block of pins consistency. 70
Figure 45. Pins/Signals Options window . 72
Figure 46. Pinout view: MCUs with multi-bonding . 73
Figure 47. Pinout view: multi-bonding with extended mode. 73

UM1718 Rev 31 11/363

UM1718 List of figures

16

Figure 48. System view . 74
Figure 49. Configuration window tabs (GPIO, DMA and NVIC settings for STM32F4 Series) 75
Figure 50. Peripheral Mode and Configuration view . 76
Figure 51. Formula when input parameter is set in No Check mode. 78
Figure 52. User Constants tab . 78
Figure 53. Extract of the generated main.h file . 79
Figure 54. Using constants for peripheral parameter settings . 79
Figure 55. Specifying user constant value and name . 80
Figure 56. Deleting an user constant is not allowed when the

constant is already used for another constant definition. 81
Figure 57. Deleting an user constant used for parameter configuration -

Confirmation request . 81
Figure 58. Deleting a user constant used for peripheral configuration -

Consequence on peripheral configuration . 81
Figure 59. Searching for a name in a user constant list. 82
Figure 60. Searching for a value in a user constant list . 82
Figure 61. GPIO Configuration window - GPIO selection . 83
Figure 62. GPIO configuration grouped by peripheral . 84
Figure 63. Multiple Pins Configuration . 84
Figure 64. Adding a new DMA request . 85
Figure 65. DMA configuration . 86
Figure 66. DMA MemToMem configuration . 87
Figure 67. NVIC Configuration tab - FreeRTOS disabled . 88
Figure 68. NVIC Configuration tab - FreeRTOS enabled . 89
Figure 69. I2C NVIC Configuration window . 89
Figure 70. NVIC Code generation – All interrupts enabled . 91
Figure 71. NVIC Code generation – IRQ Handler generation . 93
Figure 72. FreeRTOS configuration view. 94
Figure 73. FreeRTOS: configuring tasks and queues . 95
Figure 74. FreeRTOS: creating a new task . 96
Figure 75. FreeRTOS - Configuring timers, mutexes and semaphores. 97
Figure 76. FreeRTOS Heap usage . 99
Figure 77. Selecting a HAL timebase source (STM32F407 example) . 100
Figure 78. TIM1 selected as HAL timebase source . 100
Figure 79. NVIC settings when using SysTick as HAL timebase, no FreeRTOS 101
Figure 80. NVIC settings when using FreeRTOS and SysTick as HAL timebase 102
Figure 81. NVIC settings when using FreeRTOS and TIM2 as HAL timebase 103
Figure 82. STM32MP1 boot devices and runtime contexts . 104
Figure 83. STM32MP1 Series: assignment options for GPIOs . 104
Figure 84. Select peripherals as boot devices . 105
Figure 85. STM32H7 dual-core: peripheral and middleware context assignment 106
Figure 86. STM32H7 dual-core: GPIOs context assignment . 107
Figure 87. Pinout & Configuration view for Trustzone-enabled projects . 108
Figure 88. Setting privileges for peripherals . 109
Figure 89. Setting privileges for GPIO EXTIs . 110
Figure 90. Configuring security and privilege of DMA requests . 111
Figure 91. RCC privilege mode . 111
Figure 92. Configuring security and privilege of DMA requests . 113
Figure 93. Securing peripherals from GTZC panel . 115
Figure 94. OTFDEC secured when TrustZone is active . 115
Figure 95. STM32F469NIHx clock tree configuration view . 116
Figure 96. Clock tree configuration view with errors . 117

List of figures UM1718

12/363 UM1718 Rev 31

Figure 97. Clock tree configuration: enabling RTC, RCC clock source
and outputs from Pinout view . 123

Figure 98. Clock tree configuration: RCC peripheral advanced parameters 124
Figure 99. Project Settings window . 126
Figure 100. Project folder. 127
Figure 101. Selecting a basic application structure . 129
Figure 102. Selecting an advanced application structure . 130
Figure 103. OpenSTLinux settings (STM32MP1 Series only) . 130
Figure 104. Selecting a different firmware location . 131
Figure 105. Firmware location selection error message . 131
Figure 106. Recommended new firmware repository structure . 131
Figure 107. Project Settings code generator . 133
Figure 108. Template Settings window . 134
Figure 109. Generated project template . 135
Figure 110. Advanced Settings window. 136
Figure 111. Generated init functions without C language “static” keyword . 136
Figure 112. Automatic project import . 138
Figure 113. Manual project import . 139
Figure 114. Import Project menu - Try import with errors . 141
Figure 115. Import Project menu - Successful import after adjustments . 142
Figure 116. Set unused pins window . 143
Figure 117. Reset used pins window . 143
Figure 118. Set unused GPIO pins with Keep Current Signals Placement checked 144
Figure 119. Set unused GPIO pins with Keep Current Signals Placement unchecked 145
Figure 120. Additional Software window . 147
Figure 121. Details and Warnings panel . 151
Figure 122. Selection of additional software components . 152
Figure 123. Additional software components - Updated tree view. 153
Figure 124. About window . 154
Figure 125. Power Consumption Calculator default view . 156
Figure 126. Battery selection . 157
Figure 127. Step management functions . 157
Figure 128. Power consumption sequence: New Step default view . 158
Figure 129. Enabling the transition checker option on an already

configured sequence - All transitions valid . 159
Figure 130. Enabling the transition checker option on an already

configured sequence - At least one transition invalid . 159
Figure 131. Transition checker option - Show log . 160
Figure 132. Interpolated power consumption. 162
Figure 133. ADC selected in Pinout view. 163
Figure 134. Power Consumption Calculator Step configuration window:

ADC enabled using import pinout . 164
Figure 135. Power Consumption Calculator view after sequence building . 165
Figure 136. Sequence table management functions . 165
Figure 137. Power Consumption: Peripherals consumption chart . 166
Figure 138. Description of the Results area. 166
Figure 139. Overall peripheral consumption . 168
Figure 140. Selecting SMPS for the current project. 170
Figure 141. SMPS database - Adding new SMPS models . 171
Figure 142. SMPS database - Selecting a different SMPS model . 171
Figure 143. Current project configuration updated with new SMPS model . 172
Figure 144. SMPS database management window with new model selected. 172

UM1718 Rev 31 13/363

UM1718 List of figures

16

Figure 145. SMPS transition checker and state diagram helper window. 173
Figure 146. Configuring the SMPS mode for each step . 174
Figure 147. RF related consumption (STM32WB Series only) . 175
Figure 148. RF BLE mode configuration (STM32WB Series only) . 176
Figure 149. Power Consumption Calculator – Example set . 177
Figure 150. Power Consumption Calculator – Example sequence loading . 177
Figure 151. Power Consumption Calculator – Example sequence new selection 178
Figure 152. DDR pinout and configuration settings . 179
Figure 153. DDR3 configuration . 181
Figure 154. DDR tuning parameter . 182
Figure 155. DDR Suite - Connection to target . 183
Figure 156. DDR Suite - Target connected . 184
Figure 157. DDR activity logs . 184
Figure 158. DDR interactive logs . 185
Figure 159. DDR register loading . 185
Figure 160. DDR test list from U-Boot SPL . 186
Figure 161. DDR test suite results . 187
Figure 162. DDR tests history . 187
Figure 163. DDR tuning pre-requisites . 188
Figure 164. DDR tuning process . 189
Figure 165. Bit deskew . 189
Figure 166. Eye training (centering) panel . 190
Figure 167. DDR Tuning - saving to configuration. 190
Figure 168. DDR configuration update after tuning . 191
Figure 169. Labels for pins generating define statements . 193
Figure 170. User constant generating define statements . 193
Figure 171. Duplicate labels . 194
Figure 172. HAL-based peripheral initialization: usart.c code snippet . 198
Figure 173. LL-based peripheral initialization: usart.c code snippet . 199
Figure 174. HAL versus LL: main.c code snippet . 199
Figure 175. extra_templates folder - Default content . 200
Figure 176. extra_templates folder with user templates . 201
Figure 177. Project root folder with corresponding custom generated files . 202
Figure 178. User custom folder for templates . 202
Figure 179. Custom folder with corresponding custom generated files . 203
Figure 180. Update of the project .ewp file (EWARM IDE)

for preprocessor define statements . 205
Figure 181. Update of stm32f4xx_hal_conf.h file to enable selected modules 205
Figure 182. New groups and new files added to groups in EWARM IDE . 205
Figure 183. Preprocessor define statements in EWARM IDE . 206
Figure 184. Code generation for STM32H7 dual-core devices . 207
Figure 185. Startup and linker files for STM32H7 dual-core devices. 208
Figure 186. ARMv8-M Trustzone overview of building secure and non-secure images 209
Figure 187. Project explorer view for STM32L5 TrustZone enabled projects 210
Figure 188. Project settings for STM32CubeIDE toolchain . 211
Figure 189. STM32CubeMX generated DTS – Extract 1. 214
Figure 190. STM32CubeMX generated DTS – Extract 2. 214
Figure 191. STM32CubeMX generated DTS – Extract 3. 215
Figure 192. Project settings for configuring Device tree path . 216
Figure 193. Device tree generation for the Linux kernel . 217
Figure 194. STM32CubeMX Device tree generation for U-boot . 217
Figure 195. STM32CubeMX Device tree generation for TF-A. 218

List of figures UM1718

14/363 UM1718 Rev 31

Figure 196. Selecting a CMSIS-Pack software component . 219
Figure 197. Enabling and configuring a CMSIS-Pack software component . 220
Figure 198. Project generated with CMSIS-Pack software component . 221
Figure 199. MCU selection . 222
Figure 200. Pinout view with MCUs selection . 223
Figure 201. Pinout view without MCUs selection window . 223
Figure 202. GPIO pin configuration . 224
Figure 203. Timer configuration . 225
Figure 204. Simple pinout configuration . 226
Figure 205. Save Project As window . 227
Figure 206. Generate Project Report - New project creation. 228
Figure 207. Generate Project Report - Project successfully created . 228
Figure 208. Clock tree view . 229
Figure 209. HSI clock enabled. 230
Figure 210. HSE clock source disabled . 230
Figure 211. HSE clock source enabled . 230
Figure 212. External PLL clock source enabled . 230
Figure 213. Pinout & Configuration view . 232
Figure 214. Case of Peripheral and Middleware without configuration parameters. 232
Figure 215. Timer 3 configuration window . 233
Figure 216. Timer 3 configuration . 233
Figure 217. Enabling Timer 3 interrupt . 234
Figure 218. GPIO configuration color scheme and tooltip . 234
Figure 219. GPIO mode configuration . 235
Figure 220. DMA parameters configuration window . 236
Figure 221. Middleware tooltip . 237
Figure 222. USB Host configuration . 237
Figure 223. FatFs over USB mode enabled . 238
Figure 224. System view with FatFs and USB enabled. 239
Figure 225. FatFs define statements . 240
Figure 226. Project Settings and toolchain selection . 241
Figure 227. Project Manager menu - Code Generator tab . 242
Figure 228. Missing firmware package warning message . 242
Figure 229. Error during download . 243
Figure 230. Updater settings for download . 243
Figure 231. Updater settings with connection . 244
Figure 232. Downloading the firmware package . 244
Figure 233. Unzipping the firmware package . 245
Figure 234. C code generation completion message . 245
Figure 235. C code generation output folder . 246
Figure 236. C code generation output: Projects folder . 247
Figure 237. C code generation for EWARM . 248
Figure 238. STM32CubeMX generated project open in IAR™ IDE. 249
Figure 239. IAR™ options . 250
Figure 240. SWD connection . 250
Figure 241. Project building log . 250
Figure 242. User Section 2 . 251
Figure 243. User Section 4 . 251
Figure 244. Import Project menu . 252
Figure 245. Board peripheral initialization dialog box . 253
Figure 246. Board selection . 254
Figure 247. SDIO peripheral configuration . 254

UM1718 Rev 31 15/363

UM1718 List of figures

16

Figure 248. FatFs mode configuration . 255
Figure 249. RCC peripheral configuration . 255
Figure 250. Clock tree view . 255
Figure 251. FATFS tutorial - Project settings. 256
Figure 252. C code generation completion message . 256
Figure 253. IDE workspace . 257
Figure 254. Power Consumption Calculation example . 263
Figure 255. VDD and battery selection menu . 263
Figure 256. Sequence table. 264
Figure 257. sequence results before optimization . 264
Figure 258. Step 1 optimization . 265
Figure 259. Step 5 optimization . 266
Figure 260. Step 6 optimization . 267
Figure 261. Step 7 optimization . 268
Figure 262. Step 8 optimization . 269
Figure 263. Step 10 optimization . 270
Figure 264. Power sequence results after optimizations . 270
Figure 265. Selecting NUCLEO_L053R8 board . 272
Figure 266. Selecting debug pins . 273
Figure 267. Selecting TIM2 clock source. 273
Figure 268. Selecting asynchronous mode for USART2 . 274
Figure 269. Checking pin assignment . 274
Figure 270. Configuring the MCU clock tree . 275
Figure 271. Configuring USART2 parameters . 276
Figure 272. Configuring TIM2 parameters . 277
Figure 273. Enabling TIM2 interrupt . 278
Figure 274. Project Settings menu. 279
Figure 275. Generating the code . 280
Figure 276. Checking the communication port . 281
Figure 277. Setting Tera Term port parameters . 282
Figure 278. Setting Tera Term port parameters . 282
Figure 279. Existing or new project pinout . 283
Figure 280. List of pinout compatible MCUs - Partial match

with hardware compatibility. 284
Figure 281. List of Pinout compatible MCUs - Exact and partial match . 284
Figure 282. Selecting a compatible MCU and importing the configuration . 285
Figure 283. Configuration imported to the selected compatible MCU . 285
Figure 284. Additional software components enabled for the current project 287
Figure 285. Pack software components - no configurable parameters . 288
Figure 286. Pack tutorial - project settings. 288
Figure 287. Generated project with third party pack components . 289
Figure 288. Hardware prerequisites. 290
Figure 289. Embedded software packages . 291
Figure 290. Mobile application . 291
Figure 291. Installing Embedded software packages . 292
Figure 292. Starting a new project - selecting the NUCLEO-L053R8 board . 293
Figure 293. Starting a new project - initializing all peripherals . 293
Figure 294. Selecting X-Cube-BLE1 components . 294
Figure 295. Configuring peripherals and GPIOs . 295
Figure 296. Configuring NVIC interrupts . 296
Figure 297. Enabling X-Cube-BLE1. 297
Figure 298. Configuring the SensorDemo project . 298

List of figures UM1718

16/363 UM1718 Rev 31

Figure 299. Open SensorDemo project in the IDE toolchain . 298
Figure 300. Launching the SensorDemo project in Atollic® TrueStudio® . 299
Figure 301. Viewing the SensorDemo project in Atollic® TrueStudio® . 299
Figure 302. Configuring the SensorDemo project in Atollic® TrueStudio® . 300
Figure 303. Testing the SensorDemo application . 301
Figure 304. Java™ Control Panel . 303
Figure 305. Pinout view - Enabling the RTC . 303
Figure 306. Pinout view - Enabling LSE and HSE clocks . 304
Figure 307. Pinout view - Setting LSE/HSE clock frequency. 304
Figure 308. Block mapping . 307
Figure 309. Block remapping . 308
Figure 310. Block remapping - Example 1 . 309
Figure 311. Block remapping - Example 2 . 309
Figure 312. Block inter-dependency - SPI signals assigned to PB3/4/5 . 310
Figure 313. Block inter-dependency - SPI1_MISO function assigned to PA6 311
Figure 314. One block = one peripheral mode - I2C1_SMBA function assigned to PB5. 312
Figure 315. Block remapping - Example 2 . 313
Figure 316. Function remapping example . 313
Figure 317. Block shifting not applied . 314
Figure 318. Block shifting applied . 315
Figure 319. FreeRTOS HOOK functions to be completed by user . 319
Figure 320. LwIP 1.4.1 configuration . 320
Figure 321. LwIP 1.5 configuration . 321
Figure 322. Libjpeg configuration window . 323
Figure 323. Mbed TLS without LwIP . 324
Figure 324. Mbed TLS with LwIP and FreeRTOS . 325
Figure 325. Mbed TLS configuration window. 326
Figure 326. Enabling the TouchSensing peripheral . 327
Figure 327. Touch-sensing sensor selection panel . 328
Figure 328. TouchSensing configuration panel . 329
Figure 329. BLE and Thread middleware support in STM32CubeMX. 330
Figure 330. STM32CubeWB Package download . 331
Figure 331. STM32CubeWB BLE applications folder . 332
Figure 332. BLE Server profile selection . 333
Figure 333. BLE Client profile selection. 333
Figure 334. Thread application selection . 334
Figure 335. Enabling OpenAmp for STM32MP1 devices . 335
Figure 336. Enabling the Resource Manager for STM32MP1 devices . 335
Figure 337. Resource Manager: peripheral assignment view . 336
Figure 338. STM32 microcontroller part numbering scheme . 338
Figure 339. STM32Cube Embedded Software package . 344

UM1718 Rev 31 17/363

UM1718 STM32Cube overview

362

1 STM32Cube overview

STM32Cube is an STMicroelectronics original initiative to make developers’ lives easier by
reducing development effort, time and cost. STM32Cube covers the whole portfolio of
STM32 microcontrollers, based on 32-bit Arm®(a) Cortex® cores.

STM32Cube includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per Series (such as
STM32CubeF2 for STM32F2 Series and STM32CubeF4 for STM32F4 Series)

– The STM32Cube HAL, STM32 abstraction layer embedded software ensuring
maximized portability across the STM32 portfolio

– Low-layer APIs (LL) offering a fast light-weight expert-oriented layer which is
closer to the hardware than the HAL. LL APIs are available only for a set of
peripherals.

– A consistent set of middleware components such as RTOS, USB, TCP/IP

– All embedded software utilities, delivered with a full set of examples.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Getting started with STM32CubeMX UM1718

18/363 UM1718 Rev 31

2 Getting started with STM32CubeMX

2.1 Principles

Customers need to quickly identify the MCU that best meets their requirements (core
architecture, features, memory size, performance…). While board designers main concerns
are to optimize the microcontroller pin configuration for their board layout and to fulfill the
application requirements (choice of peripherals operating modes), embedded system
developers are more interested in developing new applications for a specific target device,
and migrating existing designs to different microcontrollers.

The time taken to migrate to new platforms and update the C code to new firmware drivers
adds unnecessary delays to the project. STM32CubeMX was developed within STM32Cube
initiative which purpose is to meet customer key requirements to maximize software reuse
and minimize the time to create the target system:

• Software reuse and application design portability are achieved through STM32Cube
firmware solution proposing a common Hardware Abstraction Layer API across STM32
portfolio.

• Optimized migration time is achieved thanks to STM32CubeMX built-in knowledge of
STM32 microcontrollers, peripherals and middleware (LwIP and USB communication
protocol stacks, FatFs file system for small embedded systems, FreeRTOS).

STM32CubeMX graphical interface performs the following functions:

• Fast and easy configuration of the MCU pins, clock tree and operating modes for the
selected peripherals and middleware

• Generation of pin configuration report for board designers

• Generation of a complete project with all the necessary libraries and initialization C
code to set up the device in the user defined operating mode. The project can be
directly open in the selected application development environment (for a selection of
supported IDEs) to proceed with application development (see Figure 1).

During the configuration process, STM32CubeMX detects conflicts and invalid settings and
highlights them through meaningful icons and useful tool tips.

UM1718 Rev 31 19/363

UM1718 Getting started with STM32CubeMX

362

Figure 1. Overview of STM32CubeMX C code generation flow

Getting started with STM32CubeMX UM1718

20/363 UM1718 Rev 31

2.2 Key features

STM32CubeMX comes with the following features:

• Project management

STM32CubeMX allows the user to create, save and load previously saved projects:

– When STM32CubeMX is launched, the user can choose to create a new project or
to load a previously saved project.

– Saving the project saves user settings and configuration performed within the
project in an .ioc file to be used when the project will be loaded in STM32CubeMX
again.

STM32CubeMX also allows the user to import previously saved projects in new ones.

STM32CubeMX projects come in two flavors:

– MCU configuration only: .ioc file is saved in a dedicated project folder.

– MCU configuration with C code generation: in this case .ioc files are saved in a
dedicated project folder along with the generated source C code. There can be
only one .ioc file per project.

• Easy MCU and STMicroelectronics board selection

When starting a new project, a dedicated window opens to select either a
microcontroller or an STMicroelectronics board from STM32 portfolio. Different filtering
options are available to ease the MCU and board selection. There is also the possibility
to select an MCU through the Cross selector tab by comparing characteristics to those
of competitors portfolio. Comparison criteria can be adjusted.

• Easy pinout configuration

– From the Pinout view, the user can select the peripherals from a list and configure
the peripheral modes required for the application. STM32CubeMX assigns and
configures the pins accordingly.

– For more advanced users, it is also possible to directly map a peripheral function
to a physical pin using the Pinout view. The signals can be locked on pins to
prevent STM32CubeMX conflict solver from moving the signal to another pin.

– Pinout configuration can be exported as a .csv file.

• Complete project generation

The project generation includes pinout, firmware and middleware initialization C code
for a set of IDEs. It is based on STM32Cube embedded software libraries. The
following actions can be performed:

– Starting from the previously defined pinout, the user can proceed with the
configuration of middleware, clock tree, services (RNG, CRC, etc...) and
peripheral parameters. STM32CubeMX generates the corresponding initialization
C code. The result is a project directory including generated main.c file and C
header files for configuration and initialization, plus a copy of the necessary HAL
and middleware libraries as well as specific files for the selected IDE.

– The user can modify the generated source files by adding user-defined C code in
user dedicated sections. STM32CubeMX ensures that the user C code is

UM1718 Rev 31 21/363

UM1718 Getting started with STM32CubeMX

362

preserved upon next C code generation (the user C code is commented if it is no
longer relevant for the current configuration).

– STM32CubeMX can generate user files by using user-defined freemarker .ftl
template files.

– From the Project settings menu, the user can select the development toolchain
(IDE) for which the C code has to be generated. STM32CubeMX ensures that the
IDE relevant project files are added to the project folder so that the project can be
directly imported as a new project within third party IDE (IAR™ EWARM, Keil™
MDK-ARM, Atollic® TrueSTUDIO® and AC6 System Workbench for STM32).

• Power consumption calculation

Starting with the selection of a microcontroller part number and a battery type, the user
can define a sequence of steps representing the application life cycle and parameters
(choice of frequencies, enabled peripherals, step duration). STM32CubeMX Power
Consumption Calculator returns the corresponding power consumption and battery life
estimates.

• Clock tree configuration

STM32CubeMX offers a graphic representation of the clock tree as it can be found in
the device reference manual. The user can change the default settings (clock sources,
prescaler and frequency values). The clock tree is then updated accordingly. Invalid
settings and limitations are highlighted and documented with tool tips. Clock tree
configuration conflicts can be solved by using the solver feature. When no exact match
is found for a given user configuration, STM32CubeMX proposes the closest solution.

• Automatic updates of STM32CubeMX and STM32Cube MCU packages

STM32CubeMX comes with an updater mechanism that can be configured for
automatic or on-demand check for updates. It supports STM32CubeMX self-updates
as well as STM32Cube firmware library package updates. The updater mechanism
also allows deleting previously installed packages.

• Report generation

.pdf and .csv reports can be generated to document user configuration work.

• Graphics simulator

For graphics-capable microcontrollers, STM32CubeMX allows the user to simulate a
graphics configuration and adjust graphics parameters to optimize the performance.
Once the results are satisfactory, the current project configuration can be adjusted
accordingly.

• Support of embedded software packages in CMSIS-Pack format

STM32CubeMX allows getting and downloading updates of embedded software
packages delivered in CMSIS-Pack format. Selected software components belonging
to these new releases can then be added to the current project.

• Contextual help

Contextual help windows can be displayed by hovering the mouse over Cores, Series,
Peripherals and Middleware. They provide a short description and links to the relevant
documentation corresponding to the selected item.

Getting started with STM32CubeMX UM1718

22/363 UM1718 Rev 31

2.3 Rules and limitations

• C code generation covers only peripheral and middleware initialization. It is based on
STM32Cube HAL firmware libraries.

• STM32CubeMX C code generation covers only initialization code for peripherals and
middleware components that use the drivers included in STM32Cube embedded
software packages. The code generation of some peripherals and middleware
components is not yet supported.

• Refer to Appendix A for a description of pin assignment rules.

• Refer to Appendix B for a description of STM32CubeMX C code generation design
choices and limitations.

UM1718 Rev 31 23/363

UM1718 Installing and running STM32CubeMX

362

3 Installing and running STM32CubeMX

3.1 System requirements

3.1.1 Supported operating systems and architectures

• Windows® 7: 32-bit (x86), 64-bit (x64)

• Windows® 8: 32-bit (x86), 64-bit (x64)

• Windows® 10: 32-bit (x86), 64-bit (x64)

• Linux®: 32-bit (x86) and 64-bit (x64) (tested on RedHat, Ubuntu and Fedora)

Since STM32CubeMX is a 32-bit application, some versions of Linux 64-bit
distributions require to install 32-bit compliant packages such as ia32-libs.

• macOS®: 64-bit (x64) (tested on OS X El Capitan and Sierra)

3.1.2 Memory prerequisites

• Recommended minimum RAM: 2 Gbytes.

3.1.3 Software requirements

The Java™ Run Time Environment 1.8 must be installed.

Note that Java 9 and Java 10 are not supported and there is limited validation done with
Java 11.

After Oracle announcement related to ‘End of Public Updates for Oracle JDK 8’, you can
access OpenJDK 8 via https://adoptopenjdk.net/.

3.2 Installing/uninstalling STM32CubeMX standalone version

3.2.1 Installing STM32CubeMX standalone version

To install STM32CubeMX, follow the steps below:

1. Download STM32CubeMX installation package from www.st.com/stm32cubemx.

2. Extract (unzip) stm32cubemx.zip whole package into the same directory.

3. Check your access rights and launch the installation wizard:

On Windows®:

a) Make sure you have administrators rights.

b) Double-click the SetupSTM32CubeMX-VERSION.exe file to launch the
installation wizard.

On Linux®:

a) Make sure you have access rights to the target installation directory. You can run
the installation as root (or sudo) to install STM32CubeMX in shared directories.

b) Do "chmod 777 SetupSTM32CubeMX-5.0.0.linux" to change the properties, so
that the file is executable.

Installing and running STM32CubeMX UM1718

24/363 UM1718 Rev 31

c) Double-click on the SetupSTM32CubeMX-VERSION.linux file, or launch it from
the console window.

On macOS®:

a) Make sure you have administrators rights.

b) Double- click SetupSTM32CubeMX-VERSION application file to launch the
installation wizard.
In case of error, launch the .exe file with the following command:
sudo java -jar SetupSTM32CubeMX-4.14.0.exe.

4. Upon successful installation of STM32CubeMX on Windows, STM32CubeMX icon is
displayed on your desktop and STM32CubeMX application is available from the
Program menu. STM32CubeMX .ioc files are displayed with a cube icon. Double-click
them to open up them using STM32CubeMX.

5. Delete the content of the zip from your disk.

Note: If the proper version of the Java™ Runtime Environment (version 1.7_45 or newer) is not
installed, the wizard proposes to download it and stop. Restart STM32CubeMX installation
once Java™ installation is complete. Refer to Section 18: FAQ for issues when installing the
JRE.

When working on Windows, only the latest installation of STM32CubeMX is enabled in the
Program menu. Previous versions can be kept on your PC (not recommended) when
different installation folders have been specified. Otherwise, the new installation overwrites
the previous ones.

UM1718 Rev 31 25/363

UM1718 Installing and running STM32CubeMX

362

3.2.2 Installing STM32CubeMX from command line

There are two ways to launch an installation from a console window: either in console
interactive mode or via a script.

Interactive mode

To perform interactive installation, type the following command:

java –jar SetupSTM32CubeMX-4.14.0.exe –console

At each installation step, an answer is requested (see Figure 2).

Figure 2. Example of STM32CubeMX installation in interactive mode

Installing and running STM32CubeMX UM1718

26/363 UM1718 Rev 31

Auto-install mode

At end of an installation, performed either using STM32CubeMX graphical wizard or console
mode, it is possible to generate an auto-installation script containing user preferences (see
Figure 3).

Figure 3. STM32Cube Installation Wizard

You can then launch the installation by typing the following command:

java –jar SetupSTM32CubeMX-4.14.0.exe auto-install.xml

UM1718 Rev 31 27/363

UM1718 Installing and running STM32CubeMX

362

Figure 4. Auto-install command line

3.2.3 Uninstalling STM32CubeMX standalone version

Uninstalling STM32CubeMX on macOS®

To uninstall STM32CubeMX on macOS use the following command line:

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

Uninstalling STM32CubeMX on Linux®

There are three different ways to uninstall STM32CubeMX on Linux:

• By using the following command line

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

• Through a Windows Explorer window:

a) Use a file explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.

Uninstalling STM32CubeMX on Windows®

There are three different ways to uninstall STM32CubeMX on Windows:

• By using the following command line

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

• Through a Windows Explorer window:

a) Use a file explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.

• Through the Windows Control Panel:

a) Select Programs and Features from the Windows Control Panel to display the
list of programs installed on your computer.

b) Right-click STM32CubeMX and select uninstall.

Installing and running STM32CubeMX UM1718

28/363 UM1718 Rev 31

3.3 Launching STM32CubeMX

3.3.1 Running STM32CubeMX as standalone application

To run STM32CubeMX as a standalone application on Windows:

• select STM32CubeMX from Program Files > ST Microelectronics > STM32CubeMX.

• or double-click STM32CubeMX icon on your desktop.

To run STM32CubeMX as a standalone application on Linux, launch the STM32CubeMX
executable from STM32CubeMX installation directory.

To run STM32CubeMX as a standalone application on macOS®, launch the STM32CubeMX
application from the launchpad.

Note: There is no STM32CubeMX desktop icon on macOS®.

3.3.2 Running STM32CubeMX in command-line mode

To facilitate its integration with other tools, STM32CubeMX provides a command-line mode.
Using a set of commands, you can:
• load an MCU

• load an existing configuration

• save a current configuration

• set project parameters and generate corresponding code

• generate user code from templates

• load a board identified through its part number

• refresh the list of embedded software packages (packs and STM32Cube MCU
packages) and install/remove a package

• select additional software (packs) components to add to the project.

Three command-line modes are available:

• To run STM32CubeMX in interactive command-line mode, use the following command
line:

– On Windows:

java -jar STM32CubeMX.exe –i

– On Linux® and macOS®:

java -jar STM32CubeMX –i

The “MX>” prompt is then displayed to indicate that the application is ready to accept
commands.

• To run STM32CubeMX in command-line mode getting commands from a script, use
the following command line:

– On Windows:

java -jar STM32CubeMX.exe –s <script filename>

– On Linux and macOS:

java -jar STM32CubeMX –s <script filename>

All the commands to be executed must be listed in the script file. An example of script
file content is shown below:

load STM32F417VETx

UM1718 Rev 31 29/363

UM1718 Installing and running STM32CubeMX

362

project name MyFirstMXGeneratedProject

project toolchain "MDK-ARM v4"

project path C:\STM32CubeProjects\STM32F417VETx

project generate

exit

• To run STM32CubeMX in command-line mode getting commands from a scripts and
without UI, use the following command line:

– On Windows:

java -jar STM32CubeMX.exe –q <script filename>

– On Linux and macOS:

java -jar STM32CubeMX –q <script filename>

Here again, the user can enter commands when the MX prompt is displayed.

See Table 1 for the list of available commands.

Table 1. Command line summary

Command line Purpose Example

help Displays the list of available commands. help

swmgr refresh
Refreshes the list of embedded
software package versions available for
download.

swmgr refresh

swmgr install
stm32cube_<series>

_<version> <license-mode
(accept|ask)>

Installs the specified STM32Cube MCU
package version.

The second parameter license-mode is
mandatory but really matters for
packages coming with a license:

– accept: the license is automatically
accepted.

– ask: the license is presented in a
popup window for the user to accept.

swmgr install stm32cube_f1_1.8.0
accept

swmgr remove
stm32cube_<series>

_<version>

Removes the specified STM32Cube
MCU package version.

swmgr remove stm32cube_f1_1.8.0

swmgr install
<packVendor>.<packName>.

<packVersion> <license-mode
(accept|ask)>

Installs the specified pack version.

The second parameter license-mode is
mandatory but really matters for
packages coming with a license:

– accept: the license is automatically
accepted.

– ask: the license is presented in a
popup window for the user to accept.

swmgr install STMicroelectronics.
X-CUBE-NFC4.1.4.1 ask

swmgr remove
<packVendor>.<packName>.

<packVersion>
Removes the specified pack version.

swmgr remove STMicroelectronics.

X-CUBE-BLE1.4.2.0

swmgr install <filename path>
<license-mode (accept|ask)

Installs an embedded software
package.

swmgr install
"C:\repo\packs\STMicroelectronics.
X-CUBE-BLE1.4.2.0.pack" accept

Installing and running STM32CubeMX UM1718

30/363 UM1718 Rev 31

pack enable <vendor>
<pack>[/bundle] <version>

<class> <group>[/subgroup]
[variant]

Selects a software pack component to
add in the project.

The presence of the “/” in the second
and/or the fifth parameter(s) indicates
respectively the explicit mention of a
bundle and/or a subgroup (reference:
ARM CMSIS pack pdsc format).

To find out the
pack/bundle/class/group/subgroup
names of the component to enable,
select the component and click
“Hide/Show details” from the Additional
software window.

pack enable STMicroelectronics “X-
CUBE-BLE1/BlueNRG-MS” 1.0.0
"Wireless" "Controller"

pack validate
Applies in the project all pack
components enabled since the “pack
validate” command was last called.

pack validate

load <mcu> Loads the selected MCU.
load STM32F101RCTx

load STM32F101Z(F-G)Tx

load <board part number>
<allmodes|nomode>

Loads the selected board with all
peripherals configured in their default
mode (allmodes) or without any
peripheral configuration (nomode).

loadboard NUCLEO-F030R8 allmodes

loadboard NUCLEO-F030R8 nomode

config load <filename> Loads a previously saved configuration. config load C:\Cube\ccmram\ccmram.ioc

config save <filename> Saves the current configuration.
config save
C:\Cube\ccmram\ccmram.ioc

config saveext <filename>

Saves the current configuration with all
parameters, including those for which
values have been kept to default
(unchanged by the user).

config saveext
C:\Cube\ccmram\ccmram.ioc

config saveas <filename>
Saves the current project under a new
name.

config saveas
C:\Cube\ccmram2\ccmram2.ioc

csv pinout <filename>
Exports the current pin configuration as
a csv file. This file can be (later)
imported into a board layout tool.

Csv pinout mypinout.csv

script <filename>
Runs all commands in the script file.
There must be one command per line.

script myscript.txt

project couplefilesbyip <0|1>

This code generation option allows the
user to choose between 0 (to
generating the peripheral initializations
in the main) or 1 (to generate each
peripheral initialization in dedicated
.c/.h files).

project couplefilesbyip 1

Table 1. Command line summary (continued)

Command line Purpose Example

UM1718 Rev 31 31/363

UM1718 Installing and running STM32CubeMX

362

setDriver <Peripheral Name>
<HAL | LL>

For supported Series, STM32CubeMX
can generate peripheral initialization
code based on LL drivers or on HAL
drivers.

This command line allows the user to
choose, for each peripheral, between
HAL-based and LL-based code
generation.

By default code generation is based on
HAL drivers.

setDriver ADC LL

setDriver I2C HAL

generate code <path>

Generates only “STM32CubeMX
generated” code and not a complete
project that would include STM32Cube
firmware libraries and Toolchains
project files.

To generate a project, use “project
generate”.

generate code C:\mypath

set tpl_path <path>

Sets the path to the source folder
containing the .ftl user template files.

All the template files stored in this folder
are used for code generation.

set tpl_path C:\myTemplates\

set dest_path <path>
Sets the path to the destination folder
that will hold the code generated
according to user templates.

set dest_path C:\myMXProject\inc\

get tpl_path
Retrieves the path name of the user
template source folder

get tpl_path

get dest_path
Retrieves the path name of the user
template destination folder.

 get dest_path

project toolchain <toolchain>

Specifies the toolchain to be used for
the project.

Use the “project generate” command to
generate the project for that toolchain.

project toolchain EWARM

project toolchain “MDK-ARM V4”

project toolchain “MDK-ARM V5”

project toolchain TrueSTUDIO

project toolchain SW4STM32

project name <name> Specifies the project name. project name ccmram

project path <path>
Specifies the path where to generate
the project.

project path C:\Cube\ccmram

project generate Generates the full project. project generate

exit Ends STM32CubeMX process. exit

Table 1. Command line summary (continued)

Command line Purpose Example

Installing and running STM32CubeMX UM1718

32/363 UM1718 Rev 31

3.4 Getting updates using STM32CubeMX

STM32CubeMX implements a mechanism to access the Internet and to:

• download embedded software packages: STM32Cube MCU packages (full releases
and patches) and third-party packages (.pack) based on the Arm® CMIS pack format

• manage a user-defined list of third-party packs

• check for STM32CubeMX and embedded software packages updates

• perform self-updates of STM32CubeMX

• refresh STM32 MCUs descriptions and documentation offer.

Installation and update related submenus are available under the Help menu.

Off-line updates can also be performed on computers without Internet access (see
Section 3.4.2). This is done by browsing the filesystem and selecting available STM32Cube
MCU packages.

If the PC on which STM32CubeMX runs is connected to a computer network using a proxy
server, STM32CubeMX needs to connect to that server to access the Internet, get self-
updates and download firmware packages. Refer to Section 3.4.1 for a description of this
connection configuration.

To view Windows default proxy settings, select Internet options from the Control panel and
select LAN settings from the Connections tab (see Figure 5).

Figure 5. Displaying Windows default proxy settings

UM1718 Rev 31 33/363

UM1718 Installing and running STM32CubeMX

362

Several proxy types exist and different computer network configurations are possible:

• Without proxy: the application directly accesses the web (Windows default
configuration).

• Proxy without login/password

• Proxy with login/password: when using an Internet browser, a dialog box opens and
prompts the user to enter its login/password.

• Web proxies with login/password: when using an Internet browser, a web page opens
and prompts the user to enter its login/password.

If needed, contact your IT administrator for proxy information (proxy type, http address,
port).

STM32CubeMX does not support web proxies. In this case, the user cannot benefit from the
update mechanism and has to manually copy the STM32Cube MCU packages from
http://www.st.com/stm32cube to the repository. To do it, follow the sequence below:

1. Go to http://www.st.com/stm32cube and download the relevant STM32Cube MCU
package from the Associated Software section.

2. Unzip the zip package to your STM32Cube repository. Find out the default repository
folder location in the Updater settings tab as shown in Figure 6 (you might need to
update it to use a different location or name).

3.4.1 Updater configuration

To perform STM32Cube new library package installation or updates, the tool must be
configured as follows:

1. Select Help > Updater Settings to open the Updater Settings window.

2. From the Updater Settings tab (see Figure 6)

a) Specify the repository destination folder where the downloaded packages will be
stored.

b) Enable/Disable the automatic check for updates.

Installing and running STM32CubeMX UM1718

34/363 UM1718 Rev 31

Figure 6. Updater Settings window

3. In the Connection Parameters tab, specify the proxy server settings appropriate for
your network configuration by selecting a proxy type among the following possibilities
(see Figure 7):

– No Proxy

– Use System Proxy Parameters

On Windows, proxy parameters are retrieved from the PC system settings.

Uncheck “Require Authentication” if a proxy server without login/password
configuration is used.

– Manual Configuration of Proxy Server

Enter the Proxy server http address and port number. Enter login/password
information or uncheck “Require Authentication” if a proxy server without
login/password configuration is used.

4. Optionally uncheck Remember my credentials to prevent STM32CubeMX to save
encrypted login/password information in a file. This implies reentering login/password
information each time STM32CubeMX is launched.

5. Click the Check Connection button to verify if the connection works. A green check
mark appears to confirm that the connection operates correctly

UM1718 Rev 31 35/363

UM1718 Installing and running STM32CubeMX

362

Figure 7. Connection Parameters tab - Manual Configuration of Proxy Server

6. Select Help > Install New Libraries submenu to select among a list of possible
packages to install.

7. If the tool is configured for manual checks, select Help > Check for Updates to find out
about new tool versions or firmware library patches available to install.

Installing and running STM32CubeMX UM1718

36/363 UM1718 Rev 31

3.4.2 Installing STM32 MCU packages

To download new STM32 MCU packages, follow the steps below:

1. Select Help > Manage embedded software packages to open the Embedded
Software Packages Manager (see Figure 8), or use Install/Remove button from the
Home page.

Expand/collapse buttons expands/collapses the list of packages,
respectively.

If the installation was performed using STM32CubeMX, all the packages available for
download are displayed along with their version including the version currently installed
on the user PC (if any), and the latest version available from www.st.com.

If no Internet access is available at that time, choose “From Local ...”, then browse to
select the zip file of the desired STM32Cube MCU package that has been previously
downloaded. An integrity check is performed on the file to ensure that it is fully
supported by STM32CubeMX.

The package is marked in green when the version installed matches the latest version
available from www.st.com.

2. Click the checkbox to select a package then “Install Now” to start the download.

See Figure 8 for an example.

Figure 8. Embedded Software Packages Manager window

UM1718 Rev 31 37/363

UM1718 Installing and running STM32CubeMX

362

3.4.3 Installing STM32 MCU package patches

Use the procedure described in Section 3.4.2 to download STM32 MCU package patches.

A library patch, such as STM32Cube_FW_F7_1.4.1, can be easily identified by its version
number which third digit is non-null (e.g. ‘1’ for the 1.4.1 version).

The patch is not a complete library package but only the set of library files that need to be
updated. The patched files go on top of the original package (e.g.
STM32Cube_FW_F7_1.4.1 complements STM32Cube_FW_F7_1.4.0 package).

Prior to 4.17 version, STM32CubeMX copies the patches within the original baseline
directory (e.g. STM32Cube_FW_F7_V1.4.1 patched files are copied within the directory
called STM32Cube_FW_F7_V1.4.0).

Starting with STM32CubeMX 4.17, downloading a patch leads to the creation of a dedicated
directory. As an example, downloading STM32Cube_FW_F7_V1.4.1 patch creates the
STM32Cube_FW_F7_V1.4.1 directory that contains the original
STM32Cube_FW_F7_V1.4.0 baseline plus the patched files contained in
STM32Cube_FW_F7_V1.4.1 package.

Users can then choose to go on using the original package (without patches) for some
projects and upgrade to a patched version for others projects.

3.4.4 Installing embedded software packs

Starting from the release 4.24, STM32CubeMX offers the possibility to select third-party
embedded software packages coming in the Arm® Keil™ CMSIS-Pack format (.pack),
whose contents are described thanks to the pack description (.pdsc) file. Reference
documentation is available from http://www.keil.com.

1. Select Help > Manage embedded software packages to open the New Libraries
Manager window (see Figure 9), or use Install/Remove button from the Home page.

Use Expand/collapse buttons to expand/collapse the list of packages,
respectively.

Installing and running STM32CubeMX UM1718

38/363 UM1718 Rev 31

Figure 9. Managing embedded software packages - Help menu

2. Click From Local … button to browse the computer filesystem and select an
embedded software package. STM32Cube MCU packages come as zip archives and
embedded software packs come as .pack archives.

This action is required in the following cases:

– No Internet access is possible but the embedded software package is available
locally on the computer.

– The embedded software package is not public and hence not available on
Internet. For such packages, STM32CubeMX cannot detect and propose updates.

3. Click From URL… button to specify the download location from Internet for either one
of the pack .pdsc file or the vendor pack index (.pidx).

Proceed as follow:

a) Choose From URL … and click New (see Figure 10).

b) Specify the .pdsc file url. As an example, the url of Oryx-Embedded middleware
pack is https://www.oryx-embedded.com/download/pack/Oryx-
Embedded.Middleware.pdsc (see Figure 11).

UM1718 Rev 31 39/363

UM1718 Installing and running STM32CubeMX

362

Figure 10. Managing embedded software packages - Adding new url

c) Click the Check button to verify that the url provided is valid (see Figure 11).

Figure 11. Checking the validity of vendor pack.pdsc file url

Installing and running STM32CubeMX UM1718

40/363 UM1718 Rev 31

d) Click OK. The pack pdsc information is now available in the user defined pack list
(see Figure 12).

To delete a url from the list, select the url checkbox and click Remove.

Figure 12. User-defined list of software packs

e) Click OK to close the window and start retrieving psdc information. Upon
successful completion, the available pack versions are shown in the list of libraries
that can be installed. Use the corresponding checkbox to select a given release.

Figure 13. Selecting an embedded software pack release

UM1718 Rev 31 41/363

UM1718 Installing and running STM32CubeMX

362

f) Click Install Now to start downloading the software pack. A progress bar opens to
indicate the installation progress. If the pack comes with a license agreement, a
window pops up to ask for user’s acceptance (see Figure 14). When the
installation is successful, the check box turns green (see Figure 15).

The user can then add software components from this pack to its projects.

Figure 14. License agreement acceptance

Installing and running STM32CubeMX UM1718

42/363 UM1718 Rev 31

Figure 15. Embedded software pack release - Successful installation

3.4.5 Removing already installed embedded software packages

Proceed as follows (see figures 16 to 18) to clean up the repository from old library versions,
thus saving disk space:

1. Select Help > Manage embedded software packages to open the Embedded
Software Packages Manager, or use Install/Remove button from the Home page.

2. Click a green checkbox to select a package available in stm32cube repository.

3. Click the Remove Now button and confirm. A progress window then opens to show the
deletion status.

UM1718 Rev 31 43/363

UM1718 Installing and running STM32CubeMX

362

Figure 16. Removing libraries

Figure 17. Removing library confirmation message

Figure 18. Library deletion progress window

Installing and running STM32CubeMX UM1718

44/363 UM1718 Rev 31

3.4.6 Checking for updates

STM32CubeMX can check if updates are available for STM32CubeMX currently installed
version or for the embedded software packages installed in the repository folder (Figure 19).

When the updater is configured for automatic checks, it regularly verifies if updates are
available.

When automatic checks have been disabled in the updater settings window, the user can
manually check if updates are available:

1. Click the icon to open the Update Manager window or Select Help > Check for
Updates. All the updates available for the user current installation are listed.

2. Click the check box to select a package, and then Install Now to download the update.

Figure 19. Help menu: checking for updates

UM1718 Rev 31 45/363

UM1718 STM32CubeMX user interface

362

4 STM32CubeMX user interface

STM32CubeMX user interface comes with three main views the user can navigate through
using convenient breadcrumbs:

1. the Home page

2. the New project window

3. the project page

They come with panels, buttons and menus allowing users to take actions and make
configuration choices with a single click.

The user interface is detailed in the following sections.

For C code generation, although the user can switch back and forth between the different
configuration views, it is recommended to follow the sequence below:

1. From the Project Manager view, configure the project settings.

2. From the Mode panel in the Pinout & Configuration view, configure the RCC
peripheral by enabling the external clocks, master output clocks, audio input clocks
(when relevant for your application). This automatically displays more options on the
Clock configuration view (see Figure 95). Then, select the features (peripherals,
middlewares) and their operating modes relevant to the application.

3. If necessary, adjust the clock tree configuration from the clock configuration view.

4. From the Configuration panel in the Pinout & Configuration view configure the
parameters required to initialize the peripherals and middleware operating modes.

5. Generate the initialization C code by clicking .

STM32CubeMX user interface UM1718

46/363 UM1718 Rev 31

4.1 Home page

The Home page is the first window that opens up when launching STM32CubeMX program
(see Figure 20). Closing it closes down the application. It offers shortcuts for some top level
menus and access to social networks sites. Top-level menus and social network links
remain accessible from the subsequent project page and are detailed in the following
sections.

Figure 20. STM32CubeMX Home page

UM1718 Rev 31 47/363

UM1718 STM32CubeMX user interface

362

4.1.1 File menu

Refer to Table 2 for a description of the File menu and shortcuts.

Table 2. Home page shortcuts

Name
Keyboard shortcut

Description Home page shortcut

New Project...
Ctrl-N

Opens a new project window showing
all supported MCUs and a set of
STMicroelectronics boards to choose
from(1).

To create a new project starting from a board click

To create a new project starting from an MCU click

Load Project...
Ctrl-L

Loads an existing STM32CubeMX
project configuration by selecting an
STM32CubeMX configuration .ioc file
(see Caution:).

Under Other project, click browse icon

Import Project…
Ctrl-I

Opens a new window to select the
configuration file to be imported as
well as the import settings. The import
is possible only if you start from an
empty MCU configuration. Otherwise,
the menu is disabled(2).

None

Save Project
Ctrl-S

Saves current project configuration
(pinout, clock tree, peripherals,
middlewares, Power Consumption
Calculator) as a new project.

This action creates a project folder
including an .ioc file, according to user
defined project settings.

None

Save Project as…
Ctrl-A

Saves the current project. None

Close Project
Ctrl-C

Closes the current project and
switches back to the welcome page.

None

Recent Projects
none

Displays the list of the five most
recently saved projects.

Under Recent Project, click icon next to
the project name.

Generate Report
Ctrl-R

Saves the project current configuration
as two documents (pdf and text
formats).

None

Exit
Ctrl-X

Proposes to save the project (if
needed), then closes the application.

To close the window and the application click on .

1. On New project: to avoid any popup error messages at this stage, make sure an Internet connection is available
(Connection Parameters tab under Help > Updater settings menu) or that Data Auto-refresh settings are set to No
Auto-Refresh at application start (Updater Settings tab under Help > Updater Settings menu).

2. On Import, a status window displays the warnings or errors detected when checking for import conflicts. The user can then
decide to cancel the import.

STM32CubeMX user interface UM1718

48/363 UM1718 Rev 31

Caution: On project load: STM32CubeMX detects if the project was created with an older version of
the tool and if this is the case, it proposes the user to either migrate to use the latest
STM32CubeMX database and STM32Cube firmware version, or to continue.
Prior to STM32CubeMX 4.17, clicking Continue still upgrades to the latest database
“compatible” with the SMT32Cube firmware version used by the project.
Starting from STM32CubeMX 4.17, clicking Continue keeps the database used to create the
project untouched. If the required database version is not available on the computer, it is
automatically downloaded.
When upgrading to a new version of STM32CubeMX, make sure to always backup your
projects before loading the new project (especially when the project includes user code).

4.1.2 Window menu and Outputs tabs

The Window menu allows the user to access the Outputs function.

Table 3. Window menu

Name Description

Outputs

Selecting/deselecting Outputs from the Window menu hides/shows the following
Outputs tabs at the bottom of STM32CubeMX project page (see Figure 21)

– MCUs selection tab that lists the MCUs of a given family matching the user criteria
(Series, peripherals, package,...) when an MCU was selected last(1).

– Outputs tab that displays a non-exhaustive list of the actions performed, raised errors
and warnings (see Figure 22) found upon user actions.

1. Selecting a different MCU from the list resets the current project configuration and switches to the new
MCU. The user is then prompted to confirm this action before proceeding.

Font size
Makes possible to change STM32CubeMX font size settings. STM32CubeMX must be
re-launched for changes to take effect.

UM1718 Rev 31 49/363

UM1718 STM32CubeMX user interface

362

Figure 21. Window menu

Figure 22. Output view

STM32CubeMX user interface UM1718

50/363 UM1718 Rev 31

4.1.3 Help menu

Refer to Table 4 for a description of the Help menu and shortcuts.

4.1.4 Social links

Developer communities on popular social platforms such as Facebook™, Twitter™, STM32
YouTube™ channel, as well as ST Community can be accessed from the STM32CubeMX
toolbar (see Figure 23).

Figure 23. Link to social platforms

Table 4. Help menu shortcuts

Name
Keyboard shortcut

Description Home page shortcut

Help
F1

Opens the STM32CubeMX user manual. None

About
Alt-A

Shows version information. None

Docs & Resources
Alt-D

Displays the official documentation available for
the MCU used in the current project.

None

Refresh Data
Alt-R

Opens a dialog window that proposes to refresh
STM32CubeMX database with STM32 MCU latest
information (description and list of official
documents), and allows the user to download of
all official documentation in one shot.

None

Check for Updates
Alt-C

Shows the software and firmware release updates
available for download.

Click

Manage embedded
software packages

Alt-U

Shows all the embedded software packages
available for installation.
A green check box indicates that the package is
already installed in the user repository folder (the
repository folder location is specified under
Help > Updater Settings menu).

Click

Updater Settings…
Alt-S

Opens the updater settings window to configure
manual versus automatic updates, proxy settings
for Internet connections, repository folder where
the downloaded software and firmware releases
will be stored.

None

User Preferences
Opens the user preference window to enable or
disable collect of features usage statistics.

None

UM1718 Rev 31 51/363

UM1718 STM32CubeMX user interface

362

4.2 New Project window

The New Project window is accessible through the File Menu or directly through shortcuts
from the Home page (see Figure 24).

Figure 24. New Project window shortcuts

The main purpose here is to select from the STM32 portfolio a microcontroller or board part
number that best fits the user application needs.

This window shows three tabs to choose from:

• the MCU selector tab (offering a list of target processors)

• a Board selector tab (showing a list of STMicroelectronics boards)

• a Cross selector tab (allows the user to find, for a given MCU/MPU part number and
for a set of criteria, the best replacement within the STM32 portfolio)

STM32CubeMX user interface UM1718

52/363 UM1718 Rev 31

For STM32L5 Series the security features of the Arm Cortex-M33 processor and its
TrustZone for Armv8-M are combined with ST security implementation. Selecting an
STM32L5 MCU or board requires to choose whether to enable TrustZone (hardware
security) or not (see Figure 25). The project is adjusted accordingly:

• if Trustzone is not enabled, the solution is the same as for other STM32Lx Series

• if TrustZone is enabled, the project configuration and the generated project shows
specificities related to the security features (refer to dedicated sections in this manual).

Figure 25. Enabling Trust-zone for STM32L5 Series

4.2.1 MCU selector

MCU selection

The MCU selector enables filtering on a combination of criteria: series, lines, packages,
peripherals, or additional characteristics such as price, memory size or number of I/Os (see
Figure 26), and on their graphics capabilities as well.

Figure 26. New Project window - MCU selector

UM1718 Rev 31 53/363

UM1718 STM32CubeMX user interface

362

MCU selection based on graphics criteria

Selecting the checkbox to enable the Graphic Choice refreshes the MCU selector view (as
shown in Figure 27) with:

1. A set of Graphics specific filtering criteria

2. The list of MCUs, meeting these criteria along with their graphics performance score.
The graphics performance score is an indicative estimation of the graphics
performance that can be achieved using the MCU for the selected graphics system
configuration: the higher the score, better is the performance. It is shown in the GFX
column. Moreover, selecting an MCU from this list makes it possible to use graphical
stacks in the project.

3. A graphics summary panel, showing the minimum requirements for pixel clock and
graphics RAM size to meet the selected graphics criteria.

It also displays the performance ranges (maximum system clock and Graphics
performance score) that can be achieved with the current list of MCUs.
Parameters descriptions are provided in tooltips (to display: hover the mouse over the
parameter name).

Figure 27. Enabling graphics choice in MCU selector

Export to Excel feature

Clicking on the icon allows the user to save the MCU table information to an Excel file.

STM32CubeMX user interface UM1718

54/363 UM1718 Rev 31

Show favorite MCUs feature

Clicking the icon for an MCU from the list marks it as favorite, see Figure 28.

Figure 28. Marking an MCU as favorite

MCU close selector feature

When the number of MCUs found is lower than 50, the selector offers to list the MCUs with
close features (see Figure 29). Clicking the Display similar items button displays them
(see Figure 30): by default, MCUs are sorted first by matching ratio, then by part number.
For close MCUs (those with a matching ratio lower than 100%) rows are shown in gray and
non matching cells are highlighted in dark gray.

UM1718 Rev 31 55/363

UM1718 STM32CubeMX user interface

362

Figure 29. New Project window - MCU list with close function

Figure 30. New Project window - List showing close MCUs

Note: A matching percentage is computed for each user selected criteria, for example:
- when requesting four instances of the CAN peripheral, the MCUs with only three instances
reaches a 75% match on the CAN criteria
- if the maximum price criteria is selected, the matching ratio for a given MCU is the

STM32CubeMX user interface UM1718

56/363 UM1718 Rev 31

maximum requested price divided by the actual MCU price. In the case of a minimum price
criteria, the matching ratio is the MCU price divided by the minimum requested price.
Finally, all criteria ratios are averaged to give the Match column percentage value.

4.2.2 Board selector

The Board selector enables filtering on STM32 board types, Series and peripherals (see
Figure 31). Only the default board configuration is proposed. Alternative board
configurations obtained by reconfiguring jumpers or by using solder bridges are not
supported.

When a board is selected, the Pinout view is initialized with the relevant MCU part number
along with the pin assignments for the LCD, buttons, communication interfaces, LEDs, and
other functions. Optionally, the user can choose to initialize it with the default peripheral
modes.

When a board configuration is selected, the signals change to 'pinned', i.e. they cannot be
moved automatically by STM32CubeMX constraint solver (user action on the peripheral
tree, such as the selection of a peripheral mode, does not move the signals). This ensures
that the user configuration remains compatible with the board.

Figure 31. New Project window - Board selector

4.2.3 Cross selector

Part number selection

The Cross selector allows users to find products of the STM32 portfolio that best replace the
MCU or MPU they are currently using (from ST or other silicon vendors).

To access this functionality, STM32CubeMX data must be up to date. This is ensured using
Refresh Data from the Help menu (see Figure 32).

UM1718 Rev 31 57/363

UM1718 STM32CubeMX user interface

362

Figure 32. Cross selector - Data refresh prerequisite

Clicking “ACCESS TO CROSS SELECTOR” under the “Start my project from Cross
Selector” section of the main page opens the New Project window on the Cross selector tab.

Two drop downs menus allow the user to select the vendor and the part number of the
product to be compared to (see Figure 33). A part number can also be entered partially:
STM32CubeMX proposes a list of matching products (see Figure 34).

Figure 33. Cross selector - Part number selection per vendor

STM32CubeMX user interface UM1718

58/363 UM1718 Rev 31

Figure 34. Cross selector - Partial part number selection completion

Compare cart

Once a part number is selected, a list of matching ST part number candidates is displayed
along with their matching ratio in the Matching ST candidates panel.

By default, the three closest matches are selected and added to the compare cart along with
the part number to be compared to (see Figure 35).

Figure 35. Cross selector - Compare cart

This selection can be changed anytime in the Matching ST candidates panel.

The comparison can be customized: the features to be used for comparison can be
unselected when considered as irrelevant and their level of importance can be adjusted.
These choices affect the computed matching ratio.

The comparison is disabled for features that are not supported on the part number to be
compared with, or when the feature information is unavailable.

UM1718 Rev 31 59/363

UM1718 STM32CubeMX user interface

362

Buttons are available to manipulate and save a copy of the compare cart view:

• to hide criteria that are not used for the comparison or show all criteria.

• to come back to default STM32CubeMX comparison settings

• to copy and paste the current cart view in a document or email.

MCU/MPU selection for a new project

Clicking an STM32 part number from the compare cart selects it in the MCU/MPU Selector
tab, and clicking on creates a new project for that part number (see
Figure 36).

Figure 36. Cross selector - Part number selection for a new project

Clicking the Cross Selector Tab allows the user to go back to the cart and change the
current selection for another part number.

4.3 Project page

Once an STM32 part number or a board has been selected or a previously saved project
has been loaded, the project page opens, showing the following set of views (refer to
dedicated sections for their detailed description):

• Pinout & Configuration

• Clock Configuration

• Project Manager

• Tools

The user can move across them without impacting his currently saved configuration.

A button is always accessible for the user to click and allows to
generate the code corresponding to the current project configuration.

Moreover, thanks to convenient navigation breadcrumbs (see Figure 37), the user can
detect what its current location is in STM32CubeMX user interface, and can move to other

STM32CubeMX user interface UM1718

60/363 UM1718 Rev 31

locations:

• to the home page by clicking the Home breadcrumb

• to the new project window by clicking the part number

• back to the project page by clicking the project name (or Untitled if the project does not
have a name yet).

Figure 37. STM32CubeMX Main window upon MCU selection

UM1718 Rev 31 61/363

UM1718 STM32CubeMX user interface

362

Selecting a board, then answering No in the dialog window requesting to initialize all
peripherals to their default mode, automatically sets the pinout for this board. However, only
the pins set as GPIOs are marked as configured, i.e. highlighted in green, while no
peripheral mode is set. The user can then manually select from the peripheral tree the
peripheral modes required for its application (see Figure 38).

Figure 38. STM32CubeMX Main window upon board selection (peripherals not initialized)

STM32CubeMX user interface UM1718

62/363 UM1718 Rev 31

Selecting a board and accepting to initialize all peripherals to their default mode
automatically sets both the pinout and the default modes for the peripherals available on the
board. This means that STM32CubeMX generates the C initialization code for all the
peripherals available on the board and not only for those relevant to the user application
(see Figure 39).

Figure 39. STM32CubeMX Main window upon board selection
(peripherals initialized with default configuration)

4.4 Pinout & Configuration view

The Pinout & Configuration view comes with the following main panels, function and
menu:

• A Component list that can be visualized in alphabetical order and per categories. By
default, it consists of the list of peripheral and middleware that the selected MCU
supports. Selecting a component from that list opens two additional panels (Mode and
Configuration) that allow the user to set its functional mode and configure the
initialization parameters that will be included in the generated code.

• A Pinout view that shows a graphic representation of the pinout for the selected
package (e.g. BGA, QFP) where each pin is represented with its name (e.g. PC4) and
its current alternate function assignment, if any.

• A System view that gives an overview of all the software configurable components:
GPIOs, peripherals, middleware and additional software components. Clickable

UM1718 Rev 31 63/363

UM1718 STM32CubeMX user interface

362

buttons allow opening the configuration options for the given component (Mode and
Configuration panels). The button icon color reflects the status of the configuration
status.

• An Additional Software function that allows to select, for the current project, software
components that are not available by default. Selecting an additional software
component updates the Pinout & Configuration view accordingly.

• A Pinout menu that allows the user to perform pinout related actions such as clear
pinout configuration or export pinout configuration as csv file.

Tips

• You can resize the different panels at will: hovering the mouse over a panel border
displays a two-ended arrow: right-click and pull in a direction to either extend or reduce
the panel.

• You can show/hide the Configuration, Mode, Pinout and System views using the
open and close arrows.

4.4.1 Component list

The component list shows all the components available for the project. Selecting a
component from the component list, opens the Mode and Configuration panels.

Contextual help

The Contextual Help window is displayed when hovering the mouse over a peripheral or a
middleware short name.

By default, the window displays the extended name and source of configuration conflicts if
any (see Figure 40).

Figure 40. Contextual Help window (default)

Clicking the details and documentation link (or CTRL+d) provides additional information
such as summary and reference documentation links (see Figure 41). For a given
peripheral, clicking Datasheet or Reference manual opens the corresponding document,
stored in STM32CubeMX repository folder, at the relevant chapter. Since microcontrollers

STM32CubeMX user interface UM1718

64/363 UM1718 Rev 31

datasheets and reference manuals are downloaded to STM32CubeMX repository only upon
users’ request, a functional Internet connection is required:

• To check your Internet connection, open the Connection tab from the Help > Updater
Settings menu.

• To request the download of reference documentation for the currently selected
microcontroller, click Refresh from the Help > Refresh Data menu window.

Figure 41. Contextual Help detailed information

Icons and color schemes

Table 5 shows the icons and color scheme used in the component list view and the
corresponding color scheme in the Mode panel.

Table 5. Component list, mode icons and color schemes

Display Component status Corresponding Mode view / Tooltips

Plain black text

Example:

The peripheral is not
configured (no mode is set)
and all modes are available.

Gray italic text

Example:
Peripheral is not available
because some constraints
are not solved. See tooltip.

UM1718 Rev 31 65/363

UM1718 STM32CubeMX user interface

362

4.4.2 Component Mode panel

Select a component from the component list on the left panel to open the Mode panel.

The Mode panel helps the user configuring the MCU pins based on a selection of
peripherals and of their operating modes. Since STM32 MCUs allow a same pin to be used
by different peripherals and for several functions (alternate functions), the tool searches for
the pinout configuration that best fits the set of peripherals selected by the user.
STM32CubeMX highlights the conflicts that cannot be solved automatically (see Table 5).

The Mode panel also allows to enable middleware and other software components for the
project.

Note: For some middleware (USB, FATS, LwIP), a peripheral mode must be enabled before
activating the middleware mode. Tooltips guide the user through the configuration. For
FatFs, a user-defined mode has been introduced. This allows STM32CubeMX to generate

Example::

The peripheral is configured
(at least one mode is set) and
all other modes are available.
The green check mark
indicates that all parameters
are properly configured, a
cross indicates they are not.

Example:

The peripheral is not
configured (no mode is set)
and at least one of its modes
is unavailable.

Example:

The peripheral is configured
(one mode is set) and at least
one of its other modes is
unavailable.

Example:

The peripheral is not
configured (no mode is set)
and no mode is available.
Move the mouse over the
peripheral name to display
the tooltip describing the
conflict.

Example: IRTIM
Peripheral is not available
because of constraints.

Table 5. Component list, mode icons and color schemes (continued)

Display Component status Corresponding Mode view / Tooltips

STM32CubeMX user interface UM1718

66/363 UM1718 Rev 31

FatFs code without a predefined peripheral mode. Then, it is up to the user to connect the
middleware with a user-defined peripheral by updating the generated user_diskio.c/.h driver
files with the necessary code.

4.4.3 Pinout view

Select to show for the selected part number, a graphic representation
of the pinout for the selected package (e.g. BGA, QFP...) where each pin is represented with
its name (e.g. PC4), its configuration state and its current alternate function assignment if
any (e.g. ETH_MII_RXD0), see Figure 42 for an example.

Figure 42. Pinout view

The Pinout view is automatically refreshed to match the user’s component configuration
performed in the Mode panel.

Assigning pins directly through the Pinout view instead of the Mode panel requires a good
knowledge of the MCU since each individual pin can be assigned to a specific function.

UM1718 Rev 31 67/363

UM1718 STM32CubeMX user interface

362

Tips and tricks

See Table 2: Home page shortcuts for list of menus and shortcuts.

• Use the mouse wheel to zoom in and out.

• Click and drag the chip diagram to move it.

• Click best fit to reset it to best suited position and size.

• Use Pinout > Export pinout menus to export the pinout configuration as .csv text
format.

• Some basic controls, such as insuring blocks of pins consistency, are built-in. See
Appendix A: STM32CubeMX pin assignment rules for details.

4.4.4 Pinout menu and shortcuts

Table 6. Pinout menu and shortcuts

Name or Icon Shortcut Description

Keep Current Signals
Placement

Ctrl-K
Prevents moving pin assignments to match a new peripheral operating
mode. It is recommended to use the new pinning feature that can block
each pin assignment individually and leave this checkbox unchecked.

Show User Label None Displays user defined labels in the Pinout view.

Undo Mode and pinout Ctrl-Z Undoes last configuration steps (one by one).

Redo Mode and pinout Ctrl-Y
Redoes steps that have been undone (one by one).

Warning (limitation): configurations in the platform settings tabs are not
restored.

Disable All Modes Ctrl-D

Resets to “Disabled” all peripherals and middleware modes that have
been enabled. The pins configured in these modes (green color) are
consequently reset to “Unused” (gray color).

Peripheral and middleware labels change from green to black (when
unused) or gray (when not available).

Clear Pinouts Ctrl-P

Clears user pinout configuration in the Pinout view.

Note that this action puts all configured pins back to their reset state
and disables all the peripheral and middleware modes previously
enabled (whether they were using signals on pins or not).

Pins/Signals Option Ctrl-O

Opens a window showing the list of all the configured pins together with
the name of the signal on the pin and a Label field allowing the user to
specify a label name for each pin of the list.

For this menu to be active, at least one pin must have been configured.

Click the pin icon to pin/unpin signals individually.

Select multiple rows then right click to open contextual menu and
select action to pin or unpin all selected signals at once.

Click column header names to sort alphabetically by name or
according to placement on MCU.

Clear Single Mapped Signals Ctrl-M
Clears signal assignments to pins for signals that have no associated
mode (highlighted in orange and not pinned).

STM32CubeMX user interface UM1718

68/363 UM1718 Rev 31

List Pinout Compatible MCUs Alt-L

Provides a list of MCUs that best match the pin configuration of the
current project. The matching can be:

– An exact match

– A partial match with hardware compatibility: pin locations are the
same, pin names may have been changed

– A partial match without hardware compatibility: all signals could be
mapped but not all at the same pin location

Refer to Section 15: Tutorial 5: Exporting current project configuration
to a compatible MCU.

Export pinout
with Alt. Functions

-
Generates pin configuration as a .csv text file including alternate
functions information.

Export pinout
without Alt. Functions

Ctrl-U
Generates pin configuration as a .csv text file excluding alternate
functions information.

Reset used GPIOs Alt-G
Opens a window to specify the number of GPIOs to be freed among
the total number of GPIO pins that are configured.

Set unused GPIOs Ctrl-G

Opens a window to specify the number of GPIOs to be configured
among the total number of GPIO pins that are not used yet.

Specify their mode: Input, Output or Analog (recommended
configuration to optimize power consumption).

Caution: Before using this menu, make sure that debug pins
(available under SYS peripheral) are set to access
microcontroller debug facilities.

Layout reset - -

- Zooms-in the pinout view.

- Adjusts the chip pinout diagram to the best fit size.

- Zooms-out the pinout view.

- Rotates 90 degrees clock wise.

- Rotate 90 degrees counter-clock wise.

- Flips horizontally between bottom view and top view.

- Flips vertically between bottom view and top view.

-

This Search field allows the user to search for a pin name, signal name
or signal label in the Pinout view.

When it is found, the pin or set of pins that matches the search criteria
blinks on the Pinout view.

Click the Pinout view to stop blinking.

Table 6. Pinout menu and shortcuts (continued)

Name or Icon Shortcut Description

UM1718 Rev 31 69/363

UM1718 STM32CubeMX user interface

362

4.4.5 Pinout view advanced actions

Manually modifying pin assignments

To manually modify a pin assignment, follow the sequence below:

1. Click the pin in the Pinout view to display the list of all other possible alternate
functions together with the current assignment highlighted in blue (see Figure 43).

2. Click to select the new function to assign to the pin.

Figure 43. Modifying pin assignments from the Pinout view

Manually remapping a function to another pin

To manually remap a function to another pin, follow the sequence below:

1. Press the CTRL key and click the pin in the Pinout view. Possible pins for relocation, if
any, are highlighted in blue.

2. Drag the function to the target pin.

Caution: A pin assignment performed from the Pinout view overwrites any previous assignment.

Manual remapping with destination pin ambiguity

For MCUs with block of pins consistency (STM32F100x / F101x / F102x / F103x and
STM32F105x / F107x), the destination pin can be ambiguous, e.g. there can be more than
one destination block including the destination pin. To display all the possible alternative
remapping blocks, move the mouse over the target pin.

Note: A “block of pins” is a group of pins that must be assigned together to achieve a given
peripheral mode. As shown in Figure 44, two blocks of pins are available on a
STM32F107xx MCU to configure the Ethernet peripheral in RMII synchronous mode:
{PC1, PA1, PA2, PA7, PC4, PC5, PB11, PB12, PB13, PB5} and {PC1, PA1, PA2, PD10,
PD9, PD8, PB11, PB12, PB13, PB5}.

STM32CubeMX user interface UM1718

70/363 UM1718 Rev 31

Figure 44. Example of remapping in case of block of pins consistency

Resolving pin conflicts

To resolve the pin conflicts that may occur when some peripheral modes use the same pins,
STM32CubeMX attempts to reassign the peripheral mode functions to other pins. The
peripherals for which pin conflicts cannot be solved are highlighted in fuchsia with a tooltip
describing the conflict.

If the conflict cannot be solved by remapping the modes, the user can try the following:

• If the box is checked, try to select the
peripherals in a different sequence.

• Uncheck the Keep Current Signals Placement box and let STM32CubeMX try all the
remap combinations to find a solution.

• Manually remap a mode of a peripheral when you cannot use it because there is no
pin available for one of the signals of that mode.

4.4.6 Keep Current Signals Placement

This checkbox is available from the Pinout menu. It can be selected or deselected at any
time during the configuration. It is unselected by default.

It is recommended to keep the checkbox unchecked for an optimized placement of the
peripherals (maximum number of peripherals concurrently used).

The Keep Current Signals Placement checkbox should be selected when the objective is
to match a board design.

Keep Current Signals Placement is unchecked

This allows STM32CubeMX to remap previously mapped blocks to other pins in order to
serve a new request (selection of a new peripheral mode or a new peripheral mode
function) which conflicts with the current pinout configuration.

UM1718 Rev 31 71/363

UM1718 STM32CubeMX user interface

362

Keep Current Signals Placement is checked

This ensures that all the functions corresponding to a given peripheral mode remain
allocated (mapped) to a given pin. Once the allocation is done, STM32CubeMX cannot
move a peripheral mode function from one pin to another. New configuration requests are
served if feasible within current pin configuration.

This functionality is useful to:

• lock all the pins corresponding to peripherals that have been configured using the
Peripherals panel

• maintain a function mapped to a pin while doing manual remapping from the Pinout
view.

Tip

If a mode becomes unavailable (highlighted in fuchsia), try to find another pin remapping
configuration for this mode by following the steps below:

1. From the Pinout view, deselect the assigned functions one by one until the mode
becomes available again.

2. Then, select the mode again and continue the pinout configuration with the new
sequence (see Appendix A: STM32CubeMX pin assignment rules for a remapping
example). This operation being time consuming, it is recommended to deselect the
Keep Current Signals Placement checkbox.

Note: Even if Keep Current Signals Placement is unchecked, GPIO_ functions (excepted
GPIO_EXTI functions) are not moved by STM32CubeMX.

4.4.7 Pinning and labeling signals on pins

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins. This prevents STM32CubeMX from automatically moving pinned signals to other pins
when resolving conflicts. Labels, that are used for code generation, can also be assigned to
the signals (see Section 6.1 for details).

There are several ways to pin, unpin and label the signals:

1. From the Pinout view, right-click a pin with a signal assignment. This opens a
contextual menu:

a) For unpinned signals, select Signal Pinning to pin the signal. A pin icon is then
displayed on the relevant pin. The signal can no longer be moved automatically
(for example when resolving pin assignment conflicts).

b) For pinned signals, select Signal Unpinning to unpin the signal. The pin icon is
removed. From now on, to resolve a conflict (such as peripheral mode conflict),
this signal can be moved to another pin, provided the Keep user placement option
is unchecked.

c) Select Enter User Label to specify a user defined label for this signal. The new
label replaces the default signal name in the Pinout view.

STM32CubeMX user interface UM1718

72/363 UM1718 Rev 31

2. From the Pinout menu, select Pins/Signals Options

The Pins/Signals Options window (see Figure 45) lists all configured pins.

Figure 45. Pins/Signals Options window

a) Click the first column to individually pin/unpin signals.

b) Select multiple rows and right-click to open the contextual menu and select
Signal(s) Pinning or Unpinning.

c) Select the User Label field to edit the field and enter a user-defined label.

d) Order list alphabetically by Pin or Signal name by clicking the column header.
Click once more to go back to default i.e. to list ordered according to pin
placement on MCU.

Note: Even if a signal is pinned, it is still possible however to manually change the pin signal
assignment from the Pinout view: click the pin to display other possible signals for this pin
and select the relevant one.

4.4.8 Pinout for multi-bonding packages

Multi-bonding has been introduced for packages with low pin counts (less than 20 pins)
such as SO8N, TSSOP20 and WLCSP18 packages. it consists of having several MCU pads
share a same pin on the package.

Multi-bonding has been introduced on the STM32G0 series for the STM32G031/G041
MCUs.

STM32CubeMX pinout view allows to displays all signals arriving on the pin and allows to
select only one per pin, except for analog signals that can be combined with other analog
GPIOs.

UM1718 Rev 31 73/363

UM1718 STM32CubeMX user interface

362

Figure 46. Pinout view: MCUs with multi-bonding

STM32CUbeMX offers also an extended mode selected by right-clicking the pin: it allows to
select more than one signal per pin. This mode is meant for test purposes such as loopback
tests. It is to be used with caution as it can lead to electrical conflicts or increased power
consumption that can damage the device.

Figure 47. Pinout view: multi-bonding with extended mode

4.4.9 System view

Select to show all the software configurable components: GPIOs,
peripherals and middleware. Clickable buttons allow the user to open the mode and

STM32CubeMX user interface UM1718

74/363 UM1718 Rev 31

configuration options of the component. The button icon reflects the component
configuration status (see Table 7 for configuration states and Figure System view).

When the user changes the component configuration from the Configuration panel, the
system view is automatically refreshed with the new configuration state.

If the user disables the component from the Mode panel, the system view is automatically
refreshed and there is no longer a button showing for that component.

Figure 48. System view

Table 7. Configuration states

Icon Description

Configuration is complete and correct.

Configuration is correct but some parts remain to be configured (may be optional).

Configuration is invalid and needs to be fixed for the generated C project to be functional.

UM1718 Rev 31 75/363

UM1718 STM32CubeMX user interface

362

GPIO, DMA and NVIC settings can be accessed either via a dedicated button (like other
peripherals or via a tab in the Configuration panel (see Figure 49).

Figure 49. Configuration window tabs (GPIO, DMA and NVIC settings for STM32F4 Series)

4.4.10 Component Configuration panel

This panel appears when clicking on a component name in the left panel. It allows the user
to configure the functional parameters required to initialize the peripheral or the middleware
in the selected operating mode (see Figure 50). STM32CubeMX uses these settings to
generate the corresponding initialization C code.

STM32CubeMX user interface UM1718

76/363 UM1718 Rev 31

Figure 50. Peripheral Mode and Configuration view

The configuration window includes several tabs:

• Parameter settings to configure library dedicated parameters for the selected
peripheral or middleware,

• NVIC, GPIO and DMA settings to set the parameters for the selected peripheral (see
Section 4.4.14, Section 4.4.12 and Section 4.4.13 for configuration details).

• User constants to create one or several user defined constants, common to the whole
project (see Section 4.4.11 for user constants details).

Invalid settings are detected and are:

• reset to minimum / maximum valid value if user choice is, respectively, smaller / larger
than minimum / maximum threshold

• reset to previous valid value if the previous value is neither a maximum nor a minimum
threshold value

• highlighted in fuchsia.

UM1718 Rev 31 77/363

UM1718 STM32CubeMX user interface

362

Table 8 describes peripheral and middleware configuration buttons and messages.

No check option

By default, STM32CubeMX checks that the parameter values entered by the user are valid.
You can bypass this check by selecting the option No Check for a given parameter. This
allows entering you any value (such as a constant) that might not be known by
STM32CubeMX configuration.

The validity check can be bypassed only on parameters whose values are of integer type
(either hexadecimal or decimal). It cannot be bypassed on parameters coming from a
predefined list of possible values or on those which are of non-integer or text type.

To go back to the default mode (decimal or hexadecimal values with validity check enabled),
enter a decimal or hexadecimal value and check the relevant option (hexadecimal or
decimal check).

Caution: When a parameter depends upon another parameter that is set to No Check:

• Case of a parameter depending on another parameter for the evaluation of its minimum
or maximum possible value: If the other parameter is set to No Check, the minimum or
maximum value is no longer evaluated and checked.

• Case of a parameter depending on another parameter for the evaluation of its current
value: If the other parameter is set to No Check, the value is no longer automatically
derived. Instead, it is replaced with the formula text showing as variable the string of
the parameter set to No check (see Figure 51).

Table 8. Peripheral and Middleware Configuration window buttons and tooltips

Buttons and messages Action

Shows and Hides the description panel.

Tooltip
Guides the user through the settings of
parameters with valid min-max range.

To display it, move the mouse over a
parameter value from a list of possible
values.

Clicking on the gear icon allows to
select whether to display hexadecimal
or decimal values, or any value
unchecked (No check option).

Search

Resets the component back to its
default configuration (initial settings
from STM32CubeMX).

STM32CubeMX user interface UM1718

78/363 UM1718 Rev 31

Figure 51. Formula when input parameter is set in No Check mode

4.4.11 User Constants configuration window

An User Constants tab is available to define user constants (see Figure 52). Constants are
automatically generated in the STM32CubeMX user project within the main.h file (see
Figure 53). Once defined, they can be used to configure peripheral and middleware
parameters (see Figure 54).

Figure 52. User Constants tab

UM1718 Rev 31 79/363

UM1718 STM32CubeMX user interface

362

Figure 53. Extract of the generated main.h file

Figure 54. Using constants for peripheral parameter settings

STM32CubeMX user interface UM1718

80/363 UM1718 Rev 31

Creating/editing user constants

Click the Add button to open the User Constants tab and create a new user-defined
constant (see Figure 55).

A constant consists of:

• A name that must comply with the following rules:

– It must be unique.

– It shall not be a C/C++ keyword.

– It shall not contain a space.

– It shall not start with digits.

• A value

The constant value can be (see Figure 52 for examples):

– a simple decimal or hexadecimal value

– a previously defined constant

– a formula using arithmetic operators (subtraction, addition, division, multiplication,
and remainder) and numeric value or user-defined numeric constants as operands

– a character string: the string value must be between double quotes (example:
“constant_for_usart”).

Once a constant is defined, its name and/or its value can still be changed: double- click the
row that specifies the user constant to be modified. This opens the User Constants tab for
edition. The change of constant name is applied wherever the constant is used. This does
not affect the peripheral or middleware configuration state. However changing the constant
value impacts the parameters that use it and might result in invalid settings (e.g. exceeding
a maximum threshold). Invalid parameter settings are highlighted in fuchsia.

Figure 55. Specifying user constant value and name

UM1718 Rev 31 81/363

UM1718 STM32CubeMX user interface

362

Deleting user constants

Click the Remove button to delete an existing user-defined constant.

The user constant is then automatically removed except in the following cases:

• When the constant is used for the definition of another constant. In this case, a popup
window displays an explanatory message (see Figure 56).

Figure 56. Deleting an user constant is not allowed when the
constant is already used for another constant definition

• When the constant is used for the configuration of a peripheral or middleware library
parameter. In this case, the user is requested to confirm the deletion since the constant
removal results in a invalid peripheral or middleware configuration (see Figure 57).

Figure 57. Deleting an user constant used for parameter configuration -
Confirmation request

Clicking Yes leads to an invalid peripheral configuration (see Figure 58)

Figure 58. Deleting a user constant used for peripheral configuration -
Consequence on peripheral configuration

STM32CubeMX user interface UM1718

82/363 UM1718 Rev 31

Searching for user constants

The Search Constants field makes it possible the search of a constant name or value in the
complete list of user constants (see Figure 59 and Figure 60).

Figure 59. Searching for a name in a user constant list

Figure 60. Searching for a value in a user constant list

UM1718 Rev 31 83/363

UM1718 STM32CubeMX user interface

362

4.4.12 GPIO Configuration window

Click GPIO in the System view panel to open the GPIO configuration window that allows
you to configure the GPIO pin settings (see Figure 61). The configuration is populated with
default values that might not be adequate for some peripheral configurations. In particular,
check if the GPIO speed is sufficient for the peripheral communication speed and select the
internal pull-up whenever needed.

Note: GPIO settings can also be accessed for a specific peripheral instance via the dedicated
window in the peripheral instance configuration window. In addition, GPIOs can be
configured in output mode (default output level). The generated code is updated
accordingly.

Figure 61. GPIO Configuration window - GPIO selection

Click on a row or select a set of rows to display the corresponding GPIO parameters:

• GPIO PIN state

It changes the default value of the GPIO Output level. It is set to low by default and can
be changed to high.

• GPIO mode (analog, input, output, alternate function)

Selecting a peripheral mode in the Pinout view automatically configures the pins with
the relevant alternate function and GPIO mode.

• GPIO pull-up/pull-down

It is set to a default value and can be configured when other choices are possible.

• GPIO maximum output speed (for communication peripherals only)

It is set to Low by default for power consumption optimization and can be changed to a
higher frequency to fit application requirements.

• User Label

It changes the default name (e.g. GPIO_input) into a user defined name. The Pinout
view is updated accordingly. The GPIO can be found under this new name via the Find
menu.

STM32CubeMX user interface UM1718

84/363 UM1718 Rev 31

The Group by Peripherals checkbox allows the user to group all instances of a peripheral
under the same window (see Figure 62).

Figure 62. GPIO configuration grouped by peripheral

As shown in Figure 63, row multi-selection can be performed to change a set of pins to a
given configuration at the same time.

Figure 63. Multiple Pins Configuration

UM1718 Rev 31 85/363

UM1718 STM32CubeMX user interface

362

4.4.13 DMA Configuration window

Click DMA in the System view to open the DMA configuration window.

This window is used to configure the generic DMA controllers available on the MCU. The
DMA interfaces allow to perform data transfers between memories and peripherals while the
CPU is running, and memory to memory transfers (if supported).

Note: Some peripherals (such as USB or Ethernet) have their own DMA controller, which is
enabled by default or via the Peripheral Configuration window.

Clicking Add in the DMA configuration window adds a new line at the end of the DMA
configuration window with a combo box proposing to choose between possible DMA
requests to be mapped to peripherals signals (see Figure 64).

Figure 64. Adding a new DMA request

Selecting a DMA request automatically assigns a stream among all the streams available, a
direction and a priority. When the DMA channel is configured, it is up to the application code
to fully describe the DMA transfer run-time parameters such as the start address.

The DMA request (called channel for STM32F4 MCUs) is used to reserve a stream to
transfer data between peripherals and memories (see Figure 65). The stream priority is
used to decide which stream to select for the next DMA transfer.

DMA controllers support a dual priority system using the software priority first, and in case of
equal software priorities, a hardware priority that is given by the stream number.

STM32CubeMX user interface UM1718

86/363 UM1718 Rev 31

Figure 65. DMA configuration

Additional DMA configuration settings can be done through the DMA configuration
window:

• Mode: regular mode, circular mode, or peripheral flow controller mode (only available
for the SDIO peripheral).

• Increment Add: the type of peripheral address and memory address increment (fixed
or post-incremented in which case the address is incremented after each transfer).
Click the checkbox to enable the post-incremented mode.

• Peripheral data width: 8, 16 or 32 bits

• Switching from the default direct mode to the FIFO mode with programmable threshold:

a) Click the Use FIFO checkbox.

b) Then, configure the peripheral and memory data width (8, 16 or 32 bits).

c) Select between single transfer and burst transfer. If you select burst transfer,
choose a burst size (1, 4, 8 or 16).

In case of memory-to-memory transfer (MemToMem), the DMA configuration applies to a
source memory and to a destination memory.

UM1718 Rev 31 87/363

UM1718 STM32CubeMX user interface

362

Figure 66. DMA MemToMem configuration

4.4.14 NVIC Configuration window

Click NVIC in the System view to open the Nested Vector interrupt controller configuration
window (see Figure 67).

Interrupt unmasking and interrupt handlers are managed within two tabs:

• The NVIC tab allows enabling peripheral interrupts in the NVIC controller and setting
their priorities.

• The Code generation tab allows selecting options for interrupt related code
generation.

Enabling interruptions using the NVIC tab view

The NVIC view (see Figure 67) does not show all possible interrupts but only the ones
available for the peripherals selected in the Pinout & Configuration panels. System
interrupts are displayed but can never be disabled.

Check/Uncheck the Show only enabled interrupts box to filter or not enabled interrupts.

Use the search field to filter out the interrupt vector table according to a string value. As an
example, after enabling UART peripherals from the Pinout panel, type UART in the NVIC
search field and click the green arrow close to it: all UART interrupts are then displayed.

Enabling a peripheral interrupt generates NVIC function calls HAL_NVIC_SetPriority and
HAL_NVIC_EnableIRQ for this peripheral.

STM32CubeMX user interface UM1718

88/363 UM1718 Rev 31

Figure 67. NVIC Configuration tab - FreeRTOS disabled

When FreeRTOS is enabled, an additional column is shown (see Figure 68).

In this case, all the interrupt service routines (ISRs) that are calling the interrupt safe
FreeRTOS APIs must have a priority lower than the priority defined in the
LIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY parameter (the highest the value, the
lowest the priority). The check in the corresponding checkbox guarantees that the restriction
is applied.

If an ISR does not use such functions, the checkbox can be unchecked and any priority level
can be set. It is possible to check/uncheck multiple rows (see rows highlighted in blue in
Figure 68).

UM1718 Rev 31 89/363

UM1718 STM32CubeMX user interface

362

Figure 68. NVIC Configuration tab - FreeRTOS enabled

Peripheral dedicated interrupts can also be accessed through the NVIC window in the
Peripheral Configuration window (see Figure 69).

Figure 69. I2C NVIC Configuration window

STM32CubeMX user interface UM1718

90/363 UM1718 Rev 31

STM32CubeMX NVIC configuration consists in selecting a priority group, enabling/disabling
interrupts and configuring interrupts priority levels (preemption and sub-priority levels):

1. Select a priority group

Several bits allow to define NVIC priority levels. These bits are divided in two priority
groups corresponding to two priority types: preemption priority and sub-priority. For
example, in the case of STM32F4 MCUs, the NVIC priority group 0 corresponds to
0-bit preemption and 4-bit sub-priority.

2. In the interrupt table, click one or more rows to select one or more interrupt vectors.
Use the widgets below the interrupt table to configure the vectors one by one or several
at a time:

– Enable checkbox: check/uncheck to enable/disable the interrupt.

– Preemption priority: select a priority level. The preemption priority defines the
ability of one interrupt to interrupt another.

– Sub-priority: select a priority level. The sub-priority defines the interrupt priority
level.

Code generation options for interrupt handling

The Code Generation view allows customizing the code generated for interrupt initialization
and interrupt handlers:

• Selection/Deselection of all interrupts for sequence ordering and IRQ handler
code generation

Use the checkboxes in front of the column names to configure all interrupts at a time
(see Figure 70). Note that system interrupts are not eligible for init sequence reordering
as the software solution does not control it.

UM1718 Rev 31 91/363

UM1718 STM32CubeMX user interface

362

Figure 70. NVIC Code generation – All interrupts enabled

• Default initialization sequence of interrupts

By default, the interrupts are enabled as part of the peripheral MSP initialization
function, after the configuration of the GPIOs and the enabling of the peripheral clock.

This is shown in the CAN example below, where HAL_NVIC_SetPriority and
HAL_NVIC_EnableIRQ functions are called within stm32xxx_hal_msp.c file inside the
peripheral msp_init function.

Interrupt enabling code is shown in bold:

 void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan)

 {

 GPIO_InitTypeDef GPIO_InitStruct;

 if(hcan->Instance==CAN1)

 {

 /* Peripheral clock enable */

 __CAN1_CLK_ENABLE();

 /**CAN1 GPIO Configuration

 PD0 ------> CAN1_RX

 PD1 ------> CAN1_TX

 */

 GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;

 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;

STM32CubeMX user interface UM1718

92/363 UM1718 Rev 31

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

 GPIO_InitStruct.Alternate = GPIO_AF9_CAN1;

 HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

 /* Peripheral interrupt init */

 HAL_NVIC_SetPriority(CAN1_TX_IRQn, 2, 2);

 HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);

 }

}

For EXTI GPIOs only, interrupts are enabled within the MX_GPIO_Init function:

/*Configure GPIO pin : MEMS_INT2_Pin */

 GPIO_InitStruct.Pin = MEMS_INT2_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_EVT_RISING;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 HAL_GPIO_Init(MEMS_INT2_GPIO_Port, &GPIO_InitStruct);

 /* EXTI interrupt init*/

 HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

For some peripherals, the application still needs to call another function to actually
activate the interruptions. Taking the timer peripheral as an example, the
HAL_TIM_IC_Start_IT function needs to be called to start the Timer input capture (IC)
measurement in interrupt mode.

• Configuration of interrupts initialization sequence

Checking Select for Init sequence ordering for a set of peripherals moves the
HAL_NVIC function calls for each peripheral to a same dedicated function, named
MX_NVIC_Init, defined in the main.c. Moreover, the HAL_NVIC functions for each
peripheral are called in the order specified in the Code generation view bottom part
(see Figure 71).

As an example, the configuration shown in Figure 71 generates the following code:

/** NVIC Configuration

*/

void MX_NVIC_Init(void)

{

 /* CAN1_TX_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(CAN1_TX_IRQn, 2, 2);

 HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);

 /* PVD_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(PVD_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(PVD_IRQn);

 /* FLASH_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(FLASH_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(CAN1_IRQn);

 /* RCC_IRQn interrupt configuration */

UM1718 Rev 31 93/363

UM1718 STM32CubeMX user interface

362

 HAL_NVIC_SetPriority(RCC_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(CAN1_IRQn);

 /* ADC_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);

 HAL_NVIC_EnableIRQ(ADC_IRQn);

}

• Interrupts handler code generation

By default, STM32CubeMX generates interrupt handlers within the stm32xxx_it.c file.
As an example:

void NMI_Handler(void)

{

 HAL_RCC_NMI_IRQHandler();

}

void CAN1_TX_IRQHandler(void)

{

 HAL_CAN_IRQHandler(&hcan1);

}

The column Generate IRQ Handler allows the user to control whether the interrupt
handler function call can be generated or not. Deselecting CAN1_TX and NMI
interrupts from the Generate IRQ Handler column as shown in Figure 71 removes the
code mentioned earlier from the stm32xxx_it.c file.

Figure 71. NVIC Code generation – IRQ Handler generation

STM32CubeMX user interface UM1718

94/363 UM1718 Rev 31

4.4.15 FreeRTOS configuration panel

Through STM32CubeMX FreeRTOS configuration window, the user can configure all the
resources required for a real-time OS application and reserve the corresponding heap.
FreeRTOS elements are defined and created in the generated code using CMSIS-RTOS
API functions. Follow the sequence below:

1. In the Pinout & Configuration tab, click FreeRTOS to reveal the Mode and
configuration panels (see Figure 72).

2. Enable freeRTOS in the Mode panel.

3. Go to the configuration panel to proceed with configuring FreeRTOS native parameters
and objects, such as tasks, timers, queues, and semaphores. In the Config tab,
configure Kernel and Software settings. In the Include parameters tab, select the API
functions required by the application and this way, optimize the code size. Both Config
and Include parameters are part of the FreeRTOSConfig.h file.

Figure 72. FreeRTOS configuration view

UM1718 Rev 31 95/363

UM1718 STM32CubeMX user interface

362

Tasks and Queues Tab

As any RTOS, FreeRTOS allows structuring a real-time application into a set of independent
tasks, with only one task being executed at a given time. Queues are meant for inter-task
communications: they allow to exchange messages between tasks or between interrupts
and tasks.

In STM32CubeMX, the FreeRTOS Tasks and Queues tab enables the creation and
configuration of such tasks and queues (see Figure 73). The corresponding initialization
code is generated within main.c or freeRTOS.c if the option “generate code as pair of .c/.h
files per peripherals and middleware” is set in the Project Settings menu.

The corresponding initialization code is generated within main.c by default or within
freeRTOS.c if the option “generate code as pair of .c/.h files per peripherals and
middleware” is set in the Project Manager menu.

Figure 73. FreeRTOS: configuring tasks and queues

• Tasks

Under the Tasks section, click the Add button to open the New Task window where
task name, priority, stack size and entry function can be configured (see Figure 74).
These settings can be updated at any time: double-clicking a task row opens again the
new task window for editing.

The entry function can be generated as weak or external:

– When the task is generated as weak, the user can propose another definition than
the one generated by default.

– When the task is extern, it is up to the user to provide its function definition.

By default, the function definition is generated including user sections to allow
customization.

• Queues

Under the Queues section, click the Add button to open the New Queue window
where the queue name, size and item size can be configured (see Figure 74). The
queue size corresponds to the maximum number of items that the queue can hold at a

STM32CubeMX user interface UM1718

96/363 UM1718 Rev 31

time, while the item size is the size of each data item stored in the queue. The item size
can be expressed either in number of bytes or as a data type:

• 1 byte for uint8_t, int8_t, char and portCHAR types

• 2 bytes for uint16_t, int16_t, short and portSHORT types

• 4 bytes for uint32_t, int32_t, int, long and float

• 8 bytes for uint64_t, int64_t and double

By default, the FreeRTOS heap usage calculator uses four bytes when the item size
cannot be automatically derived from user input.

These settings can be updated at any time: double-clicking a queue row opens again
the new queue window for editing.

Figure 74. FreeRTOS: creating a new task

UM1718 Rev 31 97/363

UM1718 STM32CubeMX user interface

362

The following code snippet shows the generated code corresponding to Figure 73.

/* Create the thread(s) */

 /* definition and creation of defaultTask */

 osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);

 defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);

 /* definition and creation of Task_A */

 osThreadDef(Task_A, StartTask_A, osPriorityHigh, 0, 128);

 Task_AHandle = osThreadCreate(osThread(Task_A), NULL);

 /* definition and creation of Task_B */

 osThreadDef(Task_B, StartTask_B, osPriorityLow, 0, 256);

 Task_BHandle = osThreadCreate(osThread(Task_B), NULL);

 /* Create the queue(s) */

 /* definition and creation of myQueue_1 */

 osMessageQDef(myQueue_1, 16, 4);

 myQueue_1Handle = osMessageCreate(osMessageQ(myQueue_1), NULL);

 /* definition and creation of myQueue_2 */

 osMessageQDef(myQueue_2, 32, 2);

 myQueue_2Handle = osMessageCreate(osMessageQ(myQueue_2), NULL);

Timers, Mutexes and Semaphores

FreeRTOS timers, mutexes and semaphores can be created via the FreeRTOS Timers and
Semaphores tab. They first need to be enabled from the Config tab (see Figure 75).

Figure 75. FreeRTOS - Configuring timers, mutexes and semaphores

STM32CubeMX user interface UM1718

98/363 UM1718 Rev 31

Under each object dedicated section, clicking the Add button to open the corresponding
New <object> window where the object specific parameters can be specified. Object
settings can be modified at any time: double- clicking the relevant row opens again the New
<object> window for edition.

Note: Expand the window if the newly created objects are not visible.

• Timers

Prior to creating timers, their usage (USE_TIMERS definition) must be enabled in the
software timer definitions section of the Configuration parameters tab. In the
same section, timer task priority, queue length and stack depth can be also configured.

The timer can be created to be one-shot (run once) or auto-reload (periodic). The timer
name and the corresponding callback function name must be specified. It is up to the
user to fill the callback function code and to specify the timer period (time between the
timer being started and its callback function being executed) when calling the CMSIS-
RTOS osTimerStart function.

• Mutexes / Semaphores

Prior to creating mutexes, recursive mutexes and counting semaphores, their usage
(USE_ MUTEXES, USE_RECURSIVE_MUTEXES,
USE_COUNTING_SEMAPHORES definitions) must be enabled within the Kernel
settings section of the Configuration parameters tab.

The following code snippet shows the generated code corresponding to Figure 75).

 /* Create the semaphores(s) */

 /* definition and creation of myBinarySem01 */

 osSemaphoreDef(myBinarySem01);

 myBinarySem01Handle = osSemaphoreCreate(osSemaphore(myBinarySem01), 1);

 /* definition and creation of myCountingSem01 */

 osSemaphoreDef(myCountingSem01);

 myCountingSem01Handle = osSemaphoreCreate(osSemaphore(myCountingSem01),
7);

 /* Create the timer(s) */

 /* definition and creation of myTimer01 */

 osTimerDef(myTimer01, Callback01);

 myTimer01Handle = osTimerCreate(osTimer(myTimer01), osTimerPeriodic,
NULL);

 /* definition and creation of myTimer02 */

 osTimerDef(myTimer02, Callback02);

 myTimer02Handle = osTimerCreate(osTimer(myTimer02), osTimerOnce, NULL);

 /* Create the mutex(es) */

 /* definition and creation of myMutex01 */

 osMutexDef(myMutex01);

 myMutex01Handle = osMutexCreate(osMutex(myMutex01));

UM1718 Rev 31 99/363

UM1718 STM32CubeMX user interface

362

 /* Create the recursive mutex(es) */

 /* definition and creation of myRecursiveMutex01 */

 osMutexDef(myRecursiveMutex01);

 myRecursiveMutex01Handle =
osRecursiveMutexCreate(osMutex(myRecursiveMutex01));

FreeRTOS heap usage

The FreeRTOS Heap usage tab displays the heap currently used and compares it to the
TOTAL_HEAP_SIZE parameter set in the Config Parameters tab. When the total heap
used crosses the TOTAL_HEAP_SIZE maximum threshold, it is shown in fuchsia and a
cross of the same color appears on the tab (see Figure 76).

Figure 76. FreeRTOS Heap usage

4.4.16 Setting HAL timebase source

By default, the STM32Cube HAL is built around a unique timebase source, the
Arm® Cortex® system timer (SysTick).

However, HAL-timebase related functions are defined as weak so that they can be
overloaded to use another hardware timebase source. This is strongly recommended when
the application uses an RTOS, since this middleware has full control on the SysTick
configuration (tick and priority) and most RTOSs force the SysTick priority to be the lowest.

Using the SysTick remains acceptable if the application respects the HAL programming
model, that is, does not perform any call to HAL timebase services within an Interrupt
Service Request context (no dead lock issue).

To change the HAL timebase source, go to the SYS peripheral in the Component list panel
and select a clock among the available sources: SysTick, TIM1, TIM2,... (see Figure 77).

STM32CubeMX user interface UM1718

100/363 UM1718 Rev 31

Figure 77. Selecting a HAL timebase source (STM32F407 example)

When used as timebase source, a given peripheral is grayed and can no longer be selected
(see Figure 78).

Figure 78. TIM1 selected as HAL timebase source

UM1718 Rev 31 101/363

UM1718 STM32CubeMX user interface

362

As illustrated in the following examples, the selection of the HAL timebase source and the
use of FreeRTOS influence the generated code.

Example of configuration using SysTick without FreeRTOS

As illustrated in Figure 79, the SysTick priority is set to 0 (High) when using the SysTick
without FreeRTOS.

Figure 79. NVIC settings when using SysTick as HAL timebase, no FreeRTOS

Interrupt priorities (in main.c) and handler code (in stm32f4xx_it.c) are generated
accordingly:

• main.c file

/* SysTick_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);

• stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.

*/

void SysTick_Handler(void)

{

 /* USER CODE BEGIN SysTick_IRQn 0 */

 /* USER CODE END SysTick_IRQn 0 */

 HAL_IncTick();

 HAL_SYSTICK_IRQHandler();

 /* USER CODE BEGIN SysTick_IRQn 1 */

 /* USER CODE END SysTick_IRQn 1 */

}

STM32CubeMX user interface UM1718

102/363 UM1718 Rev 31

Example of configuration using SysTick and FreeRTOS

As illustrated in Figure 80, the SysTick priority is set to 15 (Low) when using the SysTick
with FreeRTOS.

Figure 80. NVIC settings when using FreeRTOS and SysTick as HAL timebase

As shown in the code snippets below, the SysTick interrupt handler is updated to use
CMSIS-os osSystickHandler function.

• main.c file

 /* SysTick_IRQn interrupt configuration */

 HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);

• stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.

*/

void SysTick_Handler(void)

{

 /* USER CODE BEGIN SysTick_IRQn 0 */

 /* USER CODE END SysTick_IRQn 0 */

 HAL_IncTick();

 osSystickHandler();

 /* USER CODE BEGIN SysTick_IRQn 1 */

 /* USER CODE END SysTick_IRQn 1 */

}

UM1718 Rev 31 103/363

UM1718 STM32CubeMX user interface

362

Example of configuration using TIM2 as HAL timebase source

When TIM2 is used as HAL timebase source, a new stm32f4xx_hal_timebase_TIM.c file is
generated to overload the HAL timebase related functions, including the HAL_InitTick
function that configures the TIM2 as the HAL time-base source.

The priority of TIM2 timebase interrupts is set to 0 (High). The SysTick priority is set to 15
(Low) if FreeRTOS is used, otherwise is set to 0 (High).

Figure 81. NVIC settings when using FreeRTOS and TIM2 as HAL timebase

The stm32f4xx_it.c file is generated accordingly:

• SysTick_Handler calls osSystickHandler when FreeRTOS is used, otherwise it calls
HAL_SYSTICK_IRQHandler.

• TIM2_IRQHandler is generated to handle TIM2 global interrupt.

4.5 Pinout & Configuration view for STM32MP1 Series

For the STM32MP1 Series the Pinout & Configuration view allows the user to:

• assign components to one or several run time contexts

• configure peripherals as boot devices

• select the peripherals to be managed by boot loaders

• assign GPIOs to one runtime (see Figure 83).

These possibilities are offered in two different panels (see Figure 82)

1. from the component tree panel, that lists all supported peripherals and middleware (the
“Show contexts” option must be enabled)

2. from each component mode panel, opened by clicking the component name.

STM32CubeMX user interface UM1718

104/363 UM1718 Rev 31

Figure 82. STM32MP1 boot devices and runtime contexts

Figure 83. STM32MP1 Series: assignment options for GPIOs

4.5.1 Run time configuration

The STM32MP1 devices are multi-core (Arm® Cortex®-A7 dual-core and Cortex-®M4) and
multi-firmware, each firmware executing on one of the cores. The association between
firmware and core defines a runtime context where the firmware executes its code.

Three runtime contexts are available:

1. Cortex-A7 Non Secure running the Linux kernel

2. Cortex-A7 Secure running the SP_min

3. Cortex-M4 running the STM32Cube firmware.

UM1718 Rev 31 105/363

UM1718 STM32CubeMX user interface

362

Assigning a component to a runtime context means specifying which context(s) will control
the component at runtime. Assignments to a Cortex-A7 context are reflected in the device
tree code generation, while assignments to the Cortex-M4 context are reflected in
STM32Cube based C code generation (refer to code generation sections for more details).

The component assignment to a context is done in the context dedicated column.

4.5.2 Boot stages configuration

Boot ROM peripherals selection

Several execution stages are needed by the microprocessor to be up and running.

The binary code embedded in the ROM is the first to be executed. It uses a default
configuration to initialize the clock tree and all peripherals involved in the boot detection.

The peripherals managed by the boot ROM program can be selected as boot devices. This
choice is done in the Boot ROM column (see Figure 84).

Figure 84. Select peripherals as boot devices

When a peripheral is set as boot device, it imposes a specific pinout: some signals have to
be mapped exclusively on pins visible by the boot ROM and only these signals/pins are
taken into account by the boot ROM program.

When a functional mode of a ROM-bootable peripheral is set, the pinout linked to this mode
is the same of that for a runtime context except for the signals imposed on specific pins by
the boot ROM code.

During the boot step (boot ROM code execution), the peripheral is running only with the
sub-set of bootable signals and pins. After boot, during runtime, the peripheral runs with all
signals necessary to the selected functional mode.

Boot loader (A7BL) peripherals selection

When the board starts, the launching of each of the Cortex-A7 runtime contexts (Secure and
Non Secure) on which a firmware executes (SP_min for Cortex-A7 Secure, Linux kernel for
Cortex-A7 Non Secure) preceded by an early boot execution stage, that is before U-Boot
relocation in DDR.

STM32CubeMX user interface UM1718

106/363 UM1718 Rev 31

The Boot loader (A7BL) column is used to define which devices can be managed during this
Boot loader Stage.

This assignment are reflected in the different Device-Trees generated (refer to code
generation sections for more details).

4.6 Pinout & Configuration view for STM32H7 dual-core product
lines

Some STM32H7 product lines come with an Arm Cortex-M7 core, an Arm Cortex-M4 core
and three power domains.

For such products, the Pinout & Configuration view allows the user to:

• For each peripheral and middleware: assign it to one core context or both, whenever
possible. in case both contexts are selected, assign an “initializer” core to indicate on
which core the peripheral or middleware initialization function shall be called.

• For each peripheral: view the power domain it belongs to.

• For GPIOs: assign it to a core or leave it free for other components that may require it.
In this last case the GPIO initialization are performed on the same core as the
component reserving it (code is generated accordingly).

For peripherals and middleware, these possibilities are offered in two different panels

1. from the component tree panel, which lists all supported peripherals and middleware
(clicking the gear icon enables the “Show contexts” option), see Figure 85

2. from each component mode panel, opened by clicking the component name.

Figure 85. STM32H7 dual-core: peripheral and middleware context assignment

For GPIOs (see Figure 86), assignment is done through the Pinout view directly or later and
automatically through its selection in the platform settings panel of a middleware.

UM1718 Rev 31 107/363

UM1718 STM32CubeMX user interface

362

Figure 86. STM32H7 dual-core: GPIOs context assignment

4.7 Enabling security in Pinout & Configuration view
(STM32L5 Series only)

The STM32L5 MCU series harnesses the security features of the Arm Cortex-M33
processor and its TrustZone for Armv8-M combined with ST security implementation.

STM32L5 MCUs support

• two levels of privilege

– unprivileged: software has limited access to system resources

– privileged: software has full access to system resources, subject to security
restrictions

• two security states, Secure and Non-secure: TrustZone security is activated when the
TZEN option bit is set in the FLASH_OPTR register. Security states are orthogonal to
mode and privilege, therefore, each security state supports execution in both modes
and both levels of privilege.

In STM32CubeMX the choice to activate TrustZone is made at project creation (see
Section 4.2: New Project window). When TrustZone is enabled, STM32CubeMX Pinout &
Configuration view is adjusted accordingly with a split between secure (M33S) and
non-secure context (M33NS), and more security-related configuration options (see
Figure 87).

STM32CubeMX user interface UM1718

108/363 UM1718 Rev 31

Figure 87. Pinout & Configuration view for Trustzone-enabled projects

4.7.1 Privilege access for peripherals, GPIO EXTIs and DMA requests

Independently of TrustZone, STM32CubeMX enables privilege access:

• for each peripheral: in the GTZC configuration panel (see Section 4.7.5), as shown in
Figure 88

• for each GPIO EXTI: in the GPIO configuration panel, , as shown in Figure 89

• for each DMA channel: in the DMA configuration panel (see Section 4.7.4), as shown in
Figure 90.

Note: When TrustZone is active, either all or none of the RCC registers can be put in privilege
mode. In STM32CubeMX, this is done by selecting “Privileged-only attribute” check box
from RCC mode panel (see Figure 91). In privilege mode, all RCC registers configuration
are reserved for the privilege application through the PWR_CR_PRIVEN bit, which is
secured when Trustzone is activated.

UM1718 Rev 31 109/363

UM1718 STM32CubeMX user interface

362

Figure 88. Setting privileges for peripherals

STM32CubeMX user interface UM1718

110/363 UM1718 Rev 31

Figure 89. Setting privileges for GPIO EXTIs

UM1718 Rev 31 111/363

UM1718 STM32CubeMX user interface

362

Figure 90. Configuring security and privilege of DMA requests

Figure 91. RCC privilege mode

STM32CubeMX user interface UM1718

112/363 UM1718 Rev 31

4.7.2 Secure/non-secure context assignment for
GPIO/Peripherals/Middleware

STM32CubeMX allows the user

• To assign each peripheral and middleware to one of the contexts.

• To assign a GPIO input or output to one of the context or to leave it free for other
components that may require it. In this last case the GPIO assignment is in the same
context as the component reserving it. By default all IOs are secured.

The assignment is done in different panels:

• For peripherals and middleware only: from the component tree panel when “Show
contexts” option is enabled (clicking the gear icon) or from the mode panel.

• For peripherals only: from the GTZC configuration panel (peripherals only).

• For GPIOs only: from the configuration panel or from the Pinout view, through a
right-click on the GPIO pin and by selecting “Pin Reservation”.

• For DMA requests: from the DMA configuration panel.

Note: RCC resources can be secured through the Clock configuration view (see Section 4.8.2).

Note: For middleware requiring a peripheral the middleware can only be assigned to the context
the peripheral is already assigned to.

4.7.3 NVIC and context assignment for peripherals interrupts

When TrustZone is enabled, the interrupt controller is split into NVIC_NS for the non-secure
context and NVIC_S for the secure context. Two SysTick instances are available as well,
one for each context: they are visible respectively under SYS_NS and SYS_S.

By default, all interrupts are secured.

Peripherals interrupts are automatically assigned to the interrupt controller relevant to the
context:

• For peripherals assigned to the non-secure context, interrupts are enabled on
NVIC_NS.

• For peripherals assigned to the secure context, interrupts are enabled on NVIC_S.

4.7.4 DMA (context assignment and privilege access settings)

STM32CubeMX allows the user to set as privileged the DMA channel and in some cases, to
secure the DMA channel, source and destination see Figure 92.

UM1718 Rev 31 113/363

UM1718 STM32CubeMX user interface

362

Figure 92. Configuring security and privilege of DMA requests

The DMA channel is set to non-privileged by default. The choice to set it as privileged is
always available.

The choice to secure the DMA channel, source, and destination depends on the request
characteristics.

There are four cases:

• The request is either a memory to memory transfer request or a DMA generator
request: the channel is not secure by default but can be secured. The source and
destination can be secured only when the channel is secure.

• The request is for a peripheral assigned to the non-secure context: channel, source
and destination cannot be secured (checkboxes are disabled) and so they are forced to
the non-secure context.

• The request is a peripheral to memory request for a peripheral assigned to the secure
context: channel and source are automatically secured (checkboxes enabled, cannot
be disabled), while there is a choice to secure or not the destination.

• The request is a memory to peripheral request for a peripheral assigned to the secure
context: channel and destination are automatically secured (checkboxes enabled,
cannot be disabled), while there is a choice to secure or not the source.

STM32CubeMX user interface UM1718

114/363 UM1718 Rev 31

4.7.5 GTZC

To configure TrustZone system security, STM32L5 Series come with a Global TrustZone
security controller (GTZC). Refer to reference manual RM0438 for more details.

In STM32CubeMX, for projects with TrustZone activated, GTZC is enabled by default and
cannot be disabled. For projects without Trustzone active, GTZC can be enabled and gives
only the possibility to set privileges.

GTZC is made up of three blocks that can be configured through CubeMX using dedicated
tabs in GTZC configuration panel:

• TZSC (TrustZone security controller)

– Defines which peripherals are secured and/or privileged, and controls the
non-secure area size for the watermark memory peripheral controller (MPCWM).
The TZSC block informs some peripherals (such as RCC or GPIOs) about the
secure status of each securable peripheral, by sharing with RCC and I/O logic.

– The privileges are set in the TrustZone Security Controller – Privilegeable
Peripherals tab.

– The secure states are set in TrustZone Security Controller – Securable
Peripherals tab (they match the assignment to context (M33S or M33NS) done on
the Tree view or in the Mode panel).

– The MPCWM configuration is done through the TrustZone Security Controller –
Memory Protection Controller Watermark tab.

• MPCBB (block-based memory protection controller)

– Controls secure states of all blocks (256-byte pages) of the associated SRAM. It is
configured through the Block-based Memory Protection Controller tab.

• TZIC (TrustZone illegal access controller)

– Gathers all illegal access events in the system and generates a secure interrupt
towards NVIC. It is configured through the TrustZone Illegal Access Controller tab.

UM1718 Rev 31 115/363

UM1718 STM32CubeMX user interface

362

Figure 93. Securing peripherals from GTZC panel

4.7.6 OTFDEC

On-the-fly decryption engine (OTFDEC) allows the user to decrypt on-the-fly AHB traffic
based on the read request address information. When security is enabled in the product
OTFDEC can be programmed only by a secure host.

Figure 94. OTFDEC secured when TrustZone is active

STM32CubeMX user interface UM1718

116/363 UM1718 Rev 31

4.8 Clock Configuration view

STM32CubeMX Clock Configuration window (see Figure 95) provides a schematic
overview of the clock paths, clock sources, dividers, and multipliers. Drop-down menus and
buttons can be used to modify the actual clock tree configuration, to meet the application
requirements.

Figure 95. STM32F469NIHx clock tree configuration view

Actual clock speeds are displayed and active. The use clock signals are highlighted in blue.

UM1718 Rev 31 117/363

UM1718 STM32CubeMX user interface

362

Out-of-range configured values are highlighted as shown in Figure 96 to flag potential
issues. A solver feature is proposed to automatically resolve such configuration issues.

Figure 96. Clock tree configuration view with errors

Reverse path is supported: just enter the required clock speed in the blue filed and
STM32CubeMX attempts to reconfigure multipliers and dividers to provide the requested
value. The resulting clock value can then be locked by right clicking the field to prevent
modifications.

STM32CubeMX generates the corresponding initialization code:

• main.c with relevant HAL_RCC structure initializations and function calls

• stm32xxxx_hal_conf.h for oscillator frequencies and VDD values.

4.8.1 Clock tree configuration functions

External clock sources

When external clock sources are used, the user must previously enable them from the
Pinout view available under the RCC peripheral.

STM32CubeMX user interface UM1718

118/363 UM1718 Rev 31

Peripheral clock configuration options

Other paths, corresponding to clock peripherals, are grayed out. To become active, the
peripheral must be properly configured in the Pinout view (e.g. USB). This view allows the
user to:

• Enter a frequency value for the CPU Clock (HCLK), buses or peripheral clocks

STM32CubeMX tries to propose a clock tree configuration that reaches the desired
frequency while adjusting prescalers and dividers and taking into account other
peripheral constraints (such as USB clock minimum value). If no solution can be found,
STM32CubeMX proposes to switch to a different clock source or can even conclude
that no solution matches the desired frequency.

• Lock the frequency fields for which the current value should be preserved

Right click a frequency field and select Lock to preserve the value currently assigned
when STM32CubeMX searches for a new clock configuration solution.

The user can unlock the locked frequency fields when the preservation is no longer
necessary.

• Select the clock source that will drive the system clock (SYSCLK)

– External oscillator clock (HSE) for a user defined frequency.

– Internal oscillator clock (HSI) for the defined fixed frequency.

– Main PLL clock

• Select secondary sources (as available for the product)

– Low-speed internal (LSI) or external (LSE) clock

– I2S input clock

– Other sources

• Select prescalers, dividers and multipliers values

• Enable the Clock Security system (CSS) on HSE when it is supported by the MCU

This feature is available only when the HSE clock is used as the system clock source
directly or indirectly through the PLL. It allows detecting HSE failure and inform the
software about it, thus allowing the MCU to perform rescue operations.

• Enable the CSS on LSE when it is supported by the MCU

This feature is available only when the LSE and LSI are enabled and after the RTC or
LCD clock sources have been selected to be either LSE or LSI.

• Reset the Clock tree default settings by using the toolbar Reset button

This feature reloads STM32CubeMX default clock tree configuration.

• Undo/Redo user configuration steps by using the toolbar Undo/Redo buttons

• Detect and resolve configuration issues

Erroneous clock tree configurations are detected prior to code generation. Errors are
highlighted in fuchsia and the Clock Configuration view is marked with a fuchsia
cross (see Figure 96).

Issues can be resolved manually or automatically by clicking the Resolve Clock Issue
button that is enabled only if issues have been detected.

The underlying resolution process follows a specific sequence:

a) Setting HSE frequency to its maximum value (optional).

b) Setting HCLK frequency then peripheral frequencies to a maximum or minimum
value (optional).

c) Changing multiplexers inputs (optional).

UM1718 Rev 31 119/363

UM1718 STM32CubeMX user interface

362

d) Finally, iterating through multiplier/dividers values to fix the issue. The clock tree is
cleared from fuchsia highlights if a solution is found, otherwise an error message
is displayed.

Note: To be available from the clock tree, external clocks, I2S input clock, and master clocks must
be enabled in RCC configuration in the Pinout view. This information is also available as
tooltips.

The tool automatically performs the following operations:

• Adjust bus frequencies, timers, peripherals and master output clocks according to user
selection of clock sources, clock frequencies and prescalers/multipliers/dividers values.

• Check the validity of user settings.

• Highlight invalid settings in fuchsia and provide tooltips to guide the user to achieve a
valid configuration.

The Clock Configuration view is adjusted according to the RCC settings (configured in
RCC Pinout & Configuration views) and vice versa:

• If in RCC Pinout view, the external and output clocks are enabled, they become
configurable in the Clock Configuration view.

• If in RCC Configuration view, the Timer prescaler is enabled, the choice of Timer clocks
multipliers is adjusted.

Conversely, the clock tree configuration may affect some RCC parameters in the
configuration view:

• Flash latency: number of wait states automatically derived from VDD voltage, HCLK
frequency, and power over-drive state.

• Power regulator voltage scale: automatically derived from HCLK frequency.

• Power over-drive is enabled automatically according to HCLK frequency. When the
power drive is enabled, the maximum possible frequency values for AHB and APB
domains are increased. They are displayed in the Clock Configuration view.

The default optimal system settings that is used at startup are defined in the
system_stm32f4xx.c file. This file is copied by STM32CubeMX from the STM32CubeF4
MCU package. The switch to user defined clock settings is done afterwards in the main
function.

STM32CubeMX user interface UM1718

120/363 UM1718 Rev 31

Figure 95 gives an example of Clock tree configuration for an STM32F429x MCU and
Table 9 describes the widgets that can be used to configure each clock.

4.8.2 Securing clock resources (STM32L5 Series only)

When the TrustZone security is activated, the RCC is able, through the security
configuration register, to prevent non-secure access to system clock resources.

Accordingly, STM32CubeMX allows the user to configure as secure:

• system clock sources with a fixed frequency: HSI, LSI, and RC48

• system clock sources with a configurable frequency: HSE (+CSS), MSI and
LSE (+CSS)

• two multiplexers: CLK48 clock multiplexer, System Clock (+MCO source) multiplexer

• other system configurations: PLLSYS, PLLSAI1, PLLSAI2 phase-locked loops and
AHB/APB1/APB2 bus pre-scalers

Table 9. Clock configuration view widgets

Format Configuration status of the Peripheral Instance

Active clock sources

Unavailable settings are blurred or grayed out (clock sources, dividers,…)

Gray drop down lists for prescalers, dividers, multipliers selection.

Multiplier selection

User defined frequency values

Automatically derived frequency values

User-modifiable frequency field

Right click blue border rectangles to lock/unlock a frequency field. Lock to
preserve the frequency value during clock tree configuration updates.

UM1718 Rev 31 121/363

UM1718 STM32CubeMX user interface

362

In the Clock Configuration view, these securable resources are highlighted with a key icon.
Security is enabled using the Secure checkbox accessed through a right-click on the
resource. Once the resource is secure, it is highlighted with a green square.

Configurable resources can be locked to prevent further configuration changes: this is done
by selecting the Lock checkbox accessed through a right-click on the resource.

There is also a shortcut button to lock/unlock in one click all resources that are both
securable and configurable.

When a peripheral is configured as secure, its related clock, reset, clock source and clock
enable are also secure. In STM32CubeMX the peripheral is configured as secure in the
Pinout & Configuration view and its clock source is automatically highlighted as secure
using a green square in the Clock configuration view.

Table 10. Clock Configuration security settings

View Description

Example of non-configurable system clock resource that is secured.

Example of the system clock HSE clock source that is secured and
remains open for editing: the frequency value can be changed.

Example of the system clock HSE clock source that is secured and has
been locked for editing: the frequency value cannot be modified.

Example of the System clock multiplexer that is secured and unlocked:
the clock source can be changed.

Example of the main PLL multiplexer that is secured and locked. The
clock source is HSE and cannot be changed. PLLxxM, PLLxxN, PLLxxP,
PLLxxQ and PLLxxR are secured and locked for editing as well.

STM32CubeMX user interface UM1718

122/363 UM1718 Rev 31

Example of the UART4 clock source multiplexer: the clock source is
secured because the UART4 peripheral is configured as secure in the
Pinout & Configuration view. It is set to PCLK1 and can be changed as
the Lock checkbox is unchecked.

Example of the UART4 clock source multiplexer: the clock source is
secured because the UART4 peripheral is configured as secure in the
Pinout & Configuration view. It is set to PCLK1 and can no longer be
changed as Lock is on.

Example of securing and locking the access to AHB prescaler. APB1 and
APB2 prescalers are locked as well.

Example of LSI highlighted as a securable resource using the key icon.

Lock/Unlock All button (only active for securable resources).

Table 10. Clock Configuration security settings (continued)

View Description

UM1718 Rev 31 123/363

UM1718 STM32CubeMX user interface

362

4.8.3 Recommendations

The Clock Configuration view is not the only entry for clock configuration, RCC and RTC
peripherals can also be configured.

1. From the Pinout & Configuration view, go to the RCC mode panel to enable the
clocks as needed: external clocks, master output clocks and Audio I2S input clock
when available. Then go to the RCC configuration panel, and adjust the default settings
if needed. Changes are reflected in the Clock Configuration view. The defined
settings may change the settings in the RCC configuration as well (see Figure 97).

Figure 97. Clock tree configuration: enabling RTC, RCC clock source
and outputs from Pinout view

STM32CubeMX user interface UM1718

124/363 UM1718 Rev 31

2. Go to the RCC configuration in the Pinout & Configuration view. The settings
defined there for advanced configurations are reflected in the Clock configuration
view. The defined settings may change the settings in the RCC configuration.

Figure 98. Clock tree configuration: RCC peripheral advanced parameters

4.8.4 STM32F43x/42x power-over drive feature

STM32F42x/43x MCUs implement a power over-drive feature that allows them to work at
the maximum AHB/APB bus frequencies (e.g., 180 MHz for HCLK) when a sufficient VDD
supply voltage is applied (e.g VDD > 2.1 V).

Table 11 lists the different parameters linked to the power over-drive feature and their
availability in STM32CubeMX user interface.

UM1718 Rev 31 125/363

UM1718 STM32CubeMX user interface

362

Table 12 gives the relations between power-over drive mode and HCLK frequency.

4.8.5 Clock tree glossary

Table 11. Voltage scaling versus power over-drive and HCLK frequency

Parameter STM32CubeMX panel Value

VDD voltage

Configuration (RCC)

User-defined within a predefined range.
Impacts power over-drive.

Power regulator
voltage scaling

Automatically derived from HCLK frequency
and power over-drive (see Table 12).

Power over-drive

This value is conditioned by HCLK and VDD
values (see Table 12). It can be enabled only
if VDD ≥ 2.2 V.

When VDD ≥ 2.2 V it is either automatically
derived from HCLK or it can be configured by
the user if multiple choices are possible (e.g.
HCLK = 130 MHz)

HCLK/AHB clock
maximum frequency value

Clock Configuration

Displayed in blue to indicate the maximum
possible value. For example: maximum value
is 168 MHz for HCLK when power over-drive
cannot be activated (when VDD ≤ 2.1 V),
otherwise it is 180 MHz.

APB1/APB2 clock
maximum frequency value

Displayed in blue to indicate maximum
possible value.

Table 12. Relations between power over-drive and HCLK frequency

HCLK frequency range:
VDD > 2.1 V required to enable power over-drive (POD)

Corresponding voltage scaling
and power over-drive (POD)

 ≤120 MHz
Scale 3

POD is disabled

120 to 144 MHz
Scale 2

POD can be either disabled or enabled

144 to 168 MHz
Scale 1 when POD is disabled

Scale 2 when POD is enabled

168 to 180 MHz
POD must be enabled

Scale 1 (otherwise frequency range not
supported)

Table 13. Glossary

Acronym Definition

HSI High speed Internal oscillator: enabled after reset, lower accuracy than HSE

HSE High speed external oscillator: requires an external clock circuit

PLL Phase locked loop: used to multiply above clock sources

LSI Low speed Internal clock: low power clocks usually used for watchdog timers

STM32CubeMX user interface UM1718

126/363 UM1718 Rev 31

4.9 Project Manager view

This view (see Figure 99) comes with three tabs:

• General project setting: to specify the project name, location, toolchain, and firmware
version.

• Code generation: to set code generation options such as the location of peripheral
initialization code, library copy/link options, and to select templates for customized
code.

• Advanced settings: dedicated to ordering STM32CubeMX initialization function calls.

Figure 99. Project Settings window

LSE Low speed external clock: powered by an external clock

SYSCLK System clock

HCLK Internal AHB clock frequency

FCLK Cortex free running clock

AHB Advanced high performance bus

APB1 Low speed advanced peripheral bus

APB2 High speed advanced peripheral bus

Table 13. Glossary (continued)

Acronym Definition

UM1718 Rev 31 127/363

UM1718 STM32CubeMX user interface

362

The code is generated in the project folder tree shown in Figure 100.

Figure 100. Project folder

Note: Some project settings options become read-only once the project is saved. To modify these
options, the project must be saved as a new project using the File> Save Project as menu.

4.9.1 Project tab

The Project tab of the Project Settings window allows configuring the following options
(see Figure 99):

• Project settings:

– Project name: name used to create the project folder and the .ioc file name at a
given project location

– Project location: directory where the project folder is stored.

– Application structure: select between Basic and Advanced options.

Basic structure: recommended for projects using one or no middleware. This
structure consists in placing the IDE configuration folder at the same level as the
sources, organized in sources and includes subfolders (see Figure 101)

Advanced structure: recommended when several middleware components are
used in the project. It makes the integration of middleware applications easier (see
Figure 102)

– Toolchain folder location: by default, it is located in the project folder at the same
level as the .ioc file.

– Toolchain/IDE: selected toolchain

– For the STM32MP1 Series only, OpenSTLinux settings: location of generated
device tree and manifest version and contents for current project (see Figure 103).
These information enable the synchronization of the right SW components
versions with STM32CubeMP1 for Cortex® M and Linux, tf-a, u-boot for
Cortex® A. It is important to take them into account especially to ensure one Cube
firmware version is aligned with SW components for Cortex® A around
OpenAMP / RPM link and resource management API.

STM32CubeMX user interface UM1718

128/363 UM1718 Rev 31

Selecting Makefile under Toolchain/IDE leads to the generation of a generic gcc-based
makefile.

Selecting Other Toolchains (GPDSC) generates a gpdsc file. The gpdsc file provides a
generic description of the project, including the list and paths of drivers and other files
(such as startup files) that are required for building the project. It is thus possible to
extend STM32CubeMX project generation to any toolchain supporting gpdsc, as the
toolchain is able to load a STM32CubeMX generated C project by processing the
gpdsc file information. To standardize the description of embedded projects, the gpdsc
solution is based on CMSIS-Pack.

• Additional project settings for SW4STM32 and Atollic® TrueSTUDIO® toolchain:

Select the optional Generate under root checkbox to generate the toolchain project
files in STM32CubeMX user project root folder or deselect it to generate them under a
dedicated toolchain folder.

STM32CubeMX project generation under the root folder allows to benefit from the
following Eclipse features when using Eclipse-based IDEs such as SW4STM32 and
TrueStudio®:

– Optional copy of the project into the Eclipse workspace when importing a project.

– Use of source control systems such as GIT or SVN from the Eclipse workspace.

Choosing to copy the project into workspace prevents any further synchronization
between changes done in Eclipse and changes done in STM32CubeMX, as there will
be two different copies of the project.

• Linker settings: value of minimum heap and stack sizes to be allocated for the
application. The default values proposed are 0x200 and 0x400 for heap and stack
sizes, respectively. These values may need to be increased when the application uses
middleware stacks.

• Firmware package selection when more than one version is available (this is the case
when successive versions implement the same API and support the same MCUs). By
default, the latest available version is used.

• Firmware location selection option

The default location is the location specified under the Help > updater settings menu.

Deselecting the Use Default Firmware Location checkbox allows the user to specify
a different path for the firmware that will be used for the project (see Figure 104).

UM1718 Rev 31 129/363

UM1718 STM32CubeMX user interface

362

Figure 101. Selecting a basic application structure

STM32CubeMX user interface UM1718

130/363 UM1718 Rev 31

Figure 102. Selecting an advanced application structure

Figure 103. OpenSTLinux settings (STM32MP1 Series only)

UM1718 Rev 31 131/363

UM1718 STM32CubeMX user interface

362

Figure 104. Selecting a different firmware location

The new location must contain at least a Drivers directory containing the HAL and
CMSIS drivers from the relevant STM32Cube MCU package. An error message pops
up if the folders cannot be found (see Figure 105).

Figure 105. Firmware location selection error message

To reuse the same Drivers folder across all projects that use the same firmware
location, select the Add the library files as reference from the Code generator tab
allows (see Figure 106).

Figure 106. Recommended new firmware repository structure

STM32CubeMX user interface UM1718

132/363 UM1718 Rev 31

Caution: STM32CubeMX manages firmware updates solely for this default location. Choosing
another location prevents the user from benefiting from automatic updates. The user must
manually copy new driver versions to its project folder.

4.9.2 Code Generator tab

The Code Generator tab allows specifying the following code generation options (see
Figure 107):

• STM32Cube Firmware Library Package option

• Generated files options

• HAL settings options

• Custom code template options

STM32Cube Firmware Library Package option

The following actions are possible:

• Copy all used libraries into the project folder

STM32CubeMX copies to the user project folder the drivers libraries (HAL, CMSIS)
and the middleware libraries relevant to the user configuration (e.g. FatFs, USB).

• Copy only the necessary library files:

STM32CubeMX copies to the user project folder only the library files relevant to the
user configuration (e.g., SDIO HAL driver from the HAL library).

• Add the required library as referenced in the toolchain project configuration file

By default, the required library files are copied to the user project. Select this option for
the configuration file to point to files in STM32CubeMX repository instead: the user
project folder will not hold a copy of the library files but only a reference to the files in
STM32CubeMX repository.

Generated files options

This area allows the user to define the following options:

• Generate peripheral initialization as a pair of .c/.h files or keep all peripheral
initializations in the main.c file.

• Backup previously generated files in a backup directory

The .bak extension is added to previously generated .c/.h files.

Keep user code when regenerating the C code.

This option applies only to user sections within STM32CubeMX generated files. It does
not apply to the user files that might have been added manually or generated via ftl
templates.

• Delete previously generated files when these files are no longer needed by the current
configuration. For example, uart.c/.h file are deleted if the UART peripheral, that was
enabled in previous code generation, is now disabled in current configuration.

HAL settings options

This area allows selection one HAL settings options among the following:

• Set all free pins as analog to optimize power consumption

• Enable/disable Use the Full Assert function: the Define statement in the
stm32xx_hal_conf.h configuration file is commented or uncommented, respectively.

UM1718 Rev 31 133/363

UM1718 STM32CubeMX user interface

362

Custom code template options

To generate custom code, click the Settings button under Template Settings, to open the
Template Settings window (see Figure 108).

The user is then prompted to choose a source directory to select the code templates from,
and a destination directory where the corresponding code will be generated.

The default source directory points to the extra_template directory, within STM32CubeMX
installation folder, which is meant for storing all user defined templates. The default
destination folder is located in the user project folder.

STM32CubeMX then uses the selected templates to generate user custom code (see
Section 6.3: Custom code generation).

Figure 109 shows the result of the template configuration shown on Figure 108: a sample.h
file is generated according to sample_h.ftl template definition.

Figure 107. Project Settings code generator

STM32CubeMX user interface UM1718

134/363 UM1718 Rev 31

Figure 108. Template Settings window

UM1718 Rev 31 135/363

UM1718 STM32CubeMX user interface

362

Figure 109. Generated project template

4.9.3 Advanced Settings tab

Figure 110 shows the peripheral and/or middleware selected for the project.

Ordering initialization function calls

By default, the generated code calls the peripheral/middleware initialization functions in the
order in which peripherals and middleware have been enabled in STM32CubeMX. The user
can then choose to re-order them by modifying the Rank number using the up and down
arrow buttons.

The reset button allows switching back to alphabetical order.

Disabling calls to initialization functions

If the “Not to be generated” checkbox is checked, STM32CubeMX does not generate the
call to the corresponding peripheral initialization function. It is up to the user code to do it.

Choosing between HAL and LL based code generation for a given peripheral
instance

Starting from STM32CubeMX 4.17 and STM32L4 Series, STM32CubeMX offers the
possibility for some peripherals to generate initialization code based on Low Layer (LL)

STM32CubeMX user interface UM1718

136/363 UM1718 Rev 31

drivers instead of HAL drivers: the user can choose between LL and HAL driver in the
Driver Selector section. The code is generated accordingly (see Section 6.2: STM32Cube
code generation using Low Layer drivers).

Figure 110. Advanced Settings window

Unselecting the Visibility (Static) option, as shown for MX_I2C1_init function in Figure 110,
allows the generation of the function definition without the static keyword and hence extends
its visibility outside the current file (see Figure 111).

Figure 111. Generated init functions without C language “static” keyword

UM1718 Rev 31 137/363

UM1718 STM32CubeMX user interface

362

Caution: For the STM32MP1 Series only
By default the SystemClock_Config function is called in STM32Cube Cube firmware main()
function since the 'Not generate Function call' box in Project Manager/Advanced Settings
panel is not activated by default (see Figure 110).
This configuration is valid for running STM32Cube firmware in engineering mode
(Cortex-M4 stand-alone mode).
This configuration is not valid for running STM32Cube firmware in production mode: the 'Not
generate Function call' box must be checked under Project Manager/Advanced Settings
panel so that there is no call to SystemClock_Config() in the main() function.

4.10 Import Project window

The Import Project menu eases the porting of a previously-saved configuration to another
MCU. By default the following settings are imported:

• Pinout tab: MCU pins and corresponding peripheral modes.The import fails if the same
peripheral instances are not available in the target MCU.

• Clock configuration tab: clock tree parameters.

• Configuration tab: peripherals and middleware libraries initialization parameters.

• Project settings: choice of toolchain and code generation options.

To import a project, proceed as follows:

1. Select the Import project icon that appears under the File menu after starting a
New Project and once an MCU has been selected.

The menu remains active as long as no user configuration settings are defined for the
new project, that is just after the MCU selection. It is disabled as soon as a user action
is performed on the project configuration.

2. Select File > Import Project for the dedicated Import project window to open. This
window allows to specify the following options:

– The STM32CubeMX configuration file (.ioc) pathname of the project to import on
top of current empty project.

– Whether to import the configuration defined in the Power Consumption
Calculator tab or not.

– Whether to import the project settings defined through the Project > Settings
menu: IDE selection, code generation options and advanced settings.

– Whether to import the project settings defined through the Project > Settings
menu: IDE selection and code generation options.

STM32CubeMX user interface UM1718

138/363 UM1718 Rev 31

– Whether to attempt to import the whole configuration (automatic import) or only a
subset (manual import).

a) Automatic project import (see Figure 112)

Figure 112. Automatic project import

UM1718 Rev 31 139/363

UM1718 STM32CubeMX user interface

362

b) Manual project import

In this case, checkboxes allow the user to manually select the set of peripherals
(see Figure 113).

Select the Try Import option to attempt importing.

Figure 113. Manual project import

STM32CubeMX user interface UM1718

140/363 UM1718 Rev 31

The Peripheral List indicates:

– The peripheral instances configured in the project to be imported

– The peripheral instances, if any exists for the MCU currently selected, to which the
configuration has to be imported. If several peripheral instances are candidate for
the import, the user needs to choose one.

Conflicts can occur when importing a smaller package with less pins or a lower-end
MCU with less peripheral options.

Click the Try Import button to check for such conflicts: the Import Status window and
the Peripheral list get refreshed to indicate errors (see Figure 114), warnings and
whether the import has been successful or not:

– Warning icons indicate that the user has selected a peripheral instance more than
once and that one of the import requests will not be performed.

– A cross sign indicates that there is a pinout conflict and that the configuration can
not be imported as such.

The manual import can be used to refine import choices and resolve the issues raised
by the import trial. Figure 115 gives an example of successful import trial, that has been
obtained by deselecting the import request for some peripherals.

The Show View function allows switching between the different configuration tabs
(pinout, clock tree, peripheral configuration) for checking influence of the "Try Import"
action before actual deployment on current project (see Figure 115).

UM1718 Rev 31 141/363

UM1718 STM32CubeMX user interface

362

Figure 114. Import Project menu - Try import with errors

STM32CubeMX user interface UM1718

142/363 UM1718 Rev 31

Figure 115. Import Project menu - Successful import after adjustments

3. Choose OK to import with the current status or Cancel to go back to the empty project
without importing.

Upon import, the Import icon gets grayed since the MCU is now configured and it is no
more possible to import a non-empty configuration.

UM1718 Rev 31 143/363

UM1718 STM32CubeMX user interface

362

4.11 Set unused / Reset used GPIOs windows

These windows are used to configure several pins at the same time in the same GPIO
mode.

To open them:

• Select Pinout > Set unused GPIOs from the STM32CubeMX menu bar.

Note: The user selects the number of GPIOs and lets STM32CubeMX choose the actual pins to
be configured or reset, among the available ones.

Figure 116. Set unused pins window

• Select Pinout > Reset used GPIOs from the STM32CubeMX menu bar.

Depending whether the Keep Current Signals Placement option is checked or not on
the toolbar, STM32CubeMX conflict solver will be able to move or not the GPIO signals
to other unused GPIOs:

– When Keep Current Signals Placement is off (unchecked), STM32CubeMX
conflict solver can move the GPIO signals to unused pins in order to fit in another
peripheral mode.

– When Keep Current Signals Placement is on (checked), GPIO signals is not
moved and the number of possible peripheral modes is limited.

Refer to Figure 118 and Figure 119 and check the limitation(s) in available peripheral
modes.

Figure 117. Reset used pins window

STM32CubeMX user interface UM1718

144/363 UM1718 Rev 31

Figure 118. Set unused GPIO pins with Keep Current Signals Placement checked

UM1718 Rev 31 145/363

UM1718 STM32CubeMX user interface

362

Figure 119. Set unused GPIO pins with Keep Current Signals Placement unchecked

4.12 Update Manager windows

Three windows can be accessed through the Help menu available from STM32CubeMX
menu bar:

1. Select Help > Check for updates to open the Check Update Manager window and
find out about the latest software versions available for download.

2. Select Help > Manage embedded software packages to open the Embedded
Software Package Manager window and find out about the embedded software
packages available for download. It also allows checking for package updates and
removing previously installed software packages.

3. Select Help > Updater settings to open the Updater settings window and configure
update mechanism settings (proxy settings, manual versus automatic updates,
repository folder where embedded software packages are stored).

Refer to Section 3.4: Getting updates using STM32CubeMX for a detailed description of
these windows.

STM32CubeMX user interface UM1718

146/363 UM1718 Rev 31

4.13 Additional software component selection window

The Additional Software Component selection window can be opened by clicking
Additional Software from the Pinout & Configuration tab, at any time when working on
the project. It allows the user to select additional software components for the current
project. This feature is currently not supported for multi-core products.

It comes as four panels, as shown in Figure 120:

• Filters panel

Can be hidden using the “Show/hide filters” button. It is located on the left side of the
window and provides a set of criteria to filter the pack component list.

• Packs panel

It is the main panel, as it displays the list of software components per pack that can be
selected for the project.

• Component dependencies panel

Can be hidden using the “Show/hide dependencies” button. It displays dependencies, if
any, for the component selected in the packs panel. It proposes solutions when any is
found.

Dependencies that are not solved are highlighted with fuchsia icons.

Once the dependency is solved (by selecting a component among the solution
candidates) it is highlighted with green icons.

• Details and warnings panel

Can be hidden using the “Show/hide details” button. It is located on the right hand side.
It provide informations for the element selected in the Pack panel.

This element can be a pack, a bundle or a component. It offers the possibility to install
a version of the pack available but not yet installed, and allows the user to migrate the
current project to a newer version of the pack, raising incompatibilities that cannot be
automatically resolved.

UM1718 Rev 31 147/363

UM1718 STM32CubeMX user interface

362

Figure 120. Additional Software window

See Section 10: Support of additional software components using CMSIS-Pack standard for
more details on how to handle additional software components through STM32CubeMX
CMSIS-Pack integration.

4.13.1 Introduction on software components

Arm® Keil™ CMSIS-Pack standard defines the pack (*.pdsc) format for software
components to be distributed as Software Packs. A Software pack is a zip file containing a
*.pdsc description file.

STM32CubeMX parses the pack .pdsc file to extract the list of software components. This
list is presented in the Packs panel.

Arm® Keil™ CMSIS-Pack standard defines a software component as a list of files. The
component or each of the corresponding individual files can optionally refer to a condition
that must resolve to true, otherwise the component or file is not applicable in the given
context. These conditions are listed in the Component dependencies panel.

There are no component names. Instead, each component is uniquely identified for a given
vendor pack by the combination of class name, group name and a version. Additional
categories, such as sub-group and variant can be assigned. These details are listed in the
Details & Warnings panel.

STM32CubeMX user interface UM1718

148/363 UM1718 Rev 31

4.13.2 Filter panel

To filter the software component list, choose pack vendor names and software component
classes or enter a text string in the search field.

The resulting software component table is collapsed. Click the left arrow to expand it and
display all the components that match the filtering criteria.

4.13.3 Packs panel

By default, the Packs panel shows a collapsed view: all known packs are displayed with
their name and for one given version (latest version is the default). Icons are used only to
highlight the status of a pack version or of a component (see Table Packs panel icons).
Details and warnings and Component dependencies panels are used to provide detailed
information.

The default view can be expanded by clicking the left arrows, revealing the next level, which
can be a Bundle or a top component. The lowest level is the component level.

Note: Some packs may have conditions on Arm® cores or STM32 Series or STM32 MCUs and
they are visible only when the selected MCU meets the criteria. For example, a pack stating
the “<accept Dcore="Cortex-M4"/>” condition only shows for MCUs with an Arm®
Cortex®-M4 core.

Table 14. Additional software window - Filter icons

Icon Description

Show only favorite packs.

A pack is set as favorite in the Details and Warnings panel by clicking

Show only selected components.

Components are selected in the Packs panel through checkboxes or variant selection
when several implementation choices are available for the same component.

Show only installed packs.

Enables to show or hide not yet installed packs.

Not yet installed packs are distinguished with the icon

Show only packs compatible with this version of STM32CubeMX.

Packs not compatible with this version are distinguished with the icon

Reset all filters

UM1718 Rev 31 149/363

UM1718 STM32CubeMX user interface

362

Table 15. Additional Software window – Packs panel columns

Column name Description

Pack/Bundle/Component

At pack level, shows the <name of the Software pack>

At bundle level, shows the <Name of the Class>_<Bundle name, if any>

At component level, shows the <Group name>/<Subgroup name, if any>.

Class names are standardized by the Arm CMSIS standard(1)

1. The Arm® Keil™ CMIS-Pack website, http://www.keil.com, lists the following classes:
Data Exchange: Software components for data exchange
File System: File drive support and file system
Graphics: Graphic libraries for user interfaces
Network: Network stack using Internet protocols
RTOS: Real-time operating systems
Safety: Components for testing application software against safety standards
Security: Encryption for secure communication or storage
USB: Universal serial bus stack
Wireless: Communication stacks such as Bluetooth®, WiFi®, and ZigBee®.

Version

Shows the version that has been selected from a list of one or more
available versions of a pack.

Bundle and components can either inherit the version of the pack or have
their own specific version. The version is shown in the Details and
Warning panel.

Selection
Selects a component through a checkbox when only one implementation
is available or from a list if variants exist.

Table 16. Additional Software window – Packs panel icons

Icon Description

The pack has been added to the user favorite list of packs.

Use the Details and Warnings panel to add/remove packs from list of favorites.

The pack version is not compatible with this STM32CubeMX version.

Solution: select a compatible version.

The pack version is not yet installed.

Solution: go to the Details and Warnings panel to download the pack version to use it
for a project.

The component is not available for selection.

Solution: download the pack this component belongs to.

A component is selected and at least one condition remains to be solved.

Select the line of the component with such icon to refresh the Component
dependencies panel with the list of dependencies, status and solutions if any found.

At least one component is selected and all conditions, if any, are met.

Other pack versions are available to switch to.

Solution: use the Details and Warnings panel to proceed with a change.

STM32CubeMX user interface UM1718

150/363 UM1718 Rev 31

4.13.4 Component dependencies panel

The conditions are dependency rules applying to a given software component. The panel is
refreshed when selecting a component, providing details on the dependencies to solve and
the available solutions, if found (see Table 17).

4.13.5 Details and Warnings panel

Click on to unhide the panel (see Figure 121).

This panel is refreshed upon selecting a line from the Packs panel.

Actions are possible in this panel, namely adding/removing the pack to/from the list of
favorite packs, installing a pack, accessing pack documentation through links.

If any issue is detected, explanations are provided under the Warnings section.

Table 17. Component dependencies panel contextual help

Contextual help Description

No dependency to solve.

Dependency to solve but no solution found.

Dependency to solve and at least one solution found.

Click a solution proposal to be automatically re-directed to
the component selection line in the packs panel.

Dependency exists and has been solved (a component
solving the condition has been selected).

UM1718 Rev 31 151/363

UM1718 STM32CubeMX user interface

362

Figure 121. Details and Warnings panel

STM32CubeMX user interface UM1718

152/363 UM1718 Rev 31

4.13.6 Updating the tree view for additional software components

Once the selection of the software components required for the application is complete (see
Figure 122), click OK to refresh STM32CubeMX window: the selected component appears
in the tree view under Additional Software (see Figure 123).

Figure 122. Selection of additional software components

The current selection of additional software components appears in the tree view (see
Figure 123). The software components must be enabled in the Mode panel and may be
configured further if any parameter is proposed in the configuration panel. Hovering the
mouse over the component name reveals contextual help with links to documentation.

UM1718 Rev 31 153/363

UM1718 STM32CubeMX user interface

362

Figure 123. Additional software components - Updated tree view

STM32CubeMX user interface UM1718

154/363 UM1718 Rev 31

4.14 About window

This window displays STM32CubeMX version information.

To open it, select Help > About from the STM32CubeMX menu bar.

Figure 124. About window

UM1718 Rev 31 155/363

UM1718 STM32CubeMX tools

362

5 STM32CubeMX tools

5.1 Power Consumption Calculator view

For an ever-growing number of embedded systems applications, power consumption is a
major concern. To help minimizing it, STM32CubeMX offers the Power Consumption
Calculator tab (see Figure 125), which, given a microcontroller, a battery model and a
user-defined power sequence, provides the following results:

• Average current consumption

Power consumption values can either be taken from the datasheet or interpolated from
a user specified bus or core frequency.

• Battery life

• Average DMIPs

DMIPs values are directly taken from the MCU datasheet and are neither interpolated
nor extrapolated.

• Maximum ambient temperature (TAMAX)

According to the chip internal power consumption, the package type and a maximum
junction temperature of 105 °C, the tool computes the maximum ambient temperature
to ensure good operating conditions.

Current TAMAX implementation does not account for I/O consumption. For an accurate
TAMAX estimate, I/O consumption must be specified using the Additional Consumption
field. The formula for I/O dynamic current consumption is specified in the
microcontroller datasheet.

The Power Consumption Calculator view allows developers to visualize an estimate of
the embedded application consumption and lower it further at each power sequence step:

• Make use of low power modes when any available

• Adjust clock sources and frequencies based on the step requirements.

• Enable the peripherals necessary for each phase.

For each step, the user can choose VBUS as possible power source instead of the battery.
This will impact the battery life estimation. If power consumption measurements are
available at different voltage levels, STM32CubeMX will also propose a choice of voltage
values (see Figure 128).

An additional option, the transition checker, is available for STM32L0, STM32L1, STM32L4,
STM32L4+, STM32G0, STM32G4, STM32H7 and STM32WB Series. When enabled, the
transition checker detects invalid transitions within the currently configured sequence. It
ensures that only possible transitions are proposed to the user when a new step is added.

STM32CubeMX tools UM1718

156/363 UM1718 Rev 31

5.1.1 Building a power consumption sequence

The default starting view is shown in Figure 125.

Figure 125. Power Consumption Calculator default view

Selecting a VDD value

From this view and when multiple choices are available, the user must select a VDD value.

UM1718 Rev 31 157/363

UM1718 STM32CubeMX tools

362

Selecting a battery model (optional)

Optionally, the user can select a battery model. This can also be done once the power
consumption sequence is configured.

The user can select a predefined battery or choose to specify a new battery that best
matches its application (see Figure 126).

Figure 126. Battery selection

Power sequence default view

The user can now proceed and build a power sequence.

Managing sequence steps

Steps can be reorganized within a sequence (Add new, Delete a step, Duplicate a step,
move Up or Down in the sequence) using the set of Step buttons (see Figure 127).

The user can undo or redo the last configuration actions by clicking the Undo button in the
Power Consumption Calculator view or the Undo icon from the main toolbar

Figure 127. Step management functions

STM32CubeMX tools UM1718

158/363 UM1718 Rev 31

Adding a step

There are two ways to add a new step:

• Click Add in the Power Consumption panel. The New Step window opens with empty
step settings.

• Or, select a step from the sequence table and click Duplicate. A New Step window
opens duplicating the step settings (see Figure 128).

Figure 128. Power consumption sequence: New Step default view

Once a step is configured, resulting current consumption and TAMAX values are provided in
the window.

UM1718 Rev 31 159/363

UM1718 STM32CubeMX tools

362

Editing a step

To edit a step, double-click it in the sequence table, this will open the Edit Step window.

Moving a step

By default, a new step is added at the end of a sequence. Click the step in the sequence
table to select it and use the Up and Down buttons to move it elsewhere in the sequence.

Deleting a step

Select the step to be deleted and click the Delete button.

Using the transition checker

Not all transitions between power modes are possible. The Power Consumption Calculator
power menu proposes a transition checker to detect invalid transitions or restrict the
sequence configuration to only valid transitions.

Enabling the transition checker option prior to sequence configuration ensures that the user
will be able to select only valid transition steps.

Enabling the transition checker option on an already configured sequence will highlight the
sequence with a green frame if all transitions are valid (see Figure 129), or in fuchsia if at
least one transition is invalid (fuchsia frame with description of invalid step highlighted in
fuchsia, see Figure 130). In the latter case, the user can click the Show log button to find
out how to solve the transition issue (see Figure 131).

Figure 129. Enabling the transition checker option on an already
configured sequence - All transitions valid

Figure 130. Enabling the transition checker option on an already
configured sequence - At least one transition invalid

STM32CubeMX tools UM1718

160/363 UM1718 Rev 31

Figure 131. Transition checker option - Show log

UM1718 Rev 31 161/363

UM1718 STM32CubeMX tools

362

5.1.2 Configuring a step in the power sequence

The step configuration is performed from the Edit Step and New Step windows. The
graphical interface guides the user by forcing a predefined order for setting parameters.

Their naming may differ according to the selected MCU Series. For details on each
parameter, refer to glossary in Section 5.1.4 and to Appendix D: STM32 microcontrollers
power consumption parameters, or to the electrical characteristics section of the datasheet.

The parameters are set automatically by the tool when there is only one possible value (in
this case, the parameter cannot be modified and is grayed out). The tool proposes only the
configuration choices relevant to the selected MCU.

To configure a new step:

1. Click Add or Duplicate to open the New step window or double-click a step from the
sequence table to open the Edit step window.

2. Within the open step window, select in the following order:

– The Power Mode

Changing the Power Mode resets the whole step configuration.

– The Peripherals

Peripherals can be selected/deselected at any time after the Power Mode is
configured.

– The Power scale

The power scale corresponds to the power consumption range (STM32L1) or the
power scale (STM32F4).

Changing the Power Mode or the Power Consumption Range discards all
subsequent configurations.

– The Memory Fetch Type

– The VDD value if multiple choices available

– The voltage source (battery or VBUS)

– A Clock Configuration

Changing the Clock Configuration resets the frequency choices further down.

– When multiple choices are available, the CPU Frequency (STM32F4) and the
AHB Bus Frequency/CPU Frequency(STM32L1) or, for active modes, a user
specified frequency. In this case, the consumption value will be interpolated (see
Using interpolation).

3. Optionally set

– A step duration (1 ms is the default value)

– An additional consumption value (expressed in mA) to reflect, for example,
external components used by the application (external regulator, external pull-up,
LEDs or other displays). This value added to the microcontroller power
consumption will impact the step overall power consumption.

4. Once the configuration is complete, the Add button becomes active. Click it to create
the step and add it to the sequence table.

STM32CubeMX tools UM1718

162/363 UM1718 Rev 31

Using interpolation

For steps configured for active modes (Run, Sleep), frequency interpolation is supported by
selecting CPU frequency as User Defined and entering a frequency in Hz (see Figure 132).

Figure 132. Interpolated power consumption

UM1718 Rev 31 163/363

UM1718 STM32CubeMX tools

362

Importing pinout

Figure 133 illustrates the example of the ADC configuration in the Pinout view: clicking
Enable IPs from Pinout in the Power Consumption Calculator view selects the ADC
peripheral and GPIO A (Figure 134).

The Enable IPs from Pinout button allows the user to automatically select the peripherals
that have been configured in the Pinout view.

Figure 133. ADC selected in Pinout view

STM32CubeMX tools UM1718

164/363 UM1718 Rev 31

Selecting/deselecting all peripherals

Clicking Enable All IPs allows the user to select all peripherals at once.

Clicking Disable All IPs removes them as contributors to the consumption.

Figure 134. Power Consumption Calculator Step configuration window:
ADC enabled using import pinout

5.1.3 Managing user-defined power sequence and reviewing results

The configuration of a power sequence leads to an update of the Power Consumption
Calculator view (see Figure 135):

• The sequence table shows all steps and step parameters values. A category column
indicates whether the consumption values are taken from the datasheet or are
interpolated.

• The sequence chart area shows different views of the power sequence according to a
display type (e.g. plot all steps, plot low power versus run modes)

• The results summary provides the total sequence time, the maximum ambient
temperature (TAMAX), plus an estimate of the average power consumption, DMIPS, and
battery lifetime provided a valid battery configuration has been selected.

UM1718 Rev 31 165/363

UM1718 STM32CubeMX tools

362

Figure 135. Power Consumption Calculator view after sequence building

Managing the whole sequence (load, save and compare)

From the power menu (see Figure 136), the current sequence can be saved, deleted or
compared to a previously saved sequence that will be displayed in a dedicated popup
window.

Figure 136. Sequence table management functions

STM32CubeMX tools UM1718

166/363 UM1718 Rev 31

Managing the results charts and display options

In the Display area, select the type of chart to display (e.g. sequence steps, pie charts,
consumption per peripherals). You can also click External Display to open the charts in
dedicated windows (see Figure 137).

Right-click on the chart to access the contextual menus: Properties, Copy, Save as png
picture file, Print, Zoom menus, and Auto Range to reset to the original view before zoom
operations. Zooming can also be achieved by mouse selecting from left to right a zone in
the chart and Zoom reset by clicking the chart and dragging the mouse to the left.

Figure 137. Power Consumption: Peripherals consumption chart

Overview of the Results summary area

This area provides the following information (see Figure 138):

• Total sequence time, as the sum of the sequence steps durations.

• Average consumption, as the sum of each step consumption weighed by the step
duration.

• The average DMIPS (Dhrystone million instructions per second) based on Dhrystone
benchmark, highlighting the CPU performance for the defined sequence.

• Battery life estimation for the selected battery model, based on the average power
consumption and the battery self-discharge.

• TAMAX: highest maximum ambient temperature value found during the sequence.

Figure 138. Description of the Results area

UM1718 Rev 31 167/363

UM1718 STM32CubeMX tools

362

5.1.4 Power sequence step parameters glossary

The parameters that characterize power sequence steps are the following (refer to
Appendix D: STM32 microcontrollers power consumption parameters for more details):

• Power modes

To save energy, it is recommended to switch the microcontroller operating mode from
running mode, where a maximum power is required, to a low-power mode requiring
limited resources.

• VCORE range (STM32L1) or Power scale (STM32F4)

These parameters are set by software to control the power supply range for digital
peripherals.

• Memory Fetch Type

This field proposes the possible memory locations for application C code execution. It
can be either RAM, FLASH or FLASH with ART ON or OFF (only for families that
feature a proprietary Adaptive real-time (ART) memory accelerator which increases the
program execution speed when executing from Flash memory).

The performance achieved thanks to the ART accelerator is equivalent to 0 wait state
program execution from Flash memory. In terms of power consumption, it is equivalent
to program execution from RAM. In addition, STM32CubeMX uses the same selection
choice to cover both settings, RAM and Flash memory with ART ON.

• Clock Configuration

This operation sets the AHB bus frequency or the CPU frequency that will be used for
computing the microcontroller power consumption. When there is only one possible
choice, the frequencies are automatically configured.

The clock configuration drop-down list allows to configure the application clocks:

– the internal or external oscillator sources: MSI, HSI, LSI, HSE or LSE

– the oscillator frequency

– other determining parameters, among them PLL ON, LSE Bypass, AHB prescaler
value, LCD with duty

• Peripherals

The peripheral list shows the peripherals available for the selected power mode. The
power consumption is given assuming that peripherals are only clocked (e.g. not in use
by a running program). Each peripheral can be enabled or disabled. Peripherals
individual power consumptions are displayed in a tooltip. An overall consumption due
to peripheral analog and digital parts is provided in the step Results area (see
Figure 139).

STM32CubeMX tools UM1718

168/363 UM1718 Rev 31

Figure 139. Overall peripheral consumption

The user can select the peripherals relevant for the application:

– None (Disable All),

– Some (using peripheral dedicated checkbox),

– All (Activate All),

– Or all from the previously defined pinout configuration (Import Pinout).

Only the selected and enabled peripherals are taken into account when computing the
power consumption.

• Step duration

The user can change the default step duration value. When building a sequence, the
user can either create steps according to the application actual power sequence or
define them as a percentage spent in each mode. For example, if an application

UM1718 Rev 31 169/363

UM1718 STM32CubeMX tools

362

spends 30% in Run mode, 20% in Sleep and 50% in Stop, the user must configure a
3-step sequence consisting in 30 ms in Run, 20 ms in Sleep and 50 ms in Stop.

• Additional Consumption

This field allows entering an additional consumption resulting from specific user
configuration (e.g. MCU providing power supply to other connected devices).

5.1.5 Battery glossary

• Capacity (mAh)

Amount of energy that can be delivered in a single battery discharge.

• Self-discharge (% / month)

This percentage, over a specified period, represents the loss of battery capacity when
the battery is not used (open-circuit conditions), as a result of internal leakage.

• Nominal voltage (V)

Voltage supplied by a fully charged battery.

• Max. continuous current (mA)

This current corresponds to the maximum current that can be delivered during the
battery lifetime period without damaging the battery.

• Max. pulse current (mA)

This is the maximum pulse current that can be delivered exceptionally, for instance
when the application is switched on during the starting phase.

5.1.6 SMPS feature

Some microcontrollers (e.g. STM32L496xxxxP) allow the user to connect an external
switched mode power supply (SMPS) to further reduce power consumption.

For such microcontrollers, the Power Consumption Calculator tool offers the following
features:

• Selection of SMPS for the current project

From the left panel, check the Use SMPS box to use SMPS (see Figure 140). By
default, ST SMPS model is used.

• Selection of another SMPS model by clicking the Change button

This opens the SMPS database management window in which the user can add a new
SMPS model (see Figure 141). The user can then select a different SMPS model for
the current sequence (see Figure 142, Figure 143 and Figure 144)

• Check for invalid SMPS transitions in the current sequence by enabling the SMPS
checker

To do this, select the checkbox to enable the checker and click the Help button to open
the reference state diagram (see Figure 145).

• Configuration of SMPS mode for each step (see Figure 146)

If the SMPS checker is enabled, only the SMPS modes valid for the current step are
proposed.

STM32CubeMX tools UM1718

170/363 UM1718 Rev 31

Figure 140. Selecting SMPS for the current project

UM1718 Rev 31 171/363

UM1718 STM32CubeMX tools

362

Figure 141. SMPS database - Adding new SMPS models

Figure 142. SMPS database - Selecting a different SMPS model

STM32CubeMX tools UM1718

172/363 UM1718 Rev 31

Figure 143. Current project configuration updated with new SMPS model

Figure 144. SMPS database management window with new model selected

UM1718 Rev 31 173/363

UM1718 STM32CubeMX tools

362

Figure 145. SMPS transition checker and state diagram helper window

STM32CubeMX tools UM1718

174/363 UM1718 Rev 31

Figure 146. Configuring the SMPS mode for each step

UM1718 Rev 31 175/363

UM1718 STM32CubeMX tools

362

5.1.7 BLE support (STM32WB Series only)

The Power Consumption tool allows the user to take into account the consumption related
to the RF peripheral and corresponding BLE functional mode, combined with the usage of
the SMPS feature.

Figure 147. RF related consumption (STM32WB Series only)

STM32CubeMX tools UM1718

176/363 UM1718 Rev 31

The BLE mode can be selected from the left panel and configured to reflect the user’s
application relevant settings.

Figure 148. RF BLE mode configuration (STM32WB Series only)

5.1.8 Example feature (STM32MP1 and STM32H7 dual-core only)

Under the section “Sequence Examples”, the PCC tool allows to access examples: each
example come with an explanatory slide-set and a ready-made sequence to be loaded in
PCC (see Figure 149).

UM1718 Rev 31 177/363

UM1718 STM32CubeMX tools

362

Figure 149. Power Consumption Calculator – Example set

Clicking “Load Example N” loads the sequence corresponding to the example N (see
Figure 150).

Figure 150. Power Consumption Calculator – Example sequence loading

Clicking “Example N Presentation” displays the explanations for that example.

STM32CubeMX tools UM1718

178/363 UM1718 Rev 31

The example can be changed anytime: the new sequence can be either added to the
current sequence, or replace it (see Figure 151).

Figure 151. Power Consumption Calculator – Example sequence new selection

Note: The examples are provided for a given part number and may require adjustments when
used for a different part number. Also, after loading, it is recommended to edit each step and
check settings.

5.2 DDR Suite (for STM32MP1 Series only)

DDR SDRAMs are complex high speed devices that need careful PCB design.

The STM32MP15 devices support the following DDR types:

• LPDDR2

• LPDDR3

• DDR3 / DDR3L

They are specified by the JEDEC standard (standardization of interfaces, commands,
timings, packages and ballout).

STM32CubeMX has been extended to provide an exhaustive tool suite for the STM32MP1
DDR subsystem. It proposes the following key features.

• Configuration of DDR controller and PHY registers is managed automatically based
on reduced set of editable parameters.

• DDR testing is offered based on a rich tests list. Tests go from basic to stress tests.
User can also develop its own tests.

• DDR tuning of byte lanes delays is proposed to compensate board design
imperfections.

UM1718 Rev 31 179/363

UM1718 STM32CubeMX tools

362

DDR configuration is accessible like the other peripherals in the Pinout & Configuration
view: clicking the DDR from the component panel, opens the mode and configuration
panels.

DDR Test suite testing and tuning features are available from the Tools view.

The DDR suite relies on two important concepts:

• the DDR timings as key inputs for the configuration of the DDR Controller and PHY

• the tuning of DDR signals to compensate board design imperfections.

5.2.1 DDR configuration

STM32CubeMX allows to set DDR system parameters and JEDEC core timings. The timing
parameters are available in the DDR datasheet.

DDR type, width and density

The DDR type, width and density parameter settings are required to proceed with the DDR
configuration step. This can be done in the mode panel after selecting the DDR in the
Pinout & Configuration view.

See Figure 152 for an example of LPDDR2 settings.

Figure 152. DDR pinout and configuration settings

Another example: for a configuration with two “DDR3 16 bits 2 Gb” chips, settings are
“DDR3/DDR3L”, “32 bits” and 4 Gb”.

Note: Contexts for DDR IP cannot be changed, DDR is tied to “Cortex-A7 Non-Secure” identified
as “Cortex-A7 NS” in the tool.

STM32CubeMX tools UM1718

180/363 UM1718 Rev 31

DDR configuration

Clicking on a parameter will show additional details in the DDR configuration footer.

• The DDR frequency is taken from the ‘Clock configuration’ tab, it cannot be changed in
the DDR configuration.

• The ‘Relaxed Timing’ mode is used during bring-up phase for trying relaxed key DDR
timings value (one tCK added to tRC, tRCD and tRP timings)

• Other parameters must be retrieved from the user DDR datasheet.

• Some parameters are read-only: they are for information only and depend on the DDR
type.

Clicking “generate code” automatically computes the DDR node of the device tree (DDR
Controller and DDR PHY registers values) based on these parameters.

DDR3 configuration

For DDR3, the configuration is made easier with the selection of a Speed Bin / Grade
combination, instead of manually editing timing parameters.

UM1718 Rev 31 181/363

UM1718 STM32CubeMX tools

362

Figure 153. DDR3 configuration

The Speed Bin / Grade combination has to match the selected DDR. If the exact
combination is not in the pick-list, “1066E / 6-6-6” must be selected for faster DDR Speed
bin / Grade, whereas “1066G / 8-8-8” can be used as a relaxed configuration.

STM32CubeMX tools UM1718

182/363 UM1718 Rev 31

Timing edition is then optional and reserved for advanced users: select Show Advanced
parameters to display the list.

DDR tuning tab (read-only)

Users can check modifications to tuning parameters via the tuning tab. These parameters
are read-only in the DDR configuration panel (see Figure 154), are modified after tuning
operations, and are related to DQS position and DQ line delay:

– ‘Slave DDL Phase’, ‘DQS delay fine tuning’ and ‘DQS# delay fine tuning’ defines
the position of the DQS strobe signal for a particular byte. This position is the best
one regarding DQ line eye diagram.

– ‘DQ bit x lane delay fine tuning’ defines the delay to apply on bit x of particular byte
to compensate potential line length variation for this particular bit

Figure 154. DDR tuning parameter

UM1718 Rev 31 183/363

UM1718 STM32CubeMX tools

362

5.2.2 Connection to the target and DDR register loading

To manage DDR tests and tuning, STM32CubeMX must establish a connection with the
target and more specifically with U-Boot SPL using the DDR interactive protocol:

• the DDR interactive protocol is only available in the Basic boot scheme U-Boot SPL
binary and supported over the UART4 peripheral instance

• when U-Boot SPL detects a connection to STM32CubeMX on UART4, it stops its
initialization process and accepts commands from STM32CubeMX.

There are two connection options:

1. the U-Boot SPL binary is available in Flash memory

2. the U-Boot SPL needs to be loaded in SYSRAM because the DDR has not yet been
tested nor tuned (and, consequently, is not fully functional yet).

Prerequisites

• Installation of ST-Link USB driver to perform firmware upgrades: for Windows, latest
version of STSW-LINK009 must be used. For Linux, the STSW-LINK007 driver must
be used. Both can be downloaded from www.st.com.

• Installation of STM32CubeProgrammer (for SYSRAM loading only): installer can be
downloaded from www.st.com.

Connection to the target

The COM port must be selected to connect to the target, as indicated in Figure 155.

Figure 155. DDR Suite - Connection to target

If U-Boot SPL loading in SysRAM is required, it can be performed through UART or USB
using the STM32CubeProgrammer tool. If not automatically detected by STM32CubeMX,
the STM32CubeProgrammer tool location must be specified in the Connection settings

STM32CubeMX tools UM1718

184/363 UM1718 Rev 31

window: click to open it. U-Boot SPL file must be manually selected in the build image
folder.

Once up, the connection gives the various services and target information (see Figure 156).

Figure 156. DDR Suite - Target connected

Output/Log messages

STM32CubeMX outputs DDR suite related activity logs (see Figure 157) and interactive
protocol communication logs (see Figure 158). They are displayed by enabling outputs from
the Window menu.

Figure 157. DDR activity logs

UM1718 Rev 31 185/363

UM1718 STM32CubeMX tools

362

Figure 158. DDR interactive logs

DDR register loading (optional)

Once connected in DDR interactive mode, user can load the current DDR configuration in
SYSRAM.

Figure 159. DDR register loading

This step is optional if the used U-Boot SPL already contains the required DDR
configuration. It trigs the DDR Controller and PHY initialization with those registers, and
allows the user to quickly test a configuration without generating the device tree and
dedicated U-Boot SPL binary file.

STM32CubeMX tools UM1718

186/363 UM1718 Rev 31

5.2.3 DDR testing

Prerequisites

To proceed with DDR testing:

• The DDR suite must be in connected state

• The DDR configuration must be available in memory, either with the U-Boot SPL (with
DDR register file in Device Tree) or in the DDR registers (see Section 5.2.2).

DDR test list

DDR tests are part of the U-Boot SPL (see Figure 160).

Figure 160. DDR test list from U-Boot SPL

New tests can be added by modifying the U-boot SPL.

Most of the tests come with parameters to be set prior to execution, such as:

• Address: the memory address where the test is executed. All writes and reads are
performed on this address. The given address has to be located in the DDR memory
region [DDR base address, DDR base address + DDR size].

• On STM32MP15, DDR base address is 0xC0000000 (as an example, DDR size for
4 Gbits is 0x20000000).

• Loop: number of test iterations before verdict. Same test is repeated [Loop] times.
Verdict OK if all tests are OK, KO otherwise.

• Size: the byte size of the region to test. Size must be a multiple of 4 (read/writes are
performed on 32-bit unsigned integers) with minimal value equal to 4. Size can be up to
DDR size.

• Pattern: the 32-bit pattern to be used for read / write operations.

The DDR Suite embeds an auto-correction feature preventing users to specify wrong
values.

All tests are performed with Data cache disabled and Instruction cache enabled.

UM1718 Rev 31 187/363

UM1718 STM32CubeMX tools

362

DDR test results

The test verdict is reported by the U-Boot SPL: the parameters used for the tests are
recalled, along with Pass/Fail status and results details (see Figure 161). The test history is
available in the output and Logs panels (see Figure 162).

Figure 161. DDR test suite results

Figure 162. DDR tests history

STM32CubeMX tools UM1718

188/363 UM1718 Rev 31

5.2.4 DDR tuning

Prerequisites

The prerequisites to proceed with DDR tuning are:

• The DDR suite is in connected state

• A valid DDR configuration is available in memory, either with the U-Boot SPL (with
DDR register file in Device Tree) or in the DDR registers (see DDR register loading
(optional)).

Thanks to DDR tuning it is possible to compensate hardware design slight imperfections for
best operations (see AN5122, available on www.st.com, for DDR design routing guidelines).

Figure 163. DDR tuning pre-requisites

Tunable signals

The tunable signals are

• DQS signals: position for each data byte

• the 8 DQ bits: delay for each data byte.

Some DDR registers are dedicated to store the corresponding tuned settings:

• ‘Slave DDL Phase’, ‘DQS delay fine tuning’ and ‘DQS# delay fine tuning’ define the
position of the DQS strobe signal for a particular byte: this position is the best one
regarding DQ line eye diagram

• ‘DQ bit x lane delay fine tuning’ defines the delay to apply on bit x of particular byte to
compensate potential line length variation for this particular bit.

Note: It is recommended to perform tuning on several boards to make sure that the tuned
parameter variation is limited.

Tuning process

Tuning is done in three consecutive steps (see Figure 164):

1. DQS gating

2. Bit deskew

3. Eye training

UM1718 Rev 31 189/363

UM1718 STM32CubeMX tools

362

Figure 164. DDR tuning process

Bit deskew

The Bit deskew panel (see Figure 165) gives a graphical representation of

• the best DQS signal position for the given byte in order to adjust DQ line delay

• the delay to apply for each DQ line of the considered byte. The unit delay value is
20.56 ps. There are four steps. Bit lane delay is thus tunable from 0 to 61.68 ps.

Figure 165. Bit deskew

Eye training (centering)

The Eye training (centering) panel (Figure 166) gives the final optimum position of the DQS
signal in the half-period for each byte:

• DQS position varies coarsely from 36 to 144 degrees (quarter period is 90 degrees)

• DQS position then varies finely around the coarse position with 8 steps, from -61.68 to
+82.24 ps

STM32CubeMX tools UM1718

190/363 UM1718 Rev 31

Figure 166. Eye training (centering) panel

Propagating tuning results

Once tuning is complete, the DDR suite allows the user to propagate the tuned parameters
to the current DDR configuration (see Figure 167). The DDR Tuning tab is refreshed
accordingly (see Figure 168).

Figure 167. DDR Tuning - saving to configuration

UM1718 Rev 31 191/363

UM1718 STM32CubeMX tools

362

Figure 168. DDR configuration update after tuning

STM32CubeMX C Code generation overview UM1718

192/363 UM1718 Rev 31

6 STM32CubeMX C Code generation overview

6.1 STM32Cube code generation using only HAL drivers
(default mode)

During the C code generation process, STM32CubeMX performs the following actions:

1. If it is missing, it downloads the relevant STM32Cube MCU package from the user
repository. STM32CubeMX repository folder is specified in the Help > Updater
settings menu.

2. It copies from the firmware package, the relevant files in Drivers/CMSIS and
Drivers/STM32F4_HAL_Driver folders and in the Middleware folder if a middleware
was selected.

3. It generates the initialization C code (.c/.h files) corresponding to the user MCU
configuration and stores it in the Inc and Src folders. By default, the following files are
included:

– stm32f4xx_hal_conf.h file: this file defines the enabled HAL modules and sets
some parameters (e.g. External High Speed oscillator frequency) to predefined
default values or according to user configuration (clock tree).

– stm32f4xx_hal_msp.c (MSP = MCU Support package): this file defines all
initialization functions to configure the peripheral instances according to the user
configuration (pin allocation, enabling of clock, use of DMA and Interrupts).

– main.c is in charge of:

Resetting the MCU to a known state by calling the HAL_init() function that resets
all peripherals, initializes the Flash memory interface and the SysTick.

Configuring and initializing the system clock.

Configuring and initializing the GPIOs that are not used by peripherals.

Defining and calling, for each configured peripheral, a peripheral initialization
function that defines a handle structure that will be passed to the corresponding
peripheral HAL init function which in turn will call the peripheral HAL MSP
initialization function. Note that when LwIP (respectively USB) middleware is used,
the initialization C code for the underlying Ethernet (respectively USB peripheral)
is moved from main.c to LwIP (respectively USB) initialization C code itself.

– main.h file:

This file contains the define statements corresponding to the pin labels set from
the Pinout tab, as well as the user project constants added from the
Configuration tab (refer to Figure 169 and Figure 170 for examples):

#define MyTimeOut 10

#define LD4_Pin GPIO_PIN_12

#define LD4_GPIO_Port GPIOD

#define LD3_Pin GPIO_PIN_13

#define LD3_GPIO_Port GPIOD

#define LD5_Pin GPIO_PIN_14

#define LD5_GPIO_Port GPIOD

#define LD6_Pin GPIO_PIN_15

#define LD6_GPIO_Port GPIOD

UM1718 Rev 31 193/363

UM1718 STM32CubeMX C Code generation overview

362

Figure 169. Labels for pins generating define statements

Figure 170. User constant generating define statements

In case of duplicate labels, a unique suffix, consisting of the pin port letter and the
pin index number, is added and used for the generation of the associated define
statements.

In the example of a duplicate I2C1 labels shown in Figure 171, the code
generation produces the following code, keeping the I2C1 label on the original port
B pin 6 define statements and adding B7 suffix on pin 7 define statements:

#define I2C1_Pin GPIO_PIN_6

#define I2C1_GPIO_Port GPIOB

#define I2C1B7_Pin GPIO_PIN_7

#define I2C1B7_GPIO_Port GPIOB

STM32CubeMX C Code generation overview UM1718

194/363 UM1718 Rev 31

Figure 171. Duplicate labels

In order for the generated project to compile, define statements shall follow strict
naming conventions. They shall start with a letter or an underscore as well as the
corresponding label. In addition, they shall not include any special character such
as minus sign, parenthesis or brackets. Any special character within the label will
be automatically replaced by an underscore in the define name.

If the label contains character strings between “[]” or “()”, only the first string listed
is used for the define name. As an example, the label “LD6 [Blue Led]”
corresponds the following define statements:

#define LD6_Pin GPIO_PIN_15

#define LD6_GPIO_Port GPIOD

The define statements are used to configure the GPIOs in the generated
initialization code. In the following example, the initialization of the pins labeled
Audio_RST_Pin and LD4_Pin is done using the corresponding define statements:

/*Configure GPIO pins : LD4_Pin Audio_RST_Pin */

GPIO_InitStruct.Pin = LD4_Pin | Audio_RST_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_LOW;

HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

4. Finally it generates a Projects folder that contains the toolchain specific files that match
the user project settings. Double-clicking the IDE specific project file launches the IDE
and loads the project ready to be edited, built and debugged.

6.2 STM32Cube code generation using Low Layer drivers

For all STM32 Series except STM32H7 and STM32P1 Series, STM32CubeMX allows the
user to generate peripheral initialization code based either on the peripheral HAL driver or
on the peripheral Low Layer (LL) driver.

The choice is made through the Project Manager view (see Section 4.9.3: Advanced
Settings tab).

The LL drivers are available only for the peripherals which require an optimized access and
do not have a complex software configuration. The LL services allow performing atomic
operations by changing the relevant peripheral registers content:

• Examples of supported peripherals: RCC, ADC, GPIO, I2C, SPI, TIM, USART,…

• Examples of peripherals not supported by LL drivers: USB, SDMMC, FSMC.

UM1718 Rev 31 195/363

UM1718 STM32CubeMX C Code generation overview

362

The LL drivers are available within the STM32CubeL4 package:

• They are located next to the HAL drivers (stm32l4_hal_<peripheral_name>) within
the Inc and Src directory of the
STM32Cube_FW_L4_V1.6\Drivers\STM32L4xx_HAL_Driver folder.

• They can be easily recognizable by their naming convention:
stm32l4_ll_<peripheral_name>

For more details on HAL and LL drivers refer to the STM32L4 HAL and Low-layer drivers
user manual (UM1884).

As the decision to use LL or HAL drivers is made on a peripheral basis, the user can mix
both HAL and LL drivers within the same project.

The following tables shows the main differences between the three possible
STM32CubeMX project generation options: HAL-only, LL-only, and mix of HAL and LL code.

Table 18. LL versus HAL code generation: drivers included in STM32CubeMX projects

Project configuration and
drivers to be included

HAL only LL only
Mix of HAL

and LL
Comments

CMSIS Yes Yes Yes -

STM32xxx_HAL_Driver
Only HAL
driver files

Only LL
driver files

Mix of HAL and
LL driver files

Only the driver files required for a
given configuration (selection of
peripherals) are copied when the
project settings option is set to
“Copy only the necessary files”.
Otherwise (“all used libraries”
option) the complete set of driver
files is copied.

Table 19. LL versus HAL code generation: STM32CubeMX generated header files

Generated
header files

HAL only LL only
Mix of HAL

and LL
Comments

main.h Yes Yes Yes
This file contains the include statements and
the generated define statements for user
constants (GPIO labels and user constants).

stm32xxx_hal_conf.h Yes No Yes
This file enables the HAL modules necessary to
the project.

stm32xxx_it.h Yes Yes Yes Header file for interrupt handlers

stm32xx_assert.h No Yes Yes
This file contains the assert macros and the
functions used for checking function
parameters.

STM32CubeMX C Code generation overview UM1718

196/363 UM1718 Rev 31

Table 20. LL versus HAL: STM32CubeMX generated source files

Generated
source files

HAL only LL only
Mix of HAL

and LL
Comments

main.c Yes Yes Yes
This file contains the main functions and
optionally STM32CubeMX generated functions.

stm32xxx_hal_msp.c Yes No Yes

This file contains the following functions:

– HAL_MspInit

– for peripherals using HAL drivers:
HAL_<Peripheral>_MspInit,
HAL_<Peripheral>_MspDeInit,

These functions are available only for the
peripherals that use HAL drivers.

stm32xxx_it.c Yes Yes Yes Source file for interrupt handlers

Table 21. LL versus HAL: STM32CubeMX generated functions and function calls

Generated source
files

HAL only LL only Mix of HAL and LL Comments

Hal_init() Called in main.c Not used Called in main.c

This file performs the
following functions:
– Configuration of Flash

memory prefetch and
instruction and data
caches

– Selection of the SysTick
timer as timebase source

– Setting of NVIC group
priority

– MCU low-level
initialization.

Hal_msp_init()
Generated in
stm32xxx_hal_msp.c
and called by HAL_init()

Not used
Generated in
stm32xxx_hal_msp.c
And called by HAL_init()

This function performs the
peripheral resources
configuration(1).

MX_<Peripheral>_Init()
[1]: Peripheral
configuration and call to
HAL_<Peripheral>_Init()

[2]: Peripheral and
peripheral resource
configuration(1)
using LL functions

Call to
LL_Peripheral_Init()

– When HAL driver is
selected for the
<Peripheral>, function
generation and calls
are done following [1]:
Peripheral
configuration and call
to
HAL_<Peripheral>_In
it()

– When LL driver
selected for the
<Peripheral>, function
generation and calls
are done following [2]:
Peripheral and
peripheral resource
configuration using LL
functions

This file takes care of the
peripherals configuration.

When the LL driver is
selected for the
<Peripheral>, it also
performs the peripheral
resources configuration(1).

UM1718 Rev 31 197/363

UM1718 STM32CubeMX C Code generation overview

362

HAL_<Peripheral>
_MspInit()

[3]: Generated in
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

Not used

Only HAL driver can be
selected for the
<Peripheral>: function
generation and calls are
done following [3]:
Generated in
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

Peripheral resources
configuration(1)

HAL_<Peripheral>
_MspDeInit()

[4]: Generated in
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

Not used

Only HAL driver can be
selected for the
<Peripheral>: function
generation and calls are
done following [4]:
Generated in
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

This function can be used to
free peripheral resources.

1. Peripheral resources include:
- peripheral clock
- pinout configuration (GPIOs)
- peripheral DMA requests
- peripheral Interrupt requests and priorities.

Table 21. LL versus HAL: STM32CubeMX generated functions and function calls (continued)

Generated source
files

HAL only LL only Mix of HAL and LL Comments

STM32CubeMX C Code generation overview UM1718

198/363 UM1718 Rev 31

Figure 172. HAL-based peripheral initialization: usart.c code snippet

UM1718 Rev 31 199/363

UM1718 STM32CubeMX C Code generation overview

362

Figure 173. LL-based peripheral initialization: usart.c code snippet

Figure 174. HAL versus LL: main.c code snippet

STM32CubeMX C Code generation overview UM1718

200/363 UM1718 Rev 31

6.3 Custom code generation

STM32CubeMX supports custom code generation by means of a FreeMarker template
engine (see http://www.freemarker.org).

6.3.1 STM32CubeMX data model for FreeMarker user templates

STM32CubeMX can generate a custom code based on a FreeMarker template file (.ftl
extension) for any of the following MCU configuration information:

• List of MCU peripherals used by the user configuration

• List of parameters values for those peripherals

• List of resources used by these peripherals: GPIO, DMA requests and interrupts.

The user template file must be compatible with STM32CubeMX data model. This means
that the template must start with the following lines:

[#ftl]

[#list configs as dt]

[#assign data = dt]

[#assign peripheralParams =dt.peripheralParams]

[#assign peripheralGPIOParams =dt.peripheralGPIOParams]

[#assign usedIPs =dt.usedIPs]

and end with

[/#list]

A sample template file is provided for guidance (see Figure 175).

STM32CubeMX will also generate user-specific code if any is available within the template.

As shown in the below example, when the sample template is used, the ftl commands are
provided as comments next to the data they have generated:

FreeMarker command in template:

${peripheralParams.get("RCC").get("LSI_VALUE")}

Resulting generated code:

LSI_VALUE : 32000 [peripheralParams.get("RCC").get("LSI_VALUE")]

Figure 175. extra_templates folder - Default content

UM1718 Rev 31 201/363

UM1718 STM32CubeMX C Code generation overview

362

6.3.2 Saving and selecting user templates

The user can either place the FreeMarker template files under STM32CubeMX installation
path within the db/extra_templates folder or in any other folder.

Then for a given project, the user will select the template files relevant for its project via the
Template Settings window accessible from the Code Generator Tab in the Project
Manager view menu (see Section 4.9)

6.3.3 Custom code generation

To generate custom code, the user must place the FreeMarker template file under
STM32CubeMX installation path within the db/extra_templates folder (see Figure 176).

The template filename must follow the naming convention <user filename>_<file
extension>.ftl in order to generate the corresponding custom file as <user filename>.<file
extension>.

By default, the custom file is generated in the user project root folder, next to the .ioc file
(see Figure 177).

To generate the custom code in a different folder, the user shall match the destination folder
tree structure in the extra_template folder (see Figure 178).

Figure 176. extra_templates folder with user templates

STM32CubeMX C Code generation overview UM1718

202/363 UM1718 Rev 31

Figure 177. Project root folder with corresponding custom generated files

Figure 178. User custom folder for templates

UM1718 Rev 31 203/363

UM1718 STM32CubeMX C Code generation overview

362

Figure 179. Custom folder with corresponding custom generated files

6.4 Additional settings for C project generation

STM32CubeMX allows specifying additional project settings through the .extSettings file.
This file must be placed in the same project folder and at the same level as the .ioc file.

As an example, additional settings can be used when external tools call STM32CubeMX to
generate the project and require specific project settings.

Possible entries and syntax

All entries are optional. They are organized under the followings three categories:
ProjectFiles, Groups or Others.

• [ProjectFiles]: section where to specify additional include directories

Syntax

HeaderPath = <include directory 1 path>;< include directory 2 path >

Example

HeaderPath=../../IIR_Filter_int32/Inc ;

• [Groups]: section where to create new groups of files and/or add files to a group

Syntax

<Group name> = <file pathname1>;< file pathname2>

Example

Doc=$ PROJ_DIR$\..\readme.txt

Lib=C:\libraries\mylib1.lib; C:\libraries\mylib2.lib;

Drivers/BSP/MyRefBoard = C:\MyRefBoard\BSP\board_init.c;
C:\MyRefBoard\BSP\board_init.h;

• [Others] section where to enable HAL modules and/or specify preprocessor define
statements

– Enabling pre-processor define statements

Preprocessor define statements can be specified using the following syntax after
the [Others] line:

Syntax

Define = <define1_name>;<define2_name>

Example

STM32CubeMX C Code generation overview UM1718

204/363 UM1718 Rev 31

Define= USE_STM32F429I_DISCO

– Enabling HAL modules in generated stm32f4xx_hal_conf.h

HAL modules can be enabled using the following syntax after the [Others] line:

Syntax

HALModule = <ModuleName1>; <ModuleName1>;

Example

HALModule=I2S;I2C

.extSettings file example and generated outcomes

For the purpose of the example, a new project is created by selecting the
STM32F429I-DISCO board from STM32CubeMX board selector. The EWARM toolchain is
selected in the Project tab of the Project Manager view. The project is saved as
MyF429IDiscoProject. In the project folder, next to the generated .ioc file, a .extSettings text
file is placed with the following contents:

[Groups]

Drivers/BSP/STM32F429IDISCO=C:\Users\frq09031\STM32Cube\Repository\STM3
2Cube_FW_F4_V1.14.0\Drivers\BSP\STM32F429I-
Discovery\stm32f429i_discovery.c;
C:\Users\frq09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\Drivers\
BSP\STM32F429I-Discovery\stm32f429i_discovery.h

Lib=C:\Users\frq09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\
Middlewares\Third_Party\FreeRTOS\Source\portable\IAR\ARM_CM4F\portasm.s

Doc=$PROJ_DIR$\..\readme.txt

[Others]

Define = USE_ STM32F429I_DISCO

HALModule = UART;SPI

Upon project generation, the presence of this .extSettings file triggers the update of:

• the project MyF429IDiscoProject.ewp file in EWARM folder (see Figure 180)

• the stm32f4xx_hal_conf.h file in the project Inc folder (see Figure 181)

• the project view within EWARM user interface as shown in Figure 182 and Figure 183.

UM1718 Rev 31 205/363

UM1718 STM32CubeMX C Code generation overview

362

Figure 180. Update of the project .ewp file (EWARM IDE)
for preprocessor define statements

Figure 181. Update of stm32f4xx_hal_conf.h file to enable selected modules

Figure 182. New groups and new files added to groups in EWARM IDE

STM32CubeMX C Code generation overview UM1718

206/363 UM1718 Rev 31

Figure 183. Preprocessor define statements in EWARM IDE

UM1718 Rev 31 207/363

UM1718 Code generation for dual-core MCUs (STM32H7 dual-core product lines only)

362

7 Code generation for dual-core MCUs
(STM32H7 dual-core product lines only)

For working with Arm Cortex-M dual-core products, STM32CubeMX generates code for
both cores automatically according to the context assignment and initializer choices made in
the user interface (see Section 4.6: Pinout & Configuration view for STM32H7 dual-core
product lines for details).

Figure 184. Code generation for STM32H7 dual-core devices

Generated initialization code

The code is generated in CM4, CM7 and Common folders. The Common folder holds the
system_stm32h7xx.c, that contains the clock tree settings.

When a peripheral or middleware is assigned to both contexts, the function
MX_<name>_init will be generated for both contexts but will be called only from the
initializer side.

Code generation for dual-core MCUs (STM32H7 dual-core product lines only) UM1718

208/363 UM1718 Rev 31

Generated startup and linker files

Each configuration (_M4 or _M7) of the project shall come with a startup file and a linker file,
each suffixed with _M4 or _M7 respectively.

Figure 185. Startup and linker files for STM32H7 dual-core devices

Generated boot mode code

STM32CubeMX supports only one mode of boot for now, where both ARM Cortex-M cores
boot at once.

The other boot modes will be introduced later as a project option in the project manager
view:

• Arm Cortex-M7 core booting, Arm Cortex-M4 gated

• Arm Cortex-M4 core booting, Arm Cortex-M7 gated

• A first core booting executing from flash, loads the second core code to the SRAM then
enables the second core to boot.

STM32CubeMX uses template files delivered with STM32CubeH7 MCU packages as
reference.

UM1718 Rev 31 209/363

UM1718 Code generation with Trustzone enabled (STM32L5 Series only)

362

8 Code generation with Trustzone enabled (STM32L5
Series only)

In STM32CubeMX project manager view, all project generation options remain available.

However, the choice of toolchains is limited to the IDEs/compilers supporting the
Cortex®-M33 core:

• EWARM v8.32 or higher

• MDK-ARM v5.27 or higher (ARM compiler 6)

• STM32CubeIDE (GCC v4.2 or higher)

Upon product selection, STM32CubeMX requires to choose between enabling TrustZone or
not.

• When TrustZone is enabled, STM32CubeMX generates two C projects: one secured
and one non-secured. After compilation, two images are available for download, one
for each context.

• When TrustZone is disabled, STM32CubeMX generates a non-secured C project as it
is done for other products not supporting TrustZone.

Specificities

When Trustzone is enabled, the project generation must be adjusted to ensure that secure
and non-secure images can be built.

Figure 186. ARMv8-M Trustzone overview of building secure and non-secure images

Code generation with Trustzone enabled (STM32L5 Series only) UM1718

210/363 UM1718 Rev 31

When TrustZone is enabled for the project, STM32CubeMX generates three folders:

• NonSecure for non-secure code

• Secure for secure code

• Secure_nsclib for non-secure callable region

See Figure 187 (use TZ_BasicStructure_project_inCubeIDE.png) and Figure 188 (use
STM32L5_STM32CubeMX_Project_settings_inCubeIDE.png).

Figure 187. Project explorer view for STM32L5 TrustZone enabled projects

UM1718 Rev 31 211/363

UM1718 Code generation with Trustzone enabled (STM32L5 Series only)

362

Figure 188. Project settings for STM32CubeIDE toolchain

STM32CubeMX also generates specific files, detailed in Table 22.

Table 22. Files generated when TrustZone is enabled

File Folder Details

The product core secure/non-secure
partitioning .h “template” file

Example: partition_stm32l552xx.h
Secure

Initial setup for secure / non-secure zones for
ARMCM33 based on CMSIS CORE V5.3.1
partition_ARMCM33.h Template.
It initializes Security attribution unit (SAU)
CTRL register, setup behavior of Sleep and
Exception Handling, Floating Point Unit and
Interrupt Target.

secure_nsc.h file Secure_nsclib

Must be filled by the user with the list of
non-secure callable APIs.

Templates are available as reference in
STM32L5Cube embedded software package
in Templates\TrustZone\Secure_nsclib
folders.

System_stm32l5xx_s.c Secure

CMSIS Cortex-M33 device peripheral access
layer system source file to be used in secure
application when the system implements
security.

Code generation with Trustzone enabled (STM32L5 Series only) UM1718

212/363 UM1718 Rev 31

System_stm32l5xx_ns.c NonSecure

CMSIS Cortex-M33 device peripheral access
layer system source file to be used in
non-secure application when the system
implements security.

STM32L562CETX_FLASH

STM32L562CETX_RAM

or

STM32L552CETX_FLASH

STM32L552CETX_RAM

Secure,
NonSecure

Linker files for the secure and non-secure
memory layouts.

File extensions and naming conventions:

– .icf (EWARM)

– .sct (MDK-ARM), or

– .ld (GCC compiler toolchains)

Table 22. Files generated when TrustZone is enabled (continued)

File Folder Details

UM1718 Rev 31 213/363

UM1718 Device tree generation (STM32MP1 Series only)

362

9 Device tree generation (STM32MP1 Series only)

The Device tree in Linux is used to provide a way to describe non-discoverable hardware.
STMicroelectronics is widely using the device tree for all the platform configuration data,
including DDR configuration.

Linux developers can manually edit device tree source files (dts), but as an alternative
STM32CubeMX offers a partial device-tree generation service to reduce effort and to ease
new comers. STM32CubeMX intends to generate partially device trees corresponding to
board level configuration. Partial means that the entire (board level) device-trees are not
generated, but only main sections that usually imply huge efforts and can cause compilation
errors and dysfunction:

• folders structure and files to folders distribution

• dtsi and headers inclusions

• pinCtrl and clocks generation

• System-On-Chip device nodes positioning

• multi-core related configurations (Etzpc binding, resources manager binding,
peripherals assignment)

9.1 Device tree overview

To run properly, any piece of software needs to get the hardware description of the platform
on which it is executed, including the kind of CPU, the memory size and the pin
configuration. Current Linux kernels and U-boot have put such non-discoverable hardware
description in a separate binary, the device tree blob (dtb). The device tree blob is compiled
from the device tree source files (dts) using the dtc compiler provided with the OpenSTLinux
distribution.

The device tree structure consist of a board level file (.dts) that includes two device tree
source include files (.dtsi): a soc level file and a –pinctrl file, that lists the pin muxing
configurations.

The device tree structure is very close to C language multiple level structures with the
“root” (/) being the highest level then “peripherals” being sub-nodes described further in the
hierarchy (see figures 189, 190 and 191).

STM32CubeMX generation uses widely overloading mechanisms to complete or change
some SOC devices definitions when user configurations require it.

Device tree generation (STM32MP1 Series only) UM1718

214/363 UM1718 Rev 31

Figure 189. STM32CubeMX generated DTS – Extract 1

Figure 190. STM32CubeMX generated DTS – Extract 2

UM1718 Rev 31 215/363

UM1718 Device tree generation (STM32MP1 Series only)

362

Figure 191. STM32CubeMX generated DTS – Extract 3

For more details refer to “Device Tree for Dummies” from Thomas Petazzoni, available on
https://elinux.org.

For more information about STM32MP1 Series device tree specificities, refer to ST Wiki
https://wiki.st.com/stm32mpu.

9.2 STM32CubeMX Device tree generation

For STM32MP1 Series, STM32CubeMX code generation feature has been extended to
generate Device trees (DT) targeting the supported firmware:

• a single DT for configuring both TF-A and SP_min

• a DT for configuring U-Boot

• a DT for configuring Linux kernel

DTS generation is accessible through the same button.

Device tree generation (STM32MP1 Series only) UM1718

216/363 UM1718 Rev 31

The DT generation path can be configured from the Project Manager view, in the Advanced
Settings tab, under OpenSTLinux Settings (see Figure 192). For each Device tree
STM32CubeMX generates Device tree source (DTS) files.

Figure 192. Project settings for configuring Device tree path

The Device tree structure consists of:

• a complete clock-tree

• a complete pin control

• a complete multi-cores references definition

• a set of device nodes and sub-nodes

• user sections that can be filled to have complete and bootable Device trees (contents
will not be lost at next generation).

The generated DTS files reflect the user configuration, such as the assignment of
peripherals to runtime contexts and boot loaders, or clock tree settings.

STM32CubeMX DT generation ensures the coherency between the different DTs.
Additionally, it generates the DDR configuration file as a part of the TF-A and U-Boot Device
trees.

These files along with the files they include will be compiled to create the device tree blob
for the targeted firmware.

9.2.1 Device tree generation for Linux kernel

STM32CubeMX only generates the “board” file for Linux. This file includes the “soc” file and
the “pinctrl” file corresponding to the selected package.

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in the Linux kernel source code
Documentation/devicetree/bindings/ folder.

UM1718 Rev 31 217/363

UM1718 Device tree generation (STM32MP1 Series only)

362

Figure 193. Device tree generation for the Linux kernel

9.2.2 Device tree generation for U-boot

STM32CubeMX makes a copy of Linux dts file for U-Boot and completes it with two new
files: one for the “ddr” configuration and one for U-Boot add-ons, mainly consisting in using
the “u-boot,dm-pre-reloc” property whenever needed.

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in U-Boot source code
Documentation/devicetree/bindings/ folder.

Figure 194. STM32CubeMX Device tree generation for U-boot

Device tree generation (STM32MP1 Series only) UM1718

218/363 UM1718 Rev 31

9.2.3 Device tree generation for TF-A

To save space, STM32CubeMX generates a “board” dts file for TF-A that is a lighter version
of the Linux “board” dts file. This file includes the already lighter dtsi files versions on “soc”
and “pinctrl” sides, that comes with TF-A. Th same “ddr” configuration file generated for
U-Boot is reused for TF-A.

Figure 195. STM32CubeMX Device tree generation for TF-A

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in TF-A source code
docs/devicetree/bindings/ folder.

UM1718 Rev 31 219/363

UM1718 Support of additional software components using CMSIS-Pack standard

362

10 Support of additional software components using
CMSIS-Pack standard

The CMSIS-Pack standard describes a delivery mechanism for software components,
device parameters, and evaluation board support.

The XML-based package description (pdsc) file describes the content of a software pack
(file collection). It includes source code, header files, software libraries, documentation and
source code templates. A software pack consists of the complete file collection along with
the pdsc file, shipped in ZIP-format. After installing a software pack, all the included software
components are available to the development tools.

A software component is a collection of source modules, header and configuration files as
well as libraries. Packs containing software components can also include example projects
and user code templates.

Refer to http://www.keil.com website for more details.

STM32CubeMX supports third-party and other STMicroelectronics embedded software
solutions, delivered as software packs. STM32CubeMX enables to:

1. Install Software Packs and check for updates (see Section 3.4.4).

2. Select software components for the current project (see Section 4.13). Once this is
done, the selected components appear in the tree view (see Figure 196).

3. Enable the software component from the tree view (see Figure 197). Use contextual
help to get more details on the selection.

4. Configure software components (see Figure 197). This function is possible only for
components coming with files in STM32CubeMX proprietary format.

5. Generate the C project for selected toolchains (see Figure 198).

a) Software components files are automatically copied to the project.

b) Software component configuration and initialization code are automatically
generated. This function is possible only for components coming with files in
STM32CubeMX proprietary format.

Figure 196. Selecting a CMSIS-Pack software component

Support of additional software components using CMSIS-Pack standard UM1718

220/363 UM1718 Rev 31

Figure 197. Enabling and configuring a CMSIS-Pack software component

UM1718 Rev 31 221/363

UM1718 Support of additional software components using CMSIS-Pack standard

362

Figure 198. Project generated with CMSIS-Pack software component

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

222/363 UM1718 Rev 31

11 Tutorial 1: From pinout to project C code generation
using an MCU of the STM32F4 Series

This section describes the configuration and C code generation process. It takes as an
example a simple LED toggling application running on the STM32F4DISCOVERY board.

11.1 Creating a new STM32CubeMX Project

1. Select File > New project from the main menu bar or New project from the Home
page.

2. Select the MCU Selector tab and filter down the STM32 portfolio by selecting
STM32F4 as 'Series', STM32F407 as 'Lines', and LQFP100 as 'Package’ (see
Figure 199).

3. Select the STM32F407VGTx from the MCU list and click OK.

Figure 199. MCU selection

STM32CubeMX views are then populated with the selected MCU database (Figure 200).
Optionally, remove the MCUs Selection bottom window by deselecting Window> Outputs
submenu (see Figure 201).

UM1718 Rev 31 223/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

Figure 200. Pinout view with MCUs selection

Figure 201. Pinout view without MCUs selection window

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

224/363 UM1718 Rev 31

11.2 Configuring the MCU pinout

For a detailed description of menus, advanced actions and conflict resolutions, refer to
Section 4 and Appendix A.

1. By default, STM32CubeMX shows the Pinout view.

2. By default, is unchecked allowing STM32CubeMX to
move the peripheral functions around and to find the optimal pin allocation, that is the
one that accommodates the maximum number of peripheral modes.

Since the MCU pin configurations must match the STM32F4DISCOVERY board,
enable for STM32CubeMX to maintain the peripheral function
allocation (mapping) to a given pin.

This setting is saved as a user preference in order to be restored when reopening the
tool or when loading another project.

3. Select the required peripherals and peripheral modes:

a) Configure the GPIO to output the signal on the STM32F4DISCOVERY green LED
by right-clicking PD12 from the Pinout view, then select GPIO_output:

Figure 202. GPIO pin configuration

UM1718 Rev 31 225/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

b) Enable a timer to be used as timebase for toggling the LED. This is done by
selecting Internal Clock as TIM3 clock source from the peripheral tree (see
Figure 203).

Figure 203. Timer configuration

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

226/363 UM1718 Rev 31

c) You can also configure the RCC to use an external oscillator as potential clock
source (see Figure 204).

Figure 204. Simple pinout configuration

This completes the pinout configuration for this example.

Note: Starting with STM32CubeMX 4.2, the user can skip the pinout configuration by directly
loading ST Discovery board configuration from the Board selector tab.

UM1718 Rev 31 227/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

11.3 Saving the project

1. Click to save the project.

When saving for the first time, select a destination folder and filename for the project.
The .ioc extension is added automatically to indicate this is an STM32CubeMX
configuration file.

Figure 205. Save Project As window

2. Click to save the project under a different name or location.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

228/363 UM1718 Rev 31

11.4 Generating the report

Reports can be generated at any time during the configuration:

1. Click to generate .pdf and .txt reports.

If a project file has not been created yet, a warning prompts the user to save the project
first and requests a project name and a destination folder (see Figure 206). An .ioc file
is then generated for the project along with a .pdf and .txt reports with the same name.

Figure 206. Generate Project Report - New project creation

Answering No will require to provide a name and location for the report only.

As shown in Figure 207, a confirmation message is displayed when the operation is
successful.

Figure 207. Generate Project Report - Project successfully created

2. Open the .pdf report using Adobe Reader or the .txt report using your favorite text
editor. The reports summarize all the settings and MCU configuration performed for the
project.

11.5 Configuring the MCU clock tree

The following sequence describes how to configure the clocks required by the application
based on an STM32F4 MCU.

STM32CubeMX automatically generates the system, CPU and AHB/APB bus frequencies
from the clock sources and prescalers selected by the user. Wrong settings are detected

UM1718 Rev 31 229/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

and highlighted in fuchsia through a dynamic validation of minimum and maximum
conditions. Useful tooltips provide a detailed description of the actions to undertake when
the settings are unavailable or wrong. User frequency selection can influence some
peripheral parameters (e.g. UART baud rate limitation).

STM32CubeMX uses the clock settings defined in the Clock tree view to generate the
initialization C code for each peripheral clock. Clock settings are performed in the generated
C code as part of RCC initialization within the project main.c and in stm32f4xx_hal_conf.h
(HSE, HSI and external clock values expressed in Hertz).

Follow the sequence below to configure the MCU clock tree:

1. Click the Clock Configuration tab to display the clock tree (see Figure 208).

The internal (HSI, LSI), system (SYSCLK) and peripheral clock frequency fields cannot
be edited. The system and peripheral clocks can be adjusted by selecting a clock
source, and optionally by using the PLL, prescalers and multipliers.

Figure 208. Clock tree view

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

230/363 UM1718 Rev 31

2. First select the clock source (HSE, HSI or PLLCLK) that will drive the system clock of
the microcontroller.

In the example taken for the tutorial, select HSI to use the internal 16 MHz clock (see
Figure 209).

Figure 209. HSI clock enabled

To use an external clock source (HSE or LSE), the RCC peripheral shall be configured
in the Pinout view since pins will be used to connect the external clock crystals (see
Figure 210).

Figure 210. HSE clock source disabled

Other clock configuration options for the STM32F4DISCOVERY board:

– Select the external HSE source and enter 8 in the HSE input frequency box since
an 8 MHz crystal is connected on the discovery board:

Figure 211. HSE clock source enabled

– Select the external PLL clock source and the HSI or HSE as the PLL input clock
source.

Figure 212. External PLL clock source enabled

UM1718 Rev 31 231/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

3. Keep the core and peripheral clocks to 16 MHz using HSI, no PLL and no prescaling.

Note: Optionally, further adjust the system and peripheral clocks using PLL, prescalers and
multipliers:

Other clock sources independent from the system clock can be configured as follows:

– USB OTG FS, Random Number Generator and SDIO clocks are driven by an
independent output of the PLL.

– I2S peripherals come with their own internal clock (PLLI2S), alternatively derived
by an independent external clock source.

– USB OTG HS and Ethernet Clocks are derived from an external source.

4. Optionally, configure the prescaler for the Microcontroller Clock Output (MCO) pins that
allow to output two clocks to the external circuit.

5. Click to save the project.

6. Go to the Configuration tab to proceed with the project configuration.

11.6 Configuring the MCU initialization parameters

Caution: The C code generated by STM32CubeMX covers the initialization of the MCU peripherals
and middlewares using the STM32Cube firmware libraries.

11.6.1 Initial conditions

From the Pinout & Configuration tab, select and configure (one by one) every component
(peripheral, middleware, additional software) required by the application using the Mode
and Configuration panels (see Figure 213).

Tooltips and warning messages are displayed when peripherals are not properly configured
(see Section 4: STM32CubeMX user interface for details).

Note: The RCC peripheral initialization will use the parameter configuration done in this view as
well as the configuration done in the Clock tree view (clock source, frequencies, prescaler
values, etc…).

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

232/363 UM1718 Rev 31

Figure 213. Pinout & Configuration view

11.6.2 Configuring the peripherals

Each peripheral instance corresponds to a dedicated button in the main panel. Some
peripheral modes have no configurable parameters, as illustrated below.

Figure 214. Case of Peripheral and Middleware without configuration parameters

UM1718 Rev 31 233/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

Follow the steps below to proceed with peripheral configuration:

1. Click the peripheral button to open the corresponding configuration window.

In our example

a) click TIM3 to open the timer configuration window.

Figure 215. Timer 3 configuration window

b) with a 16 MHz APB clock (Clock tree view), set the prescaler to 16000 and the
counter period to 1000 to make the LED blink every millisecond.

Figure 216. Timer 3 configuration

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

234/363 UM1718 Rev 31

2. Optionally, and when available, select:

– The NVIC Settings tab to display the NVIC configuration and enable interruptions
for this peripheral.

– The DMA Settings tab to display the DMA configuration and to configure DMA
transfers for this peripheral.

In the tutorial example, the DMA is not used and the GPIO settings remain
unchanged. The interrupt is enabled, as shown in Figure 217.

– The GPIO Settings tab to display the GPIO configuration and to configure the
GPIOs for this peripheral.

– Insert an item:

– The User Constants tab to specify constants to be used in the project.

Figure 217. Enabling Timer 3 interrupt

11.6.3 Configuring the GPIOs

The user can adjust all pin configurations from this window. A small icon along with a tooltip
indicates the configuration status.

Figure 218. GPIO configuration color scheme and tooltip

UM1718 Rev 31 235/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

Follow the sequence below to configure the GPIOs:

1. Click the GPIO button in the Configuration view to open the Pin Configuration
window below.

2. The first tab shows the pins that have been assigned a GPIO mode but not for a
dedicated peripheral and middleware. Select a Pin Name to open the configuration for
that pin.

In the tutorial example, select PD12 and configure it in output push-pull mode to drive
the STM32F4DISCOVERY LED (see Figure 219).

Figure 219. GPIO mode configuration

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

236/363 UM1718 Rev 31

11.6.4 Configuring the DMAs

This is not required for this example. It is recommended to use DMA transfers to offload the
CPU. The DMA Configuration window provides a fast and easy way to configure the DMAs
(see Figure 220):

1. add a new DMA request and select among a list of possible configurations.

2. select among the available streams.

3. select the Direction: Memory to Peripheral or Peripheral to Memory.

4. select a Priority.

5. enable the FIFO.

Note: Configuring the DMA for a given peripheral and middleware can also be performed using
the Peripheral and Middleware configuration window.

Figure 220. DMA parameters configuration window

UM1718 Rev 31 237/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

11.6.5 Configuring the middleware

This is not required for the example taken for the tutorial.

If a peripheral is required for a middleware mode, the peripheral must be configured in the
Pinout view for the middleware mode to become available. A tooltip can guide the user as
shown below.

Figure 221. Middleware tooltip

1. Configure the USB peripheral from the Pinout view.

Figure 222. USB Host configuration

2. Select MSC_FS class from USB Host middleware.

3. Select the checkbox to enable FatFs USB mode in the tree panel.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

238/363 UM1718 Rev 31

Figure 223. FatFs over USB mode enabled

UM1718 Rev 31 239/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

4. Select the Configuration view. FatFs and USB buttons are then displayed.

Figure 224. System view with FatFs and USB enabled

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

240/363 UM1718 Rev 31

5. FatFs and USB using default settings are already marked as configured . Click
FatFs and USB buttons to display default configuration settings. You can also change
them by following the guidelines provided at the bottom of the window.

Figure 225. FatFs define statements

UM1718 Rev 31 241/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

11.7 Generating a complete C project

11.7.1 Setting project options

Default project settings can be adjusted prior to C code generation as shown in Figure 226.

1. Select the Project Manager view to update project settings and generation options.

2. Select the Project Tab and choose a Project name, location, a toolchain and a
toolchain version to generate the project (see Figure 226).

Figure 226. Project Settings and toolchain selection

3. Select the Code Generator tab to choose various C code generation options:

– The library files copied to Projects folder.

– C code regeneration (e.g. what is kept or backed up during C code regeneration).

– HAL specific action (e.g. set all free pins as analog I/Os to reduce MCU power
consumption).

In the tutorial example, select the settings as displayed in Figure 227 and click OK.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

242/363 UM1718 Rev 31

Note: A dialog window appears when the firmware package is missing. Go to next section for
explanation on how to download the firmware package.

Figure 227. Project Manager menu - Code Generator tab

11.7.2 Downloading firmware package and generating the C code

1. Click to generate the C code.

During C code generation, STM32CubeMX copies files from the relevant STM32Cube
MCU package into the project folder so that the project can be compiled. When
generating a project for the first time, the firmware package is not available on the user
PC and a warning message is displayed:

Figure 228. Missing firmware package warning message

2. STM32CubeMX offers to download the relevant firmware package or to go on. Click
Download to obtain a complete project, that is a project ready to be used in the
selected IDE.

By clicking Continue, only Inc and Src folders will be created, holding STM32CubeMX
generated initialization files. The necessary firmware and middleware libraries will have
to be copied manually to obtain a complete project.

UM1718 Rev 31 243/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

If the download fails, an error message is displayed.

Figure 229. Error during download

To solve this issue, execute the next two steps. Skip them otherwise.

3. Select Help > Updater settings menu and adjust the connection parameters to match
your network configuration.

Figure 230. Updater settings for download

4. Click Check connection. The check mark turns green once the connection is
established.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

244/363 UM1718 Rev 31

Figure 231. Updater settings with connection

5. Once the connection is functional, click to generate the C code.
The C code generation process starts and progress is displayed (see next figures).

Figure 232. Downloading the firmware package

UM1718 Rev 31 245/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

Figure 233. Unzipping the firmware package

6. Finally, a confirmation message is displayed to indicate that the C code generation has
been successful.

Figure 234. C code generation completion message

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

246/363 UM1718 Rev 31

7. Click Open Folder to display the generated project contents or click Open Project to
open the project directly in your IDE. Then proceed with Section 11.8.

Figure 235. C code generation output folder

The generated project contains:

• The STM32CubeMX .ioc project file located in the root folder. It contains the project
user configuration and settings generated through STM32CubeMX user interface.

• The Drivers and Middlewares folders hold copies of the firmware package files relevant
for the user configuration.

• The Projects folder contains IDE specific folders with all the files required for the project
development and debug within the IDE.

• The Inc and Src folders contain STM32CubeMX generated files for middleware,
peripheral and GPIO initialization, including the main.c file. The STM32CubeMX
generated files contain user-dedicated sections allowing to insert user-defined C code.

Caution: C code written within the user sections is preserved at next C code generation, while C code
written outside these sections is overwritten.

User C code will be lost if user sections are moved or if user sections delimiters are
renamed.

UM1718 Rev 31 247/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

11.8 Building and updating the C code project

This example explains how to use the generated initialization C code and complete the
project, within IAR™ EWARM toolchain, to have the LED blink according to the TIM3
frequency.

A folder is available for the toolchains selected for C code generation: the project can be
generated for more than one toolchain by choosing a different toolchain from the Project
Manager menu and clicking Generate code once again.

1. Open the project directly in the IDE toolchain by clicking Open Project from the dialog
window or by double-clicking the relevant IDE file available in the toolchain folder under
STM32CubeMX generated project directory (see Figure 234).

Figure 236. C code generation output: Projects folder

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

248/363 UM1718 Rev 31

2. As an example, select .eww file to load the project in the IAR™ EWARM IDE.

Figure 237. C code generation for EWARM

UM1718 Rev 31 249/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

3. Select the main.c file to open in editor.

Figure 238. STM32CubeMX generated project open in IAR™ IDE

The htim3 structure handler, system clock, GPIO and TIM3 initialization functions are
defined. The initialization functions are called in the main.c. For now the user C code
sections are empty.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

250/363 UM1718 Rev 31

4. In the IAR™ IDE, right-click the project name and select Options.

Figure 239. IAR™ options

5. Click the ST-LINK category and make sure SWD is selected to communicate with the
STM32F4DISCOVERY board. Click OK.

Figure 240. SWD connection

6. Select Project > Rebuild all. Check if the project building has succeeded.

Figure 241. Project building log

UM1718 Rev 31 251/363

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

362

7. Add user C code in the dedicated user sections only.

Note: The main while(1) loop is placed in a user section.

For example:

a) Edit the main.c file.

b) To start timer 3, update User Section 2 with the following C code:

Figure 242. User Section 2

c) Then, add the following C code in User Section 4:

Figure 243. User Section 4

This C code implements the weak callback function defined in the HAL timer driver
(stm32f4xx_hal_tim.h) to toggle the GPIO pin driving the green LED when the
timer counter period has elapsed.

8. Rebuild and program your board using . Make sure the SWD ST-LINK option is
checked as a Project options otherwise board programming will fail.

9. Launch the program using . The green LED on the STM32F4DISCOVERY board
will blink every second.

10. To change the MCU configuration, go back to STM32CubeMX user interface,
implement the changes and regenerate the C code. The project will be updated,
preserving the C code in the user sections if option in
Project Manager’s Code Generator tab is enabled.

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

252/363 UM1718 Rev 31

11.9 Switching to another MCU

STM32CubeMX allows loading a project configuration on an MCU of the same Series.

Proceed as follows:

1. Select File > New Project.

2. Select an MCU belonging to the same Series. As an example, you can select the
STM32F429ZITx that is the core MCU of the 32F429IDISCOVERY board.

3. Select File > Import project. In the Import project window, browse to the .ioc file to
load. A message warns you that the currently selected MCU (STM32F429ZITx) differs
from the one specified in the .ioc file (STM32F407VGTx). Several import options are
proposed (see Figure 244).

4. Click the Try Import button and check the import status to verify if the import has been
successful.

5. Click OK to really import the project. An output tab is then displayed to report the import
results.

6. The green LED on 32F429IDISCOVERY board is connected to PG13: CTRL+ right
click PD12 and drag and drop it on PG13.

7. From Project Manager project tab configure the new project name and folder location.
Click Generate icon to save the project and generate the code.

8. Select Open the project from the dialog window, update the user sections with the
user code, making sure to update the GPIO settings for PG13. Build the project and
flash the board. Launch the program and check that LED blinks once per second.

Figure 244. Import Project menu

UM1718 Rev 31 253/363

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

362

12 Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board

The tutorial consists in creating and writing to a file on the STM32429I-EVAL1 SD card using
the FatFs file system middleware.

To generate a project and run tutorial 2, follow the sequence below:

1. Launch STM32CubeMX.

2. Select File > New Project. The Project window opens.

3. Click the Board Selector Tab to display the list of ST boards.

4. Select EvalBoard as type of Board and STM32F4 as Series to filter down the list.

5. Answer Yes to Initialize all peripherals with their default mode so that the code is
generated only for the peripherals used by the application.

6. Select the STM32429I-EVAL board and click OK. Answer No in the dialog box asking
to initialize all peripherals to their default modes (see Figure 245). The Pinout view is
loaded, matching the MCU pinout configuration on the evaluation board (see
Figure 246).

Figure 245. Board peripheral initialization dialog box

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

254/363 UM1718 Rev 31

Figure 246. Board selection

7. From the Peripheral tree on the left, expand the SDIO peripheral and select the SD 4
bits wide bus (see Figure 247).

Figure 247. SDIO peripheral configuration

UM1718 Rev 31 255/363

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

362

8. Under the Middlewares category, check SD Card as FatFs mode (see Figure 248).

Figure 248. FatFs mode configuration

9. Configure the clocks as follows:

a) Select the RCC peripheral from the Pinout view (see Figure 249).

Figure 249. RCC peripheral configuration

b) Configure the clock tree from the clock tab (see Figure 250).

Figure 250. Clock tree view

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

256/363 UM1718 Rev 31

10. In the Project tab, specify the project name and destination folder. Then, select the
EWARM IDE toolchain.

Figure 251. FATFS tutorial - Project settings

11. Click Ok. Then, on the toolbar menu, click to generate the project.

12. Upon code generation completion, click Open Project in the Code Generation dialog
window (see Figure 252). This opens the project directly in the IDE.

Figure 252. C code generation completion message

UM1718 Rev 31 257/363

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

362

13. In the IDE, check that heap and stack sizes are sufficient: right click the project name
and select Options, then select Linker. Check Override default to use the icf file from
STM32CubeMX generated project folder. if not already done through CubeMX User
interface (under Linker Settings from Project Manager's project tab), adjust the heap
and stack sizes (see Figure 253).

Figure 253. IDE workspace

Note: When using the MDK-Arm toolchain, go to the Application/MDK-ARM folder and
double- click the startup_xx.s file to edit and adjust the heap and stack sizes there.

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

258/363 UM1718 Rev 31

14. Go to the Application/User folder. Double-click the main.c file and edit it.

15. The tutorial consists in creating and writing to a file on the evaluation board SD card
using the FatFs file system middleware:

a) At startup all LEDs are OFF.

b) The red LED is turned ON to indicate that an error occurred (FatFs initialization,
file read/write access errors..).

c) The orange LED is turned ON to indicate that the FatFs link has been successfully
mounted on the SD driver.

d) The blue LED is turned ON to indicate that the file has been successfully written to
the SD Card.

e) The green LED is turned ON to indicate that the file has been successfully read
from file the SD Card.

16. For use case implementation, update main.c with the following code:

a) Insert main.c private variables in a dedicated user code section:

/* USER CODE BEGIN PV */
/* Private variables --*/
FATFS SDFatFs; /* File system object for SD card logical drive */
FIL MyFile; /* File object */
const char wtext[] = "Hello World!";
const uint8_t image1_bmp[] = {
0x42,0x4d,0x36,0x84,0x03,0x00,0x00,0x00,0x00,0x00,0x36,0x00,0x00,0x00,
0x28,0x00,0x00,0x00,0x40,0x01,0x00,0x00,0xf0,0x00,0x00,0x00,0x01,0x00,
0x18,0x00,0x00,0x00,0x00,0x00,0x00,0x84,0x03,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x29,0x74,
0x51,0x0e,0x63,0x30,0x04,0x4c,0x1d,0x0f,0x56,0x25,0x11,0x79,0x41,0x1f,
0x85,0x6f,0x25,0x79,0x7e,0x27,0x72,0x72,0x0b,0x50,0x43,0x00,0x44,0x15,
0x00,0x4b,0x0f,0x00,0x4a,0x15,0x07,0x50,0x16,0x03,0x54,0x22,0x23,0x70,
0x65,0x30,0x82,0x6d,0x0f,0x6c,0x3e,0x22,0x80,0x5d,0x23,0x8b,0x5b,0x26};
/* USER CODE END PV */

b) Insert main functional local variables:
int main(void)
{

 /* USER CODE BEGIN 1 */
 FRESULT res; /* FatFs function common result code */
 uint32_t byteswritten, bytesread; /* File write/read counts */
 char rtext[256]; /* File read buffer */
 /* USER CODE END 1 */

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the
Systick. */
HAL_Init();

c) Insert user code in the main function, after initialization calls and before the while
loop, to perform actual read/write from/to the SD card:

int main(void)

{

UM1718 Rev 31 259/363

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

362

….
MX_FATFS_Init();

 /* USER CODE BEGIN 2 */
/*##-0- Turn all LEDs off(red, green, orange and blue) */
 HAL_GPIO_WritePin(GPIOG, (GPIO_PIN_10 | GPIO_PIN_6 | GPIO_PIN_7 |
GPIO_PIN_12), GPIO_PIN_SET);
/*##-1- FatFS: Link the SD disk I/O driver ##########*/
 if(retSD == 0){

/* success: set the orange LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_7, GPIO_PIN_RESET);
/*##-2- Register the file system object to the FatFs module ###*/
 if(f_mount(&SDFatFs, (TCHAR const*)SD_Path, 0) != FR_OK){
 /* FatFs Initialization Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
/*##-3- Create a FAT file system (format) on the logical drive#*/
 /* WARNING: Formatting the uSD card will delete all content on the
device */
 if(f_mkfs((TCHAR const*)SD_Path, 0, 0) != FR_OK){
 /* FatFs Format Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
/*##-4- Create & Open a new text file object with write access#*/
 if(f_open(&MyFile, "Hello.txt", FA_CREATE_ALWAYS | FA_WRITE) !=
FR_OK){
 /* 'Hello.txt' file Open for write Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-5- Write data to the text file ####################*/
 res = f_write(&MyFile, wtext, sizeof(wtext), (void
*)&byteswritten);
 if((byteswritten == 0) || (res != FR_OK)){
 /* 'Hello.txt' file Write or EOF Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-6- Successful open/write : set the blue LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_12, GPIO_PIN_RESET);
 f_close(&MyFile);
 /*##-7- Open the text file object with read access #*/
 if(f_open(&MyFile, "Hello.txt", FA_READ) != FR_OK){
 /* 'Hello.txt' file Open for read Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /*##-8- Read data from the text file #########*/
 res = f_read(&MyFile, rtext, sizeof(wtext), &bytesread);

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

260/363 UM1718 Rev 31

 if((strcmp(rtext,wtext)!=0)|| (res != FR_OK)){
 /* 'Hello.txt' file Read or EOF Error : set the red LED on */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_10, GPIO_PIN_RESET);
 while(1);
 } else {
 /* Successful read : set the green LED On */
 HAL_GPIO_WritePin(GPIOG, GPIO_PIN_6, GPIO_PIN_RESET);
 /*##-9- Close the open text file ################*/
 f_close(&MyFile);
 }}}}}}}
 /*##-10- Unlink the micro SD disk I/O driver #########*/
 FATFS_UnLinkDriver(SD_Path);

 /* USER CODE END 2 */

 /* Infinite loop */
 /* USER CODE BEGIN WHILE */

 while (1)

UM1718 Rev 31 261/363

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

362

13 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption
and more

13.1 Tutorial overview

This tutorial focuses on STM32CubeMX Power Consumption Calculator (Power
Consumption Calculator) feature and its benefits to evaluate the impacts of power-saving
techniques on a given application sequence.

The key considerations to reduce a given application power consumption are:

• Reducing the operating voltage

• Reducing the time spent in energy consuming modes

It is up to the developer to select a configuration that gives the best compromise
between low-power consumption and performance.

• Maximizing the time spent in non-active and low-power modes

• Using the optimal clock configuration

The core should always operate at relatively good speed, since reducing the operating
frequency can increase energy consumption if the microcontroller has to remain for a
long time in an active operating mode to perform a given operation.

• Enabling only the peripherals relevant for the current application state and clock-gating
the others

• When relevant, using the peripherals with low-power features (e.g. waking up the
microcontroller with the I2C)

• Minimizing the number of state transitions

• Optimizing memory accesses during code execution

– Prefer code execution from RAM to Flash memory

– When relevant, consider aligning CPU frequency with Flash memory operating
frequency for zero wait states.

The following tutorial shows how the STM32CubeMX Power Consumption Calculator
feature can help to tune an application to minimize its power consumption and extend the
battery life.

Note: The Power Consumption Calculator does not account for I/O dynamic current consumption
and external board components that can also affect current consumption. For this purpose,
an “additional consumption” field is provided for the user to specify such consumption value.

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

262/363 UM1718 Rev 31

13.2 Application example description

The application is designed using the NUCLEO-L476RG board based on a
STM32L476RGTx device and supplied by a 2.4 V battery.

The main purpose of this application is to perform ADC measurements and transfer the
conversion results over UART. It uses:

• Multiple low-power modes: Low-power run, Low-power sleep, Sleep, Stop and Standby

• Multiple peripherals: USART, DMA, Timer, COMP, DAC and RTC

– The RTC is used to run a calendar and to wake up the CPU from Standby when a
specified time has elapsed.

– The DMA transfers ADC measurements from ADC to memory

– The USART is used in conjunction with the DMA to send/receive data via the
virtual COM port and to wake up the CPU from Stop mode.

The process to optimize such complex application is to start describing first a functional only
sequence then to introduce, on a step by step basis, the low-power features provided by the
STM32L476RG microcontroller.

13.3 Using the Power Consumption Calculator

13.3.1 Creating a power sequence

Follow the steps below to create the sequence (see Figure 254):

1. Launch STM32CubeMX.

2. Click new project and select the Nucleo-L476RG board from the Board tab.

3. Click the Power Consumption Calculator tab to select the Power Consumption
Calculator view. A first sequence is then created as a reference.

4. Adapt it to minimize the overall current consumption. To do this:

a) Select 2.4 V VDD power supply. This value can be adjusted on a step by step basis
(see Figure 255).

b) Select the Li-MnO2 (CR2032) battery. This step is optional. The battery type can
be changed later on (see Figure 255).

UM1718 Rev 31 263/363

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

362

Figure 254. Power Consumption Calculation example

Figure 255. VDD and battery selection menu

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

264/363 UM1718 Rev 31

5. Enable the Transition checker to ensure the sequence is valid (see Figure 255). This
option allows verifying that the sequence respects the allowed transitions implemented
within the STM32L476RG.

6. Click the Add button to add steps that match the sequence described in Figure 255.

– By default the steps last 1 ms each, except for the wakeup transitions that are
preset using the transition times specified in the product datasheet (see
Figure 256).

– Some peripherals for which consumption is unavailable or negligible are
highlighted with ‘*’ (see Figure 256).

Figure 256. Sequence table

7. Click the Save button to save the sequence as SequenceOne.

The application consumption profile is the generated. It shows that the overall sequence
consumes an average of 2.01 mA for 9 ms, and the battery lifetime is only 4 days (see
Figure 257).

Figure 257. sequence results before optimization

13.3.2 Optimizing application power consumption

Let us now take several actions to optimize the overall consumption and the battery lifetime.
These actions are performed on step 1, 4, 5, 6, 7, 8 and 10.

UM1718 Rev 31 265/363

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

362

The next figures show on the left the original step and on the right the step updated with
several optimization actions.

Step 1 (Run)

• Findings

All peripherals are enabled although the application requires only the RTC.

• Actions

– Lower the operating frequency.

– Enable solely the RTC peripheral.

– To reduce the average current consumption, reduce the time spent in this mode.

• Results

The current is reduced from 9.05 mA to 2.16 mA (see Figure 258).

Figure 258. Step 1 optimization

Step 4 (Run, RTC)

• Action

Reduce the time spent in this mode to 0.1 ms.

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

266/363 UM1718 Rev 31

Step 5 (Run, ADC, DMA, RTC)

• Actions

– Change to Low-power run mode.

– Lower the operating frequency.

• Results

The current consumption is reduced from 6.17 mA to 271 µA (see Figure 259).

Figure 259. Step 5 optimization

UM1718 Rev 31 267/363

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

362

Step 6 (Sleep, DMA, ADC,RTC)

• Actions

– Switch to Lower-power sleep mode (BAM mode)

– Reduce the operating frequency to 2 MHz.

• Results

The current consumption is reduced from 703 µA to 93 µA (see Figure 260).

Figure 260. Step 6 optimization

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

268/363 UM1718 Rev 31

Step 7 (Run, DMA, RTC, USART)

• Actions

– Switch to Lower-power run mode.

– Use the power-efficient LPUART peripheral.

– Reduce the operating frequency to 1 MHz using the interpolation feature.

• Results

The current consumption is reduced from 1.92 µA to 42 µA (see Figure 261).

Figure 261. Step 7 optimization

UM1718 Rev 31 269/363

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

362

Step 8 (Stop 0, USART)

• Actions

– Switch to Stop1 low-power mode.

– Use the power-efficient LPUART peripheral.

• Results

The current consumption is reduced (see Figure 262).

Figure 262. Step 8 optimization

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

270/363 UM1718 Rev 31

Step 10 (RTC, USART)

• Actions

– Use the power-efficient LPUART peripheral.

– Reduce the operating frequency to 1 MHz.

• Results

The current consumption is reduced from 1.89 mA to 234 µA (see Figure 263).

The example given in Figure 264 shows an average current consumption reduction of
155 µA.

Figure 263. Step 10 optimization

See Figure 264 for the sequence overall results: 7 ms duration, about 2 month battery life,
and an average current consumption of 165.25 µA.

Use the compare button to compare the current results to the original ones saved as
SequenceOne.pcs.

Figure 264. Power sequence results after optimizations

UM1718 Rev 31 271/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

14 Tutorial 4 - Example of UART communications with
an STM32L053xx Nucleo board

This tutorial aims at demonstrating how to use STM32CubeMX to create a UART serial
communication application for a NUCLEO-L053R8 board.

A Windows PC is required for the example. The ST-Link USB connector is used both for
serial data communications, and firmware downloading and debugging on the MCU. A
Type-A to mini-B USB cable must be connected between the board and the computer. The
USART2 peripheral uses PA2 and PA3 pins, which are wired to the ST-Link connector. In
addition, USART2 is selected to communicate with the PC via the ST-Link Virtual COM Port.
A serial communication client, such as Tera Term, needs to be installed on the PC to display
the messages received from the board over the virtual communication Port.

14.1 Tutorial overview

Tutorial 4 will take you through the following steps:

1. Selection of the NUCLEO-L053R8 board from the New Project menu.

2. Selection of the required features (debug, USART, timer) from the Pinout view:
peripheral operating modes as well as assignment of relevant signals on pins.

3. Configuration of the MCU clock tree from the Clock Configuration view.

4. Configuration of the peripheral parameters from the Configuration view

5. Configuration of the project settings in the Project Manager menu and generation of
the project (initialization code only).

6. Project update with the user application code corresponding to the UART
communication example.

7. Compilation, and execution of the project on the board.

8. Configuration of Tera Term software as serial communication client on the PC.

9. The results are displayed on the PC.

14.2 Creating a new STM32CubeMX project and
selecting the Nucleo board

To do this, follow the sequence below:

1. Select File > New project from the main menu bar. This opens the New Project
window.

2. Go to the Board selector tab and filter on STM32L0 Series.

3. Select NUCLEO-L053R8 and click OK to load the board within the STM32CubeMX
user interface (see Figure 265).

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

272/363 UM1718 Rev 31

Figure 265. Selecting NUCLEO_L053R8 board

UM1718 Rev 31 273/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

14.3 Selecting the features from the Pinout view

1. Select Debug Serial Wire under SYS (see Figure 266).

Figure 266. Selecting debug pins

2. Select Internal Clock as clock source under TIM2 peripheral (see Figure 267).

Figure 267. Selecting TIM2 clock source

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

274/363 UM1718 Rev 31

3. Select the Asynchronous mode for the USART2 peripheral (see Figure 268).

Figure 268. Selecting asynchronous mode for USART2

4. Check that the signals are properly assigned on pins (see Figure 269):

– SYS_SWDIO on PA13

– TCK on PA14

– USART_TX on PA2

– USART_RX on PA3

Figure 269. Checking pin assignment

UM1718 Rev 31 275/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

14.4 Configuring the MCU clock tree from the Clock Configuration
view

1. Go to the Clock Configuration tab and leave the configuration untouched, in order to
use the MSI as input clock and an HCLK of 2.097 MHz (see Figure 270).

Figure 270. Configuring the MCU clock tree

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

276/363 UM1718 Rev 31

14.5 Configuring the peripheral parameters from the
Configuration view

1. From the Configuration tab, click USART2 to open the peripheral Parameter
Settings window and set the baud rate to 9600. Make sure the Data direction is set to
“Receive and Transmit” (see Figure 271).

2. Click OK to apply the changes and close the window.

Figure 271. Configuring USART2 parameters

UM1718 Rev 31 277/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

3. Click TIM2 and change the prescaler to 16000, the Word Length to 8 bits and the
Counter Period to 1000 (see Figure 272).

Figure 272. Configuring TIM2 parameters

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

278/363 UM1718 Rev 31

4. Enable TIM2 global interrupt from the NVIC Settings tab (see Figure 273).

Figure 273. Enabling TIM2 interrupt

UM1718 Rev 31 279/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

14.6 Configuring the project settings and generating the project

1. In the Project Settings menu, specify the project name, destination folder, and select
the EWARM IDE toolchain (see Figure 274).

Figure 274. Project Settings menu

If the firmware package version is not already available on the user PC, a progress
window opens to show the firmware package download progress.

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

280/363 UM1718 Rev 31

2. In the Code Generator tab, configure the code to be generated as shown in
Figure 275, and click OK to generate the code.

Figure 275. Generating the code

14.7 Updating the project with the user application code

Add the user code as follows:

/* USER CODE BEGIN 0 */

#include "stdio.h"

#include "string.h"

/* Buffer used for transmission and number of transmissions */

char aTxBuffer[1024];

int nbtime=1;

/* USER CODE END 0 */

Within the main function, start the timer event generation function as follows:

/* USER CODE BEGIN 2 */

UM1718 Rev 31 281/363

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

362

 /* Start Timer event generation */

 HAL_TIM_Base_Start_IT(&htim2);

 /* USER CODE END 2 */

/* USER CODE BEGIN 4 */

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){

sprintf(aTxBuffer,"STM32CubeMX rocks %d times \t", ++nbtime);

HAL_UART_Transmit(&huart2,(uint8_t *) aTxBuffer, strlen(aTxBuffer), 5000);

}

/* USER CODE END 4 */

14.8 Compiling and running the project

1. Compile the project within your favorite IDE.

2. Download it to the board.

3. Run the program.

14.9 Configuring Tera Term software as serial communication
client on the PC

1. On the computer, check the virtual communication port used by ST Microelectronics
from the Device Manager window (see Figure 276).

Figure 276. Checking the communication port

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

282/363 UM1718 Rev 31

2. To configure Tera Term to listen to the relevant virtual communication port, adjust the
parameters to match the USART2 parameter configuration on the MCU (see
Figure 277).

Figure 277. Setting Tera Term port parameters

3. The Tera Term window displays a message coming from the board at a period of a few
seconds (see Figure 278).

Figure 278. Setting Tera Term port parameters

UM1718 Rev 31 283/363

UM1718 Tutorial 5: Exporting current project configuration to a compatible MCU

362

15 Tutorial 5: Exporting current project configuration to
a compatible MCU

When List pinout compatible MCUs is selected from the Pinout menu, STM32CubeMX
retrieves the list of the MCUs which are compatible with the current project configuration,
and offers to export the current configuration to the newly selected compatible MCU.

This tutorial shows how to display the list of compatible MCUs and export your current
project configuration to a compatible MCU:

1. Load an existing project, or create and save a new project:

Figure 279. Existing or new project pinout

2. Go to the Pinout menu and select List Pinout Compatible MCUs. The Pinout
compatible window pops up (see Figure 280 and Figure 281).

If needed, modify the search criteria and the filter options and restart the search
process by clicking the Search button.

The color shading and the Comments column indicate the level of matching:

– Exact match: the MCU is fully compatible with the current project (see Figure 281
for an example).

– Partial match with hardware compatibility: the hardware compatibility can be
ensured but some pin names could not be preserved. Hover the mouse over the
desired MCU to display an explanatory tooltip (see Figure 280 for an example).

Tutorial 5: Exporting current project configuration to a compatible MCU UM1718

284/363 UM1718 Rev 31

– Partial match without hardware compatibility: not all signals can be assigned to the
exact same pin location and a remapping will be required. Hover the mouse over
the desired MCU to display an explanatory tooltip (see Figure 281 for an
example).

Figure 280. List of pinout compatible MCUs - Partial match
with hardware compatibility

Figure 281. List of Pinout compatible MCUs - Exact and partial match

UM1718 Rev 31 285/363

UM1718 Tutorial 5: Exporting current project configuration to a compatible MCU

362

3. Then, select an MCU to import the current configuration to, and click OK, Import:

Figure 282. Selecting a compatible MCU and importing the configuration

The configuration is now available for the selected MCU:

Figure 283. Configuration imported to the selected compatible MCU

Tutorial 5: Exporting current project configuration to a compatible MCU UM1718

286/363 UM1718 Rev 31

4. To see the list of compatible MCUs at any time, select Outputs under the Window
menu.

To load the current configuration to another compatible MCU, double-click the list of
compatible MCUs.

5. To remove some constraints on the search criteria, several solutions are possible:

– Select the Ignore Pinning Status checkbox to ignore pin status (locked pins).

– Select the Ignore Power Pins checkbox not to take into account the power pins.

– Select the Ignore System Pins not take into account the system pins. Hover the
mouse over the checkbox to display a tooltip that lists the system pins available on
the current MCU.

UM1718 Rev 31 287/363

UM1718 Tutorial 6 – Adding embedded software packs to user projects

362

16 Tutorial 6 – Adding embedded software packs to user
projects

In this tutorial, the Oryx-Embedded.Middleware.1.7.8. pack is taken as an example to
demonstrate how to a to add pack software components to STM32CubeMX projects. The
use of this package shall not be understood as an STMicroelectronics recommendation.

To add embedded software packs to your project, proceed as follows:

1. Install Oryx-Embedded.Middleware.1.7.8.pack using the .pdsc file available from
http://www.oryx-embedded.com (see Section 3.4.4: Installing embedded software
packs).

2. Select New project.

3. Select STM32F01CCFx from the MCU selector.

4. Select Additional Software from the Pinout & Configuration view to open the
additional software component window and choose the following software components:
Compiler Support, RTOS Port/None and Date Time Helper Routines from the
CycloneCommon bundle (see Section 4.13: Additional software component selection
window).

5. Click OK to display the selected components on the tree view and click the checkbox to
enable the software components for the current project (see Figure 284).

Figure 284. Additional software components enabled for the current project

The pack name highlighted in green indicates that all conditions for the selected
software components resolve to true. If at least one condition is not resolved, the pack
name is highlighted in orange.

Tutorial 6 – Adding embedded software packs to user projects UM1718

288/363 UM1718 Rev 31

6. Check that no parameters can be configured in the Configuration tab (see
Figure 285).

Figure 285. Pack software components - no configurable parameters

7. Select the Project manager project tab to specify project parameters (see Figure 286),
and choose IAR™ EWARM as IDE.

Figure 286. Pack tutorial - project settings

UM1718 Rev 31 289/363

UM1718 Tutorial 6 – Adding embedded software packs to user projects

362

8. Generate your project by clicking . Accept to download the
STM32CubeF4 MCU package if it is not present in STM32Cube repository.

9. Click Open project. The Oryx software components are displayed in the generated
project (see Figure 287).

Figure 287. Generated project with third party pack components

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

290/363 UM1718 Rev 31

17 Tutorial 7 – Using the X-Cube-BLE1 software pack

This tutorial demonstrates how to achieve a functional project using the X-Cube-BLE1
software pack.

Below the prerequisites to run this tutorial:

• Hardware: NUCLEO-L053R8, X-NUCLEO-IDB05A1 and mini-USB cable (see
Figure 288)

• Tools: STM32CubeMX, IDE (Atollic® or any other toolchain supported by
STM32CubeMX)

• Embedded software package: STM32CubeL0 (version 1.10.0 or higher), X-Cube-BLE1
1.1.0 (see Figure 289).

• Mobile application (see Figure 290): STMicroelectronics BlueNRG application for iOS®
or Android™

Figure 288. Hardware prerequisites

UM1718 Rev 31 291/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 289. Embedded software packages

Figure 290. Mobile application

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

292/363 UM1718 Rev 31

Proceed as follows to install and run the tutorial:

1. Check STM32CubeMX Internet connection:

a) Select the Help > Updater settings menu to open the updater window.

b) Verify in the Connection tab that the Internet connection is configured and up.

2. Install the required embedded software packages (see Figure 291):

a) Select the Help > Manage Embedded software packages menu to open the
embedded software package manager window.

b) Click the Refresh button to refresh the list with the latest available package
versions.

c) Select the STM32Cube MCU Package tab and check that the STM32CubeL0
firmware package version 1.10.0 or higher is installed (the checkbox must be
green). Otherwise select the checkbox and click Install now.

d) Select the STMicrolectronics tab and check that the X-Cube-BLE1 software pack
version 1.0.0 is installed (checkbox must be green). Otherwise, select the
checkbox and click Install now.

Figure 291. Installing Embedded software packages

3. Start a new project:

a) Select New Project to open the new project window.

b) Select the Board selector tab.

c) Select Nucleo64 as board type and STM32L0 as MCU Series.

d) Select the NUCLEO-L053R8 from the resulting board list (see Figure 292).

e) Answer No when prompted to initialize all peripherals in their default mode (see
Figure 293).

UM1718 Rev 31 293/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 292. Starting a new project - selecting the NUCLEO-L053R8 board

Figure 293. Starting a new project - initializing all peripherals

4. Add X-Cube-BLE1 components to the project:

a) Click Additional Software from Pinout & Configuration view to open the
Additional Software component Selection window.

b) Select the relevant components (see Figure 294)

The Application group comes with a list of applications: the C files implement the
application loop, that is the Process() function. From the Application group, select
the SensorDemo application.

Select the Controller and Utils components

Select the Basic variant for the HCI_TL component. The Basic variant provides
the STMicroelectronics implementation of the HCI_TL API while the template
option requires the user to implement his own code.

Select the UserBoard variant as HCI_TL_INTERFACE component. Using the
UserBoard option generates the <boardname>_bus.c file, that is
nucleo_l053r8_bus.c for this tutorial, while the template option generates the
custom_bus.c file and requires the user to provide his own implementation.

Refer to the X-Cube-BLE1 pack documentation for more details on software
components.

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

294/363 UM1718 Rev 31

c) Click OK to apply the selection to the project and close the window. The left panel
Additional Software section is updated accordingly.

Figure 294. Selecting X-Cube-BLE1 components

5. Enable peripherals and GPIOs from the Pinout tab (see Figure 295):

a) Configure USART2 in Asynchronous mode.

b) Configure SPI1 in Full-duplex master mode.

c) Left-click the following pins and configure them for the required GPIO settings:

PA0: GPIO_EXTI0

PA1: GPIO_Output

PA8: GPIO_Output

d) Enable Debug Serial Wire under SYS peripheral.

UM1718 Rev 31 295/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 295. Configuring peripherals and GPIOs

6. Configure the peripherals from the Configuration tab:

a) Click the NVIC button under the System section to open the NVIC configuration
window. Enable EXTI line 0 and line 1 interrupts and click OK (see Figure 296).

b) Click the SPI button under the Connectivity section to open the SPI
configuration window. Check that the data size is set to 8 bits and the prescaler
value to 16 so that HCLK divided by the prescaler value is less or equal to 8 MHz.

c) Click USART2 under the Connectivity section to open the Configuration window
and check the following parameter settings:

Under Parameter Settings:

Baud rate: 115200 bits/s

Word length: 8 bits (including parity)

Parity: none

Stop bits: 1

Under GPIO Settings:

User labels: USART_TX and USART_RX

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

296/363 UM1718 Rev 31

Figure 296. Configuring NVIC interrupts

7. Enable and configure X-Cube-BLE1 pack components from the
Pinout & Configuration view:

a) Click the pack items from the left panel to show the mode and configuration tabs.

b) Click the check boxes from the Mode panel to enable X-Cube-BLE1, the
configuration panel appears showing the parameters to configure. An orange
triangle indicates that some parameters are not configured. It turns into a green
check mark once all parameters are correctly configured (see Figure 297).

c) Leave the Parameter Settings Tab unchanged.

d) Go the Platform settings tab, configure the connection with the hardware
resources as indicated in Figure 297 and Table 23.

Check that the icon turns to . Click OK to close the Configuration window.

Table 23. Connection with hardware resources

Name IPs or components Found solutions

BUS IO driver SPI in Full-duplex master mode SPI1

EXTI Line GPIO:EXTI PA0

CS Line GPIO:output PA1

Reset Line GPIO:output PA8

BSP LED GPIO:output PA5

BSP Button GPIO:EXTI PC13

BSP USART USART in Asynchronous mode USART2

UM1718 Rev 31 297/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 297. Enabling X-Cube-BLE1

8. Generate the SensorDemo project:

a) Click to generate the code. The Project settings window
opens if the project has not yet been saved.

b) Click to generate the code once the project settings have
been properly configured (see Figure 298). When the generation is complete, a
dialog window requests to open the project folder (Open Folder) or to open the
project in IDE toolchain (Open Project). Select Open Project (see Figure 299).

c) If .cproject files are associated to Atollic® TrueStudio®, TrueStudio® is
automatically launched by clicking Open Project: from the TrueStudio launch
window, create or select an existing workspace (see Figure 300) and click OK.
STM32CubeMX generated project appears in the TrueStudio® Project explorer
panel (see Figure 301).

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

298/363 UM1718 Rev 31

Figure 298. Configuring the SensorDemo project

Figure 299. Open SensorDemo project in the IDE toolchain

UM1718 Rev 31 299/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 300. Launching the SensorDemo project in Atollic® TrueStudio®

Figure 301. Viewing the SensorDemo project in Atollic® TrueStudio®

Tutorial 7 – Using the X-Cube-BLE1 software pack UM1718

300/363 UM1718 Rev 31

9. Build and Run the SensorDemo application from the Atollic® TrueStudio®:

a) Configure the project properties (see Figure 302)

From the Project explorer panel, right-click the project name (SensorDemo) and
select Properties to open the Properties window.

Select C/C++ Build and enable parallel build from the Behavior tab to speed the
build process up.

b) Click the build icon, , to build the project.

c) Connect your computer to the Nucleo board ST-link connector via the USB cable.

d) Click from the Run menu to run the project on the board.

Figure 302. Configuring the SensorDemo project in Atollic® TrueStudio®

10. Test the STM32 SensorDemo application by launching the BlueNRG application on the
phone:

e) Scan for nearby devices.

f) Select the BlueNRG device.

g) Since there is no MEMs sensing elements on the hardware, press the Blue
Button to simulate MEMs data: the ST cube rotates by a fixed value each time the
button is pressed (see Figure 303).

UM1718 Rev 31 301/363

UM1718 Tutorial 7 – Using the X-Cube-BLE1 software pack

362

Figure 303. Testing the SensorDemo application

FAQ UM1718

302/363 UM1718 Rev 31

18 FAQ

18.1 On the Pinout configuration panel, why does STM32CubeMX
move some functions when I add a new peripheral mode?

You may have deselected . In this case, the tool performs an
automatic remapping to optimize your placement.

18.2 How can I manually force a function remapping?

Use the Manual Remapping feature.

18.3 Why are some pins highlighted in yellow or in light green in
the Pinout view? Why cannot I change the function of some
pins (when I click some pins, nothing happens)?

These pins are specific pins (such as power supply or BOOT) which are not available as
peripheral signals.

18.4 Why do I get the error “Java 7 update 45” when installing
“Java 7 update 45” or a more recent version of the JRE?

The problem generally occurs on 64-bit Windows operating system, when several versions
of Java™ are installed on your computer and the 64-bit Java™ installation is too old.

During STM32CubeMX installation, the computer searches for a 64-bit installation of
Java™.

• If one is found, the ‘Java 7 update 45’ minimum version prerequisite is checked. If the
installed version is older, an error is displayed to request the upgrade.

• If no 64-bit installation is found, STM32CubeMX searches for a 32-bit installation. If one
is found and the version is too old, the ‘Java 7 update 45’ error is displayed. The user
must update the installation to solve the issue.

To avoid this issue from occurring, it is recommended to perform one of the following
actions:

1. Remove all Java™ installations and reinstall only one version (32 or 64 bits) (Java 7
update 45 or more recent).

2. Keep 32-bit and 64-bit installations but make sure that the 64-bit version is at least
Java 7 update 45.

Note: Some users (Java developers for example) may need to check the PC environment
variables defining hard-coded Java paths (e.g. JAVA_HOME or PATH) and update them so
that they point to the latest Java installation.

On Windows 7 you can check the Java installation using the Control Panel. To do this,
double-click the icon from Control Panel\All Control Panel to open the Java™
settings window (see Figure 304).

UM1718 Rev 31 303/363

UM1718 FAQ

362

Figure 304. Java™ Control Panel

You can also enter ‘java –version’ as an MS-DOS command to check the version of your
latest Java installation (the Java program called here is a copy of the program installed
under C:\Windows\System32):

java version “1.7.0_45“

Java (TM) SE Runtime Environment (build 1.7.0_45-b18)

Java HotSpot (TM) 64-Bit Server VM (build 24.45-b08, mixed mode)

18.5 Why does the RTC multiplexer remain inactive on the Clock
tree view?

To enable the RTC multiplexer, the user shall enable the RTC peripheral in the Pinout view
as indicated below.

Figure 305. Pinout view - Enabling the RTC

FAQ UM1718

304/363 UM1718 Rev 31

18.6 How can I select LSE and HSE as clock source and
change the frequency?

The LSE and HSE clocks become active once the RCC is configured as such in the Pinout
view. See Figure 306 for an example.

Figure 306. Pinout view - Enabling LSE and HSE clocks

The clock source frequency can then be edited and the external source selected, see
Figure 307.

Figure 307. Pinout view - Setting LSE/HSE clock frequency

18.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as an output?

STM32CubeMX implements the restriction documented in the reference manuals as a
footnote in table Output Voltage characteristics:

“PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only
sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output
mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and
these I/Os must not be used as a current source (e.g. to drive a LED).”

UM1718 Rev 31 305/363

UM1718 FAQ

362

18.8 Ethernet configuration: why cannot I specify DP83848
or LAN8742A in some cases?

For most Series, STM32CubeMX adjusts the list of possible PHY component drivers
according to the selected Ethernet mode:

• when the Ethernet MII mode is selected the user is able to choose between the
DP83848 component driver or a “User Phy”.

• when the Ethernet RMII mode is selected, the user is able to choose between the
LAN8742A component driver or a “User Phy”.

When “User Phy” is selected, the user must manually include the component drivers to be
used in its project.

Note: For STM32H7 Series, the PHY is seen as an external component and is no longer specified
under the Ethernet peripheral configuration. The user can select the PHY under LwIP
Platform settings tab. However, since the STM32H7 firmware package provides only the
driver code for the LAN8742A component that is available on all STM32H7 evaluation and
Nucleo boards, STM32CubeMX user interface offers only the choice between "User Phy"
and LAN8742.

When LAN8742 is selected, the BSP driver code is copied into the generated project.

STM32CubeMX pin assignment rules UM1718

306/363 UM1718 Rev 31

Appendix A STM32CubeMX pin assignment rules

The following pin assignment rules are implemented in STM32CubeMX:

• Rule 1: Block consistency

• Rule 2: Block inter-dependency

• Rule 3: One block = one peripheral mode

• Rule 4: Block remapping (only for STM32F10x)

• Rule 5: Function remapping

• Rule 6: Block shifting (only for STM32F10x)

• Rule 7: Setting or clearing a peripheral mode

• Rule 8: Mapping a function individually (if Keep Current Placement is unchecked)

• Rule 9: GPIO signals mapping

A.1 Block consistency

When setting a pin signal (provided there is no ambiguity about the corresponding
peripheral mode), all the pins/signals required for this mode are mapped and pins are
shown in green (otherwise the configured pin is shown in orange).

When clearing a pin signal, all the pins/signals required for this mode are unmapped
simultaneously and the pins turn back to gray.

Example of block mapping with a STM32F107x MCU

If the user assigns I2C1_SMBA function to PB5, then STM32CubeMX configures pins and
modes as follows:

• I2C1_SCL and I2C1_SDA signals are mapped to the PB6 and PB7 pins, respectively
(see Figure 308).

• I2C1 peripheral mode is set to SMBus-Alert mode.

UM1718 Rev 31 307/363

UM1718 STM32CubeMX pin assignment rules

362

Figure 308. Block mapping

Example of block remapping with a STM32F107x MCU

If the user assigns GPIO_Output to PB6, STM32CubeMX automatically disables I2C1
SMBus-Alert peripheral mode from the peripheral tree view and updates the other I2C1 pins
(PB5 and PB7) as follows:

• If they are unpinned, the pin configuration is reset (pin grayed out).

• If they are pinned, the peripheral signal assigned to the pins is kept and the pins are
highlighted in orange since they no longer match a peripheral mode (see Figure 309).

STM32CubeMX pin assignment rules UM1718

308/363 UM1718 Rev 31

Figure 309. Block remapping

For STM32CubeMX to find an alternative solution for the I2C peripheral mode, the user will
need to unpin I2C1 pins and select the I2C1 mode from the peripheral tree view (see
Figure 310 and Figure 311).

UM1718 Rev 31 309/363

UM1718 STM32CubeMX pin assignment rules

362

Figure 310. Block remapping - Example 1

Figure 311. Block remapping - Example 2

STM32CubeMX pin assignment rules UM1718

310/363 UM1718 Rev 31

A.2 Block inter-dependency

On the Pinout view, the same signal can appear as an alternate function for multiple pins.
However it can be mapped only once.

As a consequence, for STM32F1 MCUs, two blocks of pins cannot be selected
simultaneously for the same peripheral mode: when a block/signal from a block is selected,
the alternate blocks are cleared.

Example of block remapping of SPI in full-duplex master mode with a
STM32F107x MCU

If SPI1 full-duplex master mode is selected from the tree view, by default the corresponding
SPI signals are assigned to PB3, PB4 and PB5 pins (see Figure 312).

If the user assigns to PA6 the SPI1_MISO function currently assigned to PB4,
STM32CubeMX clears the PB4 pin from the SPI1_MISO function, as well as all the other
pins configured for this block, and moves the corresponding SPI1 functions to the relevant
pins in the same block as the PB4 pin (see Figure 313).

(by pressing CTRL and clicking PB4 to show PA6 alternate function in blue, then drag and
drop the signal to pin PA6)

Figure 312. Block inter-dependency - SPI signals assigned to PB3/4/5

UM1718 Rev 31 311/363

UM1718 STM32CubeMX pin assignment rules

362

Figure 313. Block inter-dependency - SPI1_MISO function assigned to PA6

STM32CubeMX pin assignment rules UM1718

312/363 UM1718 Rev 31

A.3 One block = one peripheral mode

When a block of pins is fully configured in the Pinout view (shown in green), the related
peripheral mode is automatically set in the Peripherals tree.

Example of STM32F107x MCU

Assigning the I2C1_SMBA function to PB5 automatically configures I2C1 peripheral in
SMBus-Alert mode (see Peripheral tree in Figure 314).

Figure 314. One block = one peripheral mode - I2C1_SMBA function assigned to PB5

A.4 Block remapping (STM32F10x only)

To configure a peripheral mode, STM32CubeMX selects a block of pins and assigns each
mode signal to a pin in this block. In doing so, it looks for the first free block to which the
mode can be mapped.

When setting a peripheral mode, if at least one pin in the default block is already used,
STM32CubeMX tries to find an alternate block. If none can be found, it either selects the
functions in a different sequence, or unchecks , and remaps all
the blocks to find a solution.

UM1718 Rev 31 313/363

UM1718 STM32CubeMX pin assignment rules

362

Example

STM32CubeMX remaps USART3 hardware-flow-control mode to the (PD8-PD9-PD11-
PD12) block, because PB14 of USART3 default block is already allocated to the
SPI2_MISO function (see Figure 315).

Figure 315. Block remapping - Example 2

A.5 Function remapping

To configure a peripheral mode, STM32CubeMX assigns each signal of the mode to a pin.
In doing so, it will look for the first free pin the signal can be mapped to.

Example using STM32F415x

When configuring USART3 for the Synchronous mode, STM32CubeMX discovered that the
default PB10 pin for USART3_TX signal was already used by SPI. It thus remapped it to
PD8 (see Figure 316).

Figure 316. Function remapping example

STM32CubeMX pin assignment rules UM1718

314/363 UM1718 Rev 31

A.6 Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked)

If a block cannot be mapped and there are no free alternate solutions, STM32CubeMX tries
to free the pins by remapping all the peripheral modes impacted by the shared pin.

Example

With the Keep current signal placement enabled, if USART3 synchronous mode is set first,
the Asynchronous default block (PB10-PB11) is mapped and Ethernet becomes unavailable
(shown in red) (see Figure 317).

Unchecking allows STM32CubeMX shifting blocks around
and freeing a block for the Ethernet MII mode. (see Figure 318).

Figure 317. Block shifting not applied

UM1718 Rev 31 315/363

UM1718 STM32CubeMX pin assignment rules

362

Figure 318. Block shifting applied

A.7 Setting and clearing a peripheral mode

The Peripherals panel and the Pinout view are linked: when a peripheral mode is set or
cleared, the corresponding pin functions are set or cleared.

A.8 Mapping a function individually

When STM32CubeMX needs a pin that has already been assigned manually to a function
(no peripheral mode set), it can move this function to another pin, only if

 is unchecked and the function is not pinned (no pin icon).

A.9 GPIO signals mapping

I/O signals (GPIO_Input, GPIO_Output, GPIO_Analog) can be assigned to pins either
manually through the Pinout view or automatically through the Pinout menu. Such pins can
no longer be assigned automatically to another signal: STM32CubeMX signal automatic
placement does not take into account this pin anymore since it does not shift I/O signals to
other pins.

The pin can still be manually assigned to another signal or to a reset state.

STM32CubeMX C code generation design choices and limitations UM1718

316/363 UM1718 Rev 31

Appendix B STM32CubeMX C code generation design
choices and limitations

B.1 STM32CubeMX generated C code and user sections

The C code generated by STM32CubeMX provides user sections as illustrated below. They
allow user C code to be inserted and preserved at next C code generation.

User sections shall neither be moved nor renamed. Only the user sections defined by
STM32CubeMX are preserved. User created sections will be ignored and lost at next C
code generation.

 /* USER CODE BEGIN 0 */

(..)

/* USER CODE END 0 */

Note: STM32CubeMX may generate C code in some user sections. It will be up to the user to
clean the parts that may become obsolete in this section. For example, the while(1) loop in
the main function is placed inside a user section as illustrated below:

/* Infinite loop */

 /* USER CODE BEGIN WHILE */

 while (1)

 {

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

 }

/* USER CODE END 3 */

B.2 STM32CubeMX design choices for peripheral initialization

STM32CubeMX generates peripheral _Init functions that can be easily identified thanks to
the MX_ prefix:

static void MX_GPIO_Init(void);

static void MX_<Peripheral Instance Name>_Init(void);

static void MX_I2S2_Init(void);

An MX_<peripheral instance name>_Init function exists for each peripheral instance
selected by the user (e.g, MX_I2S2_Init). It performs the initialization of the relevant handle
structure (e.g, &hi2s2 for I2S second instance) that is required for HAL driver initialization
(e.g., HAL_I2S_Init) and the actual call to this function:

void MX_I2S2_Init(void)

{

 hi2s2.Instance = SPI2;

 hi2s2.Init.Mode = I2S_MODE_MASTER_TX;

 hi2s2.Init.Standard = I2S_STANDARD_PHILLIPS;

 hi2s2.Init.DataFormat = I2S_DATAFORMAT_16B;

 hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;

UM1718 Rev 31 317/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

 hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_192K;

 hi2s2.Init.CPOL = I2S_CPOL_LOW;

 hi2s2.Init.ClockSource = I2S_CLOCK_PLL;

 hi2s2.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_ENABLE;

 HAL_I2S_Init(&hi2s2);

}

By default, the peripheral initialization is done in main.c. If the peripheral is used by a
middleware mode, the peripheral initialization can be done in the middleware corresponding
.c file.

Customized HAL_<Peripheral Name>_MspInit() functions are created in the
stm32f4xx_hal_msp.c file to configure the low-level hardware (GPIO, CLOCK) for the
selected peripherals.

B.3 STM32CubeMX design choices and limitations for
middleware initialization

B.3.1 Overview

STM32CubeMX does not support C user code insertion in Middleware stack native files
although stacks such as LwIP might require it in some use cases.

STM32CubeMX generates middleware Init functions that can be easily identified thanks to
the MX_ prefix:

MX_LWIP_Init(); // defined in lwip.h file

MX_USB_HOST_Init(); // defined in usb_host.h file

MX_FATFS_Init(); // defined in fatfs.h file

Note however the following exceptions:

• No Init function is generated for FreeRTOS unless the user chooses, from the Project
settings window, to generate Init functions as pairs of .c/.h files. Instead, a
StartDefaultTask function is defined in the main.c file and CMSIS-RTOS native function
(osKernelStart) is called in the main function.

• If FreeRTOS is enabled, the Init functions for the other middlewares in use are called
from the StartDefaultTask function in the main.c file.

Example:

void StartDefaultTask(void const * argument)

{

/* init code for FATFS */

MX_FATFS_Init();

/* init code for LWIP */

MX_LWIP_Init();

 /* init code for USB_HOST */

 MX_USB_HOST_Init();

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

 for(;;)

 {

STM32CubeMX C code generation design choices and limitations UM1718

318/363 UM1718 Rev 31

 osDelay(1);

 }

 /* USER CODE END 5 */

}

B.3.2 USB host

USB peripheral initialization is performed within the middleware initialization C code in the
usbh_conf.c file, while USB stack initialization is done within the usb_host.c file.

When using the USB Host middleware, the user is responsible for implementing the
USBH_UserProcess callback function in the generated usb_host.c file.

From STM32CubeMX user interface, the user can select to register one class or all classes
if the application requires switching dynamically between classes.

B.3.3 USB device

USB peripheral initialization is performed within the middleware initialization C code in the
usbd_conf.c file, while USB stack initialization is done within the usb_device.c file.

USB VID, PID and String standard descriptors are configured via STM32CubeMX user
interface and available in the usbd_desc.c generated file. Other standard descriptors
(configuration, interface) are hard-coded in the same file preventing support of USB
composite devices.

When using the USB Device middleware, the user is responsible for implementing the
functions in the usbd_<classname>_if.c class interface file for all device classes (e.g.,
usbd_storage_if.c).

USB MTP and CCID classes are not supported.

B.3.4 FatFs

FatFs is a generic FAT/exFAT file system solution well suited for small embedded systems.

FatFs configuration is available in ffconf.h generated file.

The initialization of the SDIO peripheral for the FatFs SD Card mode and of the FMC
peripheral for the FatFs External SDRAM and External SRAM modes are kept in the main.c
file.

Some files need to be modified by the user to match user board specificities (BSP in
STM32Cube embedded software package can be used as example):

• bsp_driver_sd.c/.h generated files when using FatFs SD Card mode

• bsp_driver_sram.c/.h generated files when using FatFs External SRAM mode

• bsp_driver_sdram.c/.h generated files when using FatFs External SDRAM mode.

Multi-drive FatFs is supported, which means that multiple logical drives can be used by the
application (External SDRAM, External SRAM, SD Card, USB Disk, User defined). However
support of multiple instances of a given logical drive is not available (e.g. FatFs using two
instances of USB hosts or several RAM disks).

NOR and NAND Flash memory are not supported. In this case, the user shall select the
FatFs user-defined mode and update the user_diskio.c driver file generated to implement
the interface between the middleware and the selected peripheral.

UM1718 Rev 31 319/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

B.3.5 FreeRTOS

FreeRTOS is a free real-time embedded operating system well suited for microcontrollers.

FreeRTOS configuration is available in FreeRTOSConfig.h generated file.

When FreeRTOS is enabled, all other selected middleware modes (e.g., LwIP, FatFs, USB)
will be initialized within the same FreeRTOS thread in the main.c file.

When GENERATE_RUN_TIME_STATS, CHECK_FOR_STACK_OVERFLOW,
USE_IDLE_HOOK, USE_TICK_HOOK and USE_MALLOC_FAILED_HOOK parameters
are activated, STM32CubeMX generates freertos.c file with empty functions that the user
shall implement. This is highlighted by the tooltip (see Figure 319).

Figure 319. FreeRTOS HOOK functions to be completed by user

STM32CubeMX C code generation design choices and limitations UM1718

320/363 UM1718 Rev 31

B.3.6 LwIP

LwIP is a small independent implementation of the TCP/IP protocol suite: its reduced RAM
usage makes it suitable for use in embedded systems with tens of Kbytes of free RAM.

LwIP initialization function is defined in lwip.c, while LwIP configuration is available in
lwipopts.h generated file.

STM32CubeMX supports LwIP over Ethernet only. The Ethernet peripheral initialization is
done within the middleware initialization C code.

STM32CubeMX does not support user C code insertion in stack native files. However, some
LwIP use cases require modifying stack native files (e.g., cc.h, mib2.c): user modifications
shall be backed up since they will be lost at next STM32CubeMX generation.

Starting with LwIP release 1.5, STM32CubeMX LwIP supports IPv6 (see Figure 321).

DHCP must be disabled, to configure a static IP address.

Figure 320. LwIP 1.4.1 configuration

UM1718 Rev 31 321/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 321. LwIP 1.5 configuration

STM32CubeMX generated C code will report compilation errors when specific parameters
are enabled (disabled by default). The user must fix the issues with a stack patch
(downloaded from Internet) or user C code. The following parameters generate an error:

• MEM_USE_POOLS: user C code to be added either in lwipopts.h or in cc.h (stack file).

• PPP_SUPPORT, PPPOE_SUPPORT: user C code required

• MEMP_SEPARATE_POOLS with MEMP_OVERFLOW_CHECK > 0: a stack patch
required

• MEM_LIBC_MALLOC & RTOS enabled: stack patch required

• LWIP_EVENT_API: stack patch required

In STM32CubeMX, the user must enable FreeRTOS in order to use LwIP with the netconn
and sockets APIs. These APIs require the use of threads and consequently of an operating
system. Without FreeRTOS, only the LwIP event-driven raw API can be used.

STM32CubeMX C code generation design choices and limitations UM1718

322/363 UM1718 Rev 31

B.3.7 Libjpeg

Libjpeg is a widely used C-library that allows reading and writing JPEG files. It is delivered
within STM32CubeF7, STM32CubeH7, STM32CubeF2 and STM32CubeF4 embedded
software packages.

STM32CubeMX generates the following files, whose content can be configured by the user
through STM32CubeMX user interface:

• libjpeg.c/.h

The MX_LIBJPEG_Init() initialization function is generated within the libjpeg.c file. It is
empty. It is up to the user to enter in the user sections the code and the calls to the
libjpeg functions required for the application.

• jdata_conf.c

This file is generated only when FatFs is selected as data stream management type.

• jdata_conf.h

The content of this file is adjusted according to the datastream management type
selected.

• jconfig.h

This file is generated by STM32CubeMX. but cannot be configured.

• jmorecfg.h

Some but not all the define statements contained in this file can be modified through
the STM32CubeMX libjpeg configuration menu.

UM1718 Rev 31 323/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 322. Libjpeg configuration window

B.3.8 Mbed TLS

Mbed TLS is a C-library that allows including cryptographic capabilities to embedded
products. It handles Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols, that are used for establishing a secure, encrypted and authenticated link between
two parties over an insecure network. Mbed TLS comes with an intuitive API and minimal
coding footprint. Visit https://tls.mbed.org/ for more details.

Mbed TLS is delivered within STM32CubeF2, STM32CubeF4, STM32CubeF7 and
STM32CubeH7 embedded software packages.

Mbed TLS can work without LwIP stack (see Figure 323: Mbed TLS without LwIP).

If LwIP stack is used, FreeRTOS must be enabled as well (see Figure 324: Mbed TLS with
LwIP and FreeRTOS).

STM32CubeMX C code generation design choices and limitations UM1718

324/363 UM1718 Rev 31

STM32CubeMX generates the following files, whose contents can be modified by the user
through STM32CubeMX user interface (see Figure 325: Mbed TLS configuration window)
and/or using user sections in the code itself:

• mbedtls_config.h

• mbedtls.h

• net_sockets.c (generated only if LwIP is enabled)

• mbedtls.c

Figure 323. Mbed TLS without LwIP

UM1718 Rev 31 325/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 324. Mbed TLS with LwIP and FreeRTOS

STM32CubeMX C code generation design choices and limitations UM1718

326/363 UM1718 Rev 31

Figure 325. Mbed TLS configuration window

B.3.9 TouchSensing

The STM32 TouchSensing library is a C-library that allows the creation of higher-end human
interfaces by replacing conventional electromechanical switches by capacitive sensors with
STM32 microcontrollers.

It requires the touch-sensing peripheral to be configured on the microcontroller.

STM32CubeMX generates the following files, whose contents can be modified by the user
through STM32CubeMX user interface (see Figure 326: Enabling the TouchSensing
peripheral, Figure 327: Touch-sensing sensor selection panel and Figure 328:
TouchSensing configuration panel) and/or using user sections in the code itself:

• touchsensing.c/.h

• tsl_user.c/.h

• tsl_conf.h

UM1718 Rev 31 327/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 326. Enabling the TouchSensing peripheral

STM32CubeMX C code generation design choices and limitations UM1718

328/363 UM1718 Rev 31

Figure 327. Touch-sensing sensor selection panel

UM1718 Rev 31 329/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 328. TouchSensing configuration panel

B.3.10 PDM2PCM

The PDM2PCM library is a C-library that allows converting a pulse density modulated
(PDM) data output into a 16-bit pulse-code modulation (PCM) format. It requires the CRC
peripheral to be enabled.

STM32CubeMX generates the following files, whose content can be modified by the user
through STM32CubeMX user interface and/or using user sections in the code itself:

• pdm2pcm.h/.c

STM32CubeMX C code generation design choices and limitations UM1718

330/363 UM1718 Rev 31

B.3.11 STM32WPAN BLE/Thread (STM32WB Series only)

STM32WPAN BLE and Thread middleware are now supported in STM32CubeMX.

Figure 329. BLE and Thread middleware support in STM32CubeMX

They are exclusive in a given project and configuration with FreeRTOS is not yet supported.

UM1718 Rev 31 331/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Application projects generated with STM32CubeMX can be found in the project folder of the
STM32CubeWB MCU package.

Figure 330. STM32CubeWB Package download

STM32CubeMX C code generation design choices and limitations UM1718

332/363 UM1718 Rev 31

This package can be installed through STM32CubeMX following the standard procedure
described in Section 3.4.2: Installing STM32 MCU packages.

Figure 331. STM32CubeWB BLE applications folder

BLE configuration

To enable BLE some peripherals (RTC, HSEM, RF) must be activated first.

Then, an application type must be selected, it can be one among Transparent mode, Server
profile, Router profile or Client profile.

Finally, the mode and other parameters relevant to this application type must be configured.

Note: The BLE Transparent mode and all Thread applications require either the USART or the
LPUART peripheral to be configured as well.

UM1718 Rev 31 333/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 332. BLE Server profile selection

Figure 333. BLE Client profile selection

STM32CubeMX C code generation design choices and limitations UM1718

334/363 UM1718 Rev 31

Thread configuration

To enable Thread some peripherals (RTC, HSEM, RF) must be activated first.

Then, an application type must be selected and the relevant parameters configured.

Figure 334. Thread application selection

B.3.12 OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines)

New software and hardware have been introduced on dual-core products to enable
multi-core cooperation.

• For STM32MP1 Series only: the inter-processor communication controller (IPCC) used
to exchange data between two processor instances relies on the fact that shared
memory buffers are allocated in the MCU SRAM and that each processor owns specific
register bank and interrupts.

• For STM32MP1 Series only: the OpenAMP middleware for intercommunication
between Cortex-A and Cortex-M cores implements the RPMsg messaging protocol
(see Figure 335).

• The resource manager library (RESMGR_UTILITY) for system resource management:
multi-processor devices give the possibility to run independent firmware on several
cores (see Figure 336). This implies a core could use some peripherals without
knowledge of the usage of these same peripherals: the role of the resource
management library is to control the assignment of a peripheral to a dedicated core
and to provide a method to configure the system resources used to operate that
peripheral (see Figure 337).

UM1718 Rev 31 335/363

UM1718 STM32CubeMX C code generation design choices and limitations

362

Figure 335. Enabling OpenAmp for STM32MP1 devices

Figure 336. Enabling the Resource Manager for STM32MP1 devices

STM32CubeMX C code generation design choices and limitations UM1718

336/363 UM1718 Rev 31

Figure 337. Resource Manager: peripheral assignment view

For more details visit STM32MP1 dedicated wiki site at https://wiki.st.com/stm32mpu.

UM1718 Rev 31 337/363

UM1718 STM32 microcontrollers naming conventions

362

Appendix C STM32 microcontrollers naming conventions

STM32 microcontroller part numbers are codified following the below naming conventions:

• Device subfamilies

The higher the number, the more features available.

For example STM32L0 line includes STM32L051, L052, L053, L061, L062, L063
subfamilies where STM32L06x part numbers come with AES while STM32L05x do not.

The last digit indicates the level of features. In the above example:

– 1 = Access line

– 2 = with USB

– 3 = with USB and LCD.

• Pin counts

– F = 20 pins

– G = 28 pins

– K = 32 pins

– T = 36 pins

– S = 44 pins

– C = 48 pins

– R = 64 (or 66) pins)

– M = 80 pins

– O = 90 pins

– V = 100 pins

– Q = 132 pins (e. g. STM32L162QDH6)

– Z = 144 pins

– I = 176 (+25) pins

– B = 208 pins (e. g. STM32F429BIT6)

– N = 216 pins

• Flash memory sizes

– 4 = 16 Kbytes of Flash memory

– 6 = 32 Kbytes of Flash memory

– 8 = 64 Kbytes of Flash memory

– B = 128 Kbytes of Flash memory

– C = 256 Kbytes of Flash memory

– D = 384 Kbytes of Flash memory

– E = 512 Kbytes of Flash memory

– F = 768 Kbytes of Flash memory

– G = 1024 Kbytes of Flash memory

– I = 2048 Kbytes of Flash memory

• Packages

– B = SDIP

– H = BGA

STM32 microcontrollers naming conventions UM1718

338/363 UM1718 Rev 31

– M = SO

– P = TSSOP

– T = LQFP

– U = VFQFPN

– Y = WLCSP

Figure 338 shows an example of STM32 microcontroller part numbering scheme.

Figure 338. STM32 microcontroller part numbering scheme

UM1718 Rev 31 339/363

UM1718 STM32 microcontrollers power consumption parameters

362

Appendix D STM32 microcontrollers power consumption
parameters

This section provides an overview on how to use STM32CubeMX Power Consumption
Calculator.

Microcontroller power consumption depends on chip size, supply voltage, clock frequency
and operating mode. Embedded applications can optimize STM32 MCU power
consumption by reducing the clock frequency when fast processing is not required and
choosing the optimal operating mode and voltage range to run from. A description of STM32
power modes and voltage range is provided below.

D.1 Power modes

STM32 MCUs support different power modes (refer to STM32 MCU datasheets for full
details).

D.1.1 STM32L1 Series

STM32L1 microcontrollers feature up to 6 power modes, including 5 low-power modes:

• Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU
runs up to 32 MHz and the voltage regulator is enabled.

• Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/event occurs.

• Low- power run mode

This mode uses the multispeed internal (MSI) RC oscillator set to the minimum clock
frequency (131 kHz) and the internal regulator in low-power mode. The clock frequency
and the number of enabled peripherals are limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode. The internal voltage regulator is in low-
power mode. The clock frequency and the number of enabled peripherals are limited. A
typical example would be a timer running at 32 kHz.

When the wakeup is triggered by an event or an interrupt, the system returns to the
Run mode with the regulator ON.

• Stop mode

This mode achieves the lowest power consumption while retaining RAM and register
contents. Clocks are stopped. The real-time clock (RTC) an be backed up by using
LSE/LSI at 32 kHz/37 kHz. The number of enabled peripherals is limited. The voltage
regulator is in low-power mode.

The device can be woken up from Stop mode by any of the EXTI lines.

• Standby mode

This mode achieves the lowest power consumption. The internal voltage regulator is
switched off so that the entire VCORE domain is powered off. Clocks are stopped and
the real-time clock (RTC) can be preserved up by using LSE/LSI at 32 kHz/37 kHz.

STM32 microcontrollers power consumption parameters UM1718

340/363 UM1718 Rev 31

RAM and register contents are lost except for the registers in the Standby circuitry. The
number of enabled peripherals is even more limited than in Stop mode.

The device exits Standby mode upon reset, rising edge on one of the three WKUP pins,
or if an RTC event occurs (if the RTC is ON).

Note: When exiting Stop or Standby modes to enter the Run mode, STM32L1 MCUs go through a
state where the MSI oscillator is used as clock source. This transition can have a significant
impact on the global power consumption. For this reason, the Power Consumption
Calculator introduces two transition steps: WU_FROM_STOP and WU_FROM_STANDBY.
During these steps, the clock is automatically configured to MSI.

D.1.2 STM32F4 Series

STM32F4 microcontrollers feature a total of 5 power modes, including 4 low-power modes:

• Run mode

This is the default mode at power-on or after a system reset. It offers the highest
performance using HSE/HSI clock sources. The CPU can run at the maximum
frequency depending on the selected power scale.

• Sleep mode

Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/even occurs. The clock source is the clock that was set before
entering Sleep mode.

• Stop mode

This mode achieves a very low power consumption using the RC oscillator as clock
source. All clocks in the 1.2 V domain are stopped as well as CPU and peripherals.
PLL, HSI RC and HSE crystal oscillators are disabled. The content of registers and
internal SRAM are kept.

The voltage regulator can be put either in normal Main regulator mode (MR) or in Low-
power regulator mode (LPR). Selecting the regulator in low-power regulator mode
increases the wakeup time.

The Flash memory can be put either in Stop mode to achieve a fast wakeup time or in
Deep power-down to obtain a lower consumption with a slow wakeup time.

The Stop mode features two sub-modes:

– Stop in Normal mode (default mode)

In this mode, the 1.2 V domain is preserved in nominal leakage mode and the
minimum V12 voltage is 1.08 V.

– Stop in Under-drive mode

In this mode, the 1.2 V domain is preserved in reduced leakage mode and V12
voltage is less than 1.08 V. The regulator (in Main or Low-power mode) is in
under-drive or low-voltage mode. The Flash memory must be in Deep-power-
down mode. The wakeup time is about 100 µs higher than in normal mode.

• Standby mode

This mode achieves very low power consumption with the RC oscillator as a clock
source. The internal voltage regulator is switched off so that the entire 1.2 V domain is
powered off: CPU and peripherals are stopped. The PLL, the HSI RC and the HSE
crystal oscillators are disabled. SRAM and register contents are lost except for
registers in the backup domain and the 4-byte backup SRAM when selected. Only RTC
and LSE oscillator blocks are powered. The device exits Standby mode when an

UM1718 Rev 31 341/363

UM1718 STM32 microcontrollers power consumption parameters

362

external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC
alarm/ wakeup/ tamper/time stamp event occurs.

• VBAT operation

It allows to significantly reduced power consumption compared to the Standby mode.
This mode is available when the VBAT pin powering the Backup domain is connected to
an optional standby voltage supplied by a battery or by another source. The VBAT
domain is preserved (RTC registers, RTC backup register and backup SRAM) and
RTC and LSE oscillator blocks powered. The main difference compared to the Standby
mode is external interrupts and RTC alarm/events do not exit the device from VBAT
operation. Increasing VDD to reach the minimum threshold does.

D.1.3 STM32L0 Series

STM32L0 microcontrollers feature up to 8 power modes, including 7 low-power modes to
achieve the best compromise between low-power consumption, short startup time and
available wakeup sources:

• Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU can
run up to 32 MHz and the voltage regulator is enabled.

• Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and only the CPU is stopped. All peripherals continue to operate and can wake up the
CPU when an interrupt/event occurs.

• Low-power run mode

This mode uses the internal regulator in low-power mode and the multispeed internal
(MSI) RC oscillator set to the minimum clock frequency (131 kHz). In Low-power run
mode, the clock frequency and the number of enabled peripherals are both limited.

• Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode. Both the clock frequency and the number of enabled peripherals are
limited. Event or interrupt can revert the system to Run mode with regulator on.

• Stop mode with RTC

The Stop mode achieves the lowest power consumption with, while retaining the RAM,
register contents and real time clock. The voltage regulator is in low-power mode. LSE
or LSI is still running. All clocks in the VCORE domain are stopped, the PLL, MSI RC,
HSE crystal and HSI RC oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition. The device can be woken up from Stop mode
by any of the EXTI line, in 3.5 µs, and the processor can serve the interrupt or resume
the code.

• Stop mode without RTC

This mode is identical to “Stop mode with RTC “, except for the RTC clock which is
stopped here.

• Standby mode with RTC

The Standby mode achieves the lowest power consumption with the real time clock
running. The internal voltage regulator is switched off so that the entire VCORE domain

STM32 microcontrollers power consumption parameters UM1718

342/363 UM1718 Rev 31

is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSI is still running.

After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),

RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• Standby mode without RTC

This mode is identical to Standby mode with RTC, except that the RTC, LSE and LSI
clocks are stopped.

The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop
mode.

D.2 Power consumption ranges

STM32 MCUs power consumption can be further optimized thanks to the dynamic voltage
scaling feature: the main internal regulator output voltage V12 that supplies the logic (CPU,
digital peripherals, SRAM and Flash memory) can be adjusted by software by selecting a
power range (STM32L1 and STM32L0) or power scale (STM32 F4).

Power consumption range definitions are provided below (refer to STM32 MCU datasheets
for full details).

D.2.1 STM32L1 Series features three VCORE ranges

• High Performance Range 1 (VDD range limited to 2.0-3.6 V), with the CPU running at
up to 32 MHz

The voltage regulator outputs a 1.8 V voltage (typical) as long as the VDD input voltage
is above 2.0 V. Flash program and erase operations can be performed.

• Medium Performance Range 2 (full VDD range), with a maximum CPU frequency of
16 MHz

At 1.5 V, the Flash memory is still functional but with medium read access time. Flash
program and erase operations are still possible.

• Low Performance Range 3 (full VDD range), with a maximum CPU frequency limited to
4 MHz (generated only with the multispeed internal RC oscillator clock source)

At 1.2 V, the Flash memory is still functional but with slow read access time. Flash
Program and erase operations are no longer available.

UM1718 Rev 31 343/363

UM1718 STM32 microcontrollers power consumption parameters

362

D.2.2 STM32F4 Series features several VCORE scales

The scale can be modified only when the PLL is OFF and when HSI or HSE is selected as
system clock source.

• Scale 1 (V12 voltage range limited to 1.26 - 1.40 V), default mode at reset.

HCLK frequency range = 144 MHz to 168 MHz (180 MHz with over-drive).

This is the default mode at reset.

• Scale 2 (V12 voltage range limited to 1.20 - 1.32 V).

HCLK frequency range is up to 144 MHz (168 MHz with over-drive).

• Scale 3 (V12 voltage range limited to 1.08 - 1.20 V), default mode when exiting Stop
mode.

HCLK frequency ≤120 MHz.

The voltage scaling is adjusted to fHCLK frequency as follows:

• STM32F429x/39x MCUs:

– Scale 1: up to 168 MHz (up to 180 MHz with over-drive)

– Scale 2: from 120 to 144 MHz (up to 168 MHz with over-drive)

– Scale 3: up to 120 MHz.

• STM32F401x MCUs:

No Scale 1

– Scale 2: from 60 to 84 MHz

– Scale 3: up to 60 MHz.

• STM32F40x/41x MCUs:

– Scale 1: up to 168 MHz

– Scale 2: up to 144 MHz

D.2.3 STM32L0 Series features three VCORE ranges

• Range 1 (VDD range limited to 1.71 to 3.6 V), with CPU running at a frequency up to
32 MHz

• Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz

• Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz.

STM32Cube embedded software packages UM1718

344/363 UM1718 Rev 31

Appendix E STM32Cube embedded software packages

Along with STM32CubeMX C code generator, embedded software packages are part of
STM32Cube initiative (refer to DB2164 databrief): these packages include a low-level
hardware abstraction layer (HAL) that covers the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards (see Figure 339). This set
of components is highly portable across the STM32 Series. The packages are fully
compatible with STM32CubeMX generated C code.

Figure 339. STM32Cube Embedded Software package

Note: STM32CubeF0, STM32CubeF1, STM32CubeF2, STM32CubeF3, STM32CubeF4,
STM32CubeL0 and STM32CubeL1 embedded software packages are available on st.com.
They are based on STM32Cube release v1.1 (other Series will be introduced progressively)
and include the embedded software libraries used by STM32CubeMX for initialization C
code generation.

The user should use STM32CubeMX to generate the initialization C code and the examples
provided in the package to get started with STM32 application development.

UM1718 Rev 31 345/363

UM1718 Revision history

362

19 Revision history

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

17-Feb-2014 1 4.1 Initial release.

04-Apr-2014 2 4.2

Added support of STM32CubeF2 and STM32F2 Series in cover
page, Section 2.2: Key features, Section 5.14.1: Peripherals and
Middleware Configuration window, and Appendix E: STM32Cube
embedded software packages.

Updated Section 11.1: Creating a new STM32CubeMX Project,
Section 11.2: Configuring the MCU pinout, Section 11.6: Configuring
the MCU initialization parameters.

Section “Generating GPIO initialization C code move to Section 8:
Tutorial 3- Generating GPIO initialization C code (STM32F1 Series
only) and content updated.

Added Section 18.4: Why do I get the error “Java 7 update 45” when
installing “Java 7 update 45” or a more recent version of the JRE?.

24-Apr-2014 3 4.3

Added support of STM32CubeL0 and STM32L0 Series in cover page,
Section 2.2: Key features, Section 2.3: Rules and limitations and
Section 5.14.1: Peripherals and Middleware Configuration window

Added board selection in Table 13: File menu functions,
Section 5.7.3: Pinout menu and Section 4.2: New Project window.
Updated Table 15: Pinout menu.

Updated Figure 125: Power Consumption Calculator default view and
added battery selection in Section 5.1.1: Building a power
consumption sequence.

Updated note in Section 5.1: Power Consumption Calculator view

Updated Section 11.1: Creating a new STM32CubeMX Project.

Added Section 18.5: Why does the RTC multiplexer remain inactive
on the Clock tree view?, Section 18.6: How can I select LSE and HSE
as clock source and change the frequency?, and Section 18.7: Why
STM32CubeMX does not allow me to configure PC13, PC14, PC15
and PI8 as outputs when one of them is already configured as an
output?.

Revision history UM1718

346/363 UM1718 Rev 31

19-Jun-2014 4 4.4

Added support of STM32CubeF0, STM32CubeF3, STM32F0 and
STM32F3 Series in cover page, Section 2.2: Key features,
Section 2.3: Rules and limitations,

Added board selection capability and pin locking capability in
Section 2.2: Key features, Table 2: Home page shortcuts, Section 4.2:
New Project window, Section 5.7: Toolbar and menus, Section 4.11:
Set unused / Reset used GPIOs windows, Section 4.9: Project
Manager view, and Section 5.15: Pinout view. Added Section 5.15.1:
Pinning and labeling signals on pins.

Updated Section 5.16: Configuration view and Section 4.8: Clock
Configuration view and Section 5.1: Power Consumption Calculator
view.

Updated Figure 37: STM32CubeMX Main window upon MCU
selection, Figure 99: Project Settings window, Figure 124: About
window, Figure 140: STM32CubeMX Pinout view, Figure 120: Chip
view, Figure 125: Power Consumption Calculator default view,
Figure 126: Battery selection, Figure 87: Building a power
consumption sequence, Figure 128: Power consumption sequence:
New Step default view, Figure 135: Power Consumption Calculator
view after sequence building, Figure 136: Sequence table
management functions, Figure 88: PCC Edit Step window, Figure 83:
Power consumption sequence: new step configured (STM32F4
example), Figure 133: ADC selected in Pinout view, Figure 134:
Power Consumption Calculator Step configuration window: ADC
enabled using import pinout, Figure 138: Description of the Results
area, Figure 100: Peripheral power consumption tooltip, Figure 254:
Power Consumption Calculation example, Figure 155: Sequence
table and Figure 156: Power Consumption Calculation results.

Updated Figure 142: STM32CubeMX Configuration view and
Figure 39: STM32CubeMX Configuration view - STM32F1 Series
titles.

Added STM32L1 in Section 5.1: Power Consumption Calculator view.

Removed Figure Add a new step using the PCC panel from
Section 8.1.1: Adding a step. Removed Figure Add a new step to the
sequence from Section 5.1.2: Configuring a step in the power
sequence.

Updated Section 8.2: Reviewing results.

Updated appendix B.3.4: FatFs and Appendix D: STM32
microcontrollers power consumption parameters. Added Appendix
D.1.3: STM32L0 Series and D.2.3: STM32L0 Series features three
VCORE ranges.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 347/363

UM1718 Revision history

362

19-Sep-2014 5 4.5

Added support of STM32CubeL1 Series in cover page, Section 2.2:
Key features, Section 2.3: Rules and limitations,

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added off-line updates in Section 3.4: Getting updates using
STM32CubeMX, modified Figure 8: Embedded Software Packages
Manager window, and Section 3.4.2: Installing STM32 MCU
packages.

Updated Section 4: STM32CubeMX user interface introduction,
Table 2: Home page shortcuts and Section 4.2: New Project window.

Added Figure 31: New Project window - Board selector.

Updated Figure 107: Project Settings code generator.

Modified step 3 in Section 4.9: Project Manager view.

Updated Figure 39: STM32CubeMX Configuration view - STM32F1
Series.

Added STM32L1 in Section 5.14.1: Peripherals and Middleware
Configuration window.

Updated Figure 61: GPIO Configuration window - GPIO selection;
Section 4.4.12: GPIO Configuration window and Figure 66: DMA
MemToMem configuration.

Updated introduction of Section 4.8: Clock Configuration view.
Updated Section 4.8.1: Clock tree configuration functions and
Section 4.8.3: Recommendations, Section 5.1: Power Consumption
Calculator view, Figure 128: Power consumption sequence: New
Step default view, Figure 135: Power Consumption Calculator view
after sequence building, Figure 83: Power consumption sequence:
new step configured (STM32F4 example), and Figure 134: Power
Consumption Calculator Step configuration window: ADC enabled
using import pinout. Added Figure 137: Power Consumption:
Peripherals consumption chart and updated Figure 100: Peripheral
power consumption tooltip. Updated Section 5.1.4: Power sequence
step parameters glossary.

Updated Section 6: STM32CubeMX C Code generation overview.

Updated Section 11.1: Creating a new STM32CubeMX Project and
Section 11.2: Configuring the MCU pinout.

Added Section 12: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and updated Section 8: Tutorial
3- Generating GPIO initialization C code (STM32F1 Series only).

Updated Section 5.1.2: Configuring a step in the power sequence.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

348/363 UM1718 Rev 31

19-Jan-2015 6 4.6

Complete project generation, power consumption calculation and
clock tree configuration now available on all STM32 Series.

Updated Section 2.2: Key features and Section 2.3: Rules and
limitations.

Updated Eclipse IDEs in Section 3.1.3: Software requirements.

Updated Figure 6: Updater Settings window, Figure 8: Embedded
Software Packages Manager window and Figure 31: New Project
window - Board selector, Updated Section 4.9: Project Manager view
and Section 4.12: Update Manager windows.

Updated Figure 124: About window.

Removed Figure STM32CubeMX Configuration view - STM32F1
Series.

Updated Table 17: STM32CubeMX Chip view - Icons and color
scheme.

Updated Section 5.14.1: Peripherals and Middleware Configuration
window.

Updated Figure 64: Adding a new DMA request and Figure 66: DMA
MemToMem configuration.

Updated Section 4.8.1: Clock tree configuration functions.

Updated Figure 126: Battery selection, Figure 87: Building a power
consumption sequence, Figure 88: PCC Edit Step window.

Added Section 6.3: Custom code generation.

Updated Figure 208: Clock tree view and Figure 213: Pinout &
Configuration view.

Updated peripheral configuration sequence and Figure 215: Timer 3
configuration window in Section 11.6.2: Configuring the peripherals.

Removed Tutorial 3: Generating GPIO initialization C code (STM32F1
Series only).

Updated Figure 219: GPIO mode configuration.

Updated Figure 254: Power Consumption Calculation example and
Figure 155: Sequence table.

Updated Appendix A.1: Block consistency, A.2: Block inter-
dependency and A.3: One block = one peripheral mode.

Appendix A.4: Block remapping (STM32F10x only): updated Section :
Example.

Appendix A.6: Block shifting (only for STM32F10x and when “Keep
Current Signals placement” is unchecked): updated Section :
Example

Updated Appendix A.8: Mapping a function individually.

Updated Appendix B.3.1: Overview.

Updated Appendix D.1.3: STM32L0 Series.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 349/363

UM1718 Revision history

362

19-Mar-2015 7 4.7

Section 2.2: Key features: removed Pinout initialization C code
generation for STM32F1 Series from; updated Complete project
generation.

Updated Figure 8: Embedded Software Packages Manager window,
Figure 31: New Project window - Board selector.

Updated IDE list in Section 4.9: Project Manager view and modified
Figure 99: Project Settings window.

Updated Section 4.8.1: Clock tree configuration functions. Updated
Figure 95: STM32F469NIHx clock tree configuration view.

Section 5.1: Power Consumption Calculator view: added transition
checker option. Updated Figure 125: Power Consumption Calculator
default view, Figure 126: Battery selection and Figure 87: Building a
power consumption sequence. Added Figure 129: Enabling the
transition checker option on an already configured sequence - All
transitions valid, Figure 130: Enabling the transition checker option on
an already configured sequence - At least one transition invalid and
Figure 131: Transition checker option - Show log. Updated
Figure 135: Power Consumption Calculator view after sequence
building. Updated Section : Managing sequence steps, Section :
Managing the whole sequence (load, save and compare). Updated
Figure 88: PCC Edit Step window and Figure 138: Description of the
Results area.

Updated Figure 254: Power Consumption Calculation example,
Figure 155: Sequence table, Figure 156: Power Consumption
Calculation results and Figure 158: Power consumption results - IP
consumption chart.

Updated Appendix B.3.1: Overview and B.3.5: FreeRTOS.

28-May-2015 8 4.8
Added Section 3.2.2: Installing STM32CubeMX from command line
and Section 3.3.2: Running STM32CubeMX in command-line mode.

09-Jul-2015 9 4.9

Added STLM32F7 and STM32L4 microcontroller Series.

Added Import project feature. Added Import function in Table 13: File
menu functions. Added Section 4.10: Import Project window. Updated
Figure 128: Power consumption sequence: New Step default view,
Figure 88: PCC Edit Step window, Figure 83: Power consumption
sequence: new step configured (STM32F4 example), Figure 134:
Power Consumption Calculator Step configuration window: ADC
enabled using import pinout and Figure 87: Peripheral power
consumption tooltip.

Updated command line to run STM32CubeMX in Section 3.3.2:
Running STM32CubeMX in command-line mode.
Updated note in Section 5.16: Configuration view.

Added new clock tree configuration functions in Section 4.8.1.

Updated Figure 221: Middleware tooltip.

Modified code example in Appendix B.1: STM32CubeMX generated
C code and user sections.

Updated Appendix B.3.1: Overview.

Updated generated .h files in Appendix B.3.4: FatFs.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

350/363 UM1718 Rev 31

27-Aug-2015 10 4.10

Replace UM1742 by UM1940 in Section : Introduction.

Updated command line to run STM32CubeMX in command-line
mode in Section 3.3.2: Running STM32CubeMX in command-line
mode. Modified Table 1: Command line summary.

Updated board selection in Section 4.2: New Project window.

Updated Section 5.16: Configuration view overview. Updated
Section 5.14.1: Peripherals and Middleware Configuration window,
Section 4.4.12: GPIO Configuration window and Section 4.4.13: DMA
Configuration window. Added Section 4.4.11: User Constants
configuration window.

Updated Section 4.8: Clock Configuration view and added reserve
path.

Updated Section 11.1: Creating a new STM32CubeMX Project,
Section 11.5: Configuring the MCU clock tree, Section 11.6:
Configuring the MCU initialization parameters, Section 11.7.2:
Downloading firmware package and generating the C code,
Section 11.8: Building and updating the C code project. Added
Section 11.9: Switching to another MCU.

Updated Section 12: Tutorial 2 - Example of FatFs on an SD card
using STM32429I-EVAL evaluation board and replaced STM32F429I-
EVAL by STM32429I-EVAL.

16-Oct-2015 11 4.11

Updated Figure 8: Embedded Software Packages Manager window
and Section 3.4.6: Checking for updates.

Character string constant supported in Section 4.4.11: User
Constants configuration window.

Updated Section 4.8: Clock Configuration view.

Updated Section 5.1: Power Consumption Calculator view.

Modified Figure 254: Power Consumption Calculation example.

Updated Section 13: Tutorial 3 - Using the Power Consumption
Calculator to optimize the embedded application consumption and
more.

Added Eclipse Mars in Section 3.1.3: Software requirements

03-Dec-2015 12 4.12

Code generation options now supported by the Project settings
menu.

Updated Section 3.1.3: Software requirements.

Added project settings in Section 4.10: Import Project window.
Updated Figure 112: Automatic project import; modified Manual
project import step and updated Figure 113: Manual project import
and Figure 114: Import Project menu - Try import with errors; modified
third step of the import sequence.

Updated Figure 83: Clock Tree configuration view with errors.

Added mxconstants.h in Section 6.1: STM32Cube code generation
using only HAL drivers (default mode).

Updated Figure 254: Power Consumption Calculation example to
Figure 263: Step 10 optimization.

Updated Figure 264: Power sequence results after optimizations.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 351/363

UM1718 Revision history

362

03-Feb-2016 13 4.13

Updated Section 2.2: Key features:

– Information related to .ioc files.

– Clock tree configuration

– Automatic updates of STM32CubeMX and STM32Cube.

Updated limitation related to STM32CubeMX C code generation in
Section 2.3: Rules and limitations.

Added Linux in Section 3.1.1: Supported operating systems and
architectures. Updated Java Run Time Environment release number
in Section 3.1.3: Software requirements.

Updated Section 3.2.1: Installing STM32CubeMX standalone version,
Section 3.2.3: Uninstalling STM32CubeMX standalone version and
Section 3.3.1: Downloading STM32CubeMX plug-in installation
package.

Updated Section 3.3.1: Running STM32CubeMX as standalone
application.

Updated Section 4.9: Project Manager view and Section 4.12: Update
Manager windows.

Updated Section 5.15.1: Pinning and labeling signals on pins.

Added Section 4.4.16: Setting HAL timebase source

Updated Figure 143: Configuration window tabs for GPIO, DMA and
NVIC settings (STM32F4 Series).

Added note related to GPIO configuration in output mode in
Section 4.4.12: GPIO Configuration window; updated Figure 61:
GPIO Configuration window - GPIO selection.

Modified Figure 125: Power Consumption Calculator default view,
Figure 86: Building a power consumption sequence, Figure 127: Step
management functions, Figure 129: Enabling the transition checker
option on an already configured sequence - All transitions valid,
Figure 130: Enabling the transition checker option on an already
configured sequence - At least one transition invalid.

Added import pinout button icon in Section : Importing pinout.

Added Section : Selecting/deselecting all peripherals. Modified
Figure 135: Power Consumption Calculator view after sequence
building. Updated Section : Managing the whole sequence (load,
save and compare). Updated Figure 138: Description of the Results
area and Figure 100: Peripheral power consumption tooltip.

Updated Figure 254: Power Consumption Calculation example and
Figure 256: Sequence table.

Updated Section 6.3: Custom code generation.

Updated Figure 200: Pinout view with MCUs selection and
Figure 201: Pinout view without MCUs selection window in
Section 11.1: Creating a new STM32CubeMX Project.

Updated Section 11.6.2: Configuring the peripherals.

Updated Figure 226: Project Settings and toolchain selection and
Figure 227: Project Manager menu - Code Generator tab in
Section 11.7.1: Setting project options, and Figure 228: Missing
firmware package warning message in Section 11.7.2: Downloading
firmware package and generating the C code.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

352/363 UM1718 Rev 31

15-Mar-2016 14 4.14

Upgraded STM32CubeMX released number to 4.14.0.

Added import of previously saved projects and generation of user files
from templates in Section 2.2: Key features.

Added MacOS in Section 3.1.1: Supported operating systems and
architectures, Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added command lines allowing the generation of user files from
templates in Section 3.3.2: Running STM32CubeMX in command-line
mode.

Updated new library installation sequence in Section 3.4.1: Updater
configuration.

Updated Figure 107: Pinout menus (Pinout tab selected) and
Figure 108: Pinout menus (Pinout tab not selected) in Section 5.7.3:
Pinout menu.

Modified Table 16: Window menu.

Updated Section 5.7: Output windows.

Updated Figure 99: Project Settings window and Section 4.9.1:
Project tab.

Updated Figure 79: NVIC settings when using SysTick as HAL
timebase, no FreeRTOS and Figure 80: NVIC settings when using
FreeRTOS and SysTick as HAL timebase in Section 4.4.16: Setting
HAL timebase source.

Updated Figure 52: User Constants tab and Figure 53: Extract of the
generated main.h file in Section 4.4.11: User Constants configuration
window.

Section 4.4.12: GPIO Configuration window: updated Figure 61:
GPIO Configuration window - GPIO selection, Figure 62: GPIO
configuration grouped by peripheral and Figure 63: Multiple Pins
Configuration.

Updated Section 4.4.14: NVIC Configuration window.

18-May-2016 15 4.15

Import project function is no more limited to MCUs of the same Series
(see Section 2.2: Key features, Section 5.7.1: File menu and
Section 4.10: Import Project window).

Updated command lines in Section 3.3.2: Running STM32CubeMX in
command-line mode.

Table 1: Command line summary: modified all examples related to
config comands as well as set dest_path <path> example.

Added caution note for Load Project menu in Table 13: File menu
functions.

Updated Generate Code menu description in Table 14: Project menu.

Updated Set unused GPIOs menu in Table 15: Pinout menu.

Added case where FreeRTOS in enabled in Section : Enabling
interruptions using the NVIC tab view.

Added Section 4.4.15: FreeRTOS configuration panel.

Updated Appendix B.3.5: FreeRTOS and B.3.6: LwIP.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 353/363

UM1718 Revision history

362

23-Sep-2016 16 4.17

Replaced mxconstants.h by main.h in the whole document.

Updated Introduction, Section 3.1.1: Supported operating systems
and architectures and Section 3.1.3: Software requirements.

Added Section 3.4.3: Installing STM32 MCU package patches.

Updated Load project description in Table 2: Home page shortcuts.

Updated Clear Pinouts function in Table 15: Pinout menu.

Updated Section 4.9.3: Advanced Settings tab to add Low Layer
driver.

Added No check and Decimal and hexadecimal check options in
Table 17: Peripheral and Middleware Configuration window buttons
and tooltips.

Updated Section : Tasks and Queues Tab and Figure 76: FreeRTOS
Heap usage.

Updated Figure 61: GPIO Configuration window - GPIO selection.

Replaced PCC by Power Consumption Calculator in the whole
document.

Added Section 6.2: STM32Cube code generation using Low Layer
drivers; updated Table 20: LL versus HAL: STM32CubeMX generated
source files and Table 21: LL versus HAL: STM32CubeMX generated
functions and function calls.

Updated Figure 305: Pinout view - Enabling the RTC.

Added Section 14: Tutorial 4 - Example of UART communications
with an STM32L053xx Nucleo board.

Added correspondence between STM32CubeMX release number
and document revision.

21-Nov-2016 17 4.18

Removed Windows XP and added Windows 10 in Section 3.1.3:
Software requirements.

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added setDriver command line in Table 1: Command line summary.

Added List pinout compatible MCUs feature:

– Updated Table 15: Pinout menu.

– Added Section 15: Tutorial 5: Exporting current project
configuration to a compatible MCU

Added Firmware location selection option in Section 4.9.1: Project tab
and Figure 99: Project Settings window.

Added Restore Default feature:

– Updated Table 8: Peripheral and Middleware Configuration window
buttons and tooltips

– Updated Figure 54: Using constants for peripheral parameter
settings.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

354/363 UM1718 Rev 31

12-Jan-2017 18 4.19

Project import no more limited to microcontrollers belonging to the
same Series: updated Introduction, Figure 112: Automatic project
import, Figure 113: Manual project import, Figure 114: Import Project
menu - Try import with errors and Figure 115: Import Project menu -
Successful import after adjustments.

Modified Appendix B.3.4: FatFs, B.3.5: FreeRTOS and B.3.6: LwIP.
Added Appendix B.3.7: Libjpeg.

02-Mar-2017 19 4.20

Table 17: STM32CubeMX Chip view - Icons and color scheme:

– Updated list of alternate function example.

– Updated example and description corresponding to function
mapping on a pin.

– Added example and description for analog signals sharing the
same pin.

Updated Figure 87: Peripheral Configuration window (STM32F4
Series), Figure 52: User Constants tab, Figure 58: Deleting a user
constant used for peripheral configuration - Consequence on
peripheral configuration, Figure 59: Searching for a name in a user
constant list and Figure 60: Searching for a value in a user constant
list.

Added Section 5.1.6: SMPS feature.

Added Section 6.4: Additional settings for C project generation.

Added STM32CubeF4 to the list of packages that include Libjpeg in
Appendix B.3.7: Libjpeg.

05-May-2017 20 4.21

Minor modifications in Section 1: STM32Cube overview.

Updated Figure 26: New Project window - MCU selector and
Figure 99: Project Settings window.

Updated description of Project settings in Section 4.9.1: Project tab.

Updated Figure 110: Advanced Settings window.

In Appendix B.3.7: Libjpeg, added STM32CubeF2 and
STM32CubeH7 in the list of software packages in which Libjpeg is
embedded.

Modified Figure 339: STM32Cube Embedded Software package look-
and-feel.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 355/363

UM1718 Revision history

362

06-Jul-2017 21 4.22

Added STM32H7 to the list of supported STM32 Series.

Added MCU data and documentation refresh capability in Section 3.4:
Getting updates using STM32CubeMX and updated Figure 6:
Updater Settings window.

Added capability to identify close MCUs in Section 4.2: New Project
window, updated Figure 26: New Project window - MCU selector,
added Figure 29: New Project window - MCU list with close function
and Figure 30: New Project window - List showing close MCUs.,
updated Figure 199: MCU selection.

Updated Figure 37: STM32CubeMX Main window upon MCU
selection.

Added Rotate clockwise/Counter clockwise and Top/Bottom view in
Table 15: Pinout menu.

Added Section 4.1.4: Social links.

Updated Figure 146: Configuring the SMPS mode for each step.

Updated Section 6.2: STM32Cube code generation using Low Layer
drivers.

Updated Figure 226: Project Settings and toolchain selection.

05-Sep-2017 22 4.22.1

Added STM32L4+ Series in Introduction, Section 5.1: Power
Consumption Calculator view and Section 6.2: STM32Cube code
generation using Low Layer drivers.

Added guidelines to run STM32CubeMX on MacOS in Section 3.3.1:
Running STM32CubeMX as standalone application. Removed
MacOS from Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added Section 18.8: Ethernet configuration: why cannot I specify
DP83848 or LAN8742A in some cases?

18-Oct-2017 23 4.23

Added Section 1: General information.

Renamed Display close button into Display similar items in
Section 4.2: New Project window.

Added Refresh Data and Docs & Resources menus in
Section 5.7.5: Help menu.

Added STM32F2, STM32F4 and STM32F7 Series in Section 6.2:
STM32Cube code generation using Low Layer drivers.

Added Appendix B.3.8: Mbed TLS.

Updated STM32CubeMX release number corresponding to user
manual revision 22.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

356/363 UM1718 Rev 31

16-Jan-2018 24 4.24

Replaced “STM32Cube firmware package” by “STM32Cube MCU
package”.

Updated Section 1: STM32Cube overview.

Updated MacOS in Section 3.1.1: Supported operating systems and
architectures. Updated Eclipse requirements in Section 3.1.3:
Software requirements.

Section 3.4: Getting updates using STM32CubeMX:

– updated section introduction

– updated Figure 13: Connection Parameters tab - No proxy

– Section 3.4.2 renamed into “Installing STM32 MCU packages” and
updated.

– renamed Section 3.4.3 into “Installing STM32 MCU package
patches”

– added Section 3.4.4: Installing embedded software packs

– updated Section 3.4.6: Checking for updates

Updated Figure 31: New Project window - Board selector.

Updated Figure 38: STM32CubeMX Main window upon board
selection (peripherals not initialized) and introductory sentence.

Updated Figure 39: STM32CubeMX Main window upon board
selection (peripherals initialized with default configuration) and
introductory sentence.

Added “Select additional software components” menu in Table 14:
Project menu.

“Install new libraries” menu renamed “Manage embedded software
packages” and corresponding description updated in Table 17: Help
menu.

Updated Section 3.4.5: Removing already installed embedded
software packages.

Updated Section 4.12: Update Manager windows

Added Section 4.13: Additional software component selection
window.

Added pin stacking function in Table 17: STM32CubeMX Chip view -
Icons and color scheme.

Section 6.2: STM32Cube code generation using Low Layer drivers:
added STM32F0, STM32F3, STM32L0 in the list of product Series
supporting low-level drivers.

Section 12: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board: updated Figure 246: Board
selection and modified step 6 of the sequence for generating a project
and running tutorial 2.

Section 14: Tutorial 4 - Example of UART communications with an
STM32L053xx Nucleo board: updated Figure 265: Selecting
NUCLEO_L053R8 board.

Added Section 16: Tutorial 6 – Adding embedded software packs to
user projects.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 357/363

UM1718 Revision history

362

16-Jan-2018
24

(cont’d)
4.24

Added Appendix B.3.9: TouchSensing and B.3.10: PDM2PCM.

Section 4.4.14: NVIC Configuration window/Default initialization
sequence of interrupts: changed color corresponding to interrupt
enabling code from green to black bold.

07-Mar-2018 25 4.25

Updated Introduction, Section 1: STM32Cube overview, Section 2.3:
Rules and limitations, Section 3.2.1: Installing STM32CubeMX
standalone version, Section 4: STM32CubeMX user interface,
Section 4.9.1: Project tab and Section 5.13.1: Peripheral and
Middleware tree panel.

Minor text edits across the whole document.

Updated Table 13: File menu functions and Table 12: Relations
between power over-drive and HCLK frequency.

Updated Figure 26: New Project window - MCU selector, Figure 27:
Enabling graphics choice in MCU selector, Figure 99: Project Settings
window, Figure 104: Selecting a different firmware location,
Figure 77: Enabling STemWin framework, Figure 116: Configuration
view for Graphics, Figure 306: Pinout view - Enabling LSE and HSE
clocks and Figure 307: Pinout view - Setting LSE/HSE clock
frequency.

Added Export to Excel feature, Show favorite MCUs feature and
Section 4.4.16: Graphics frameworks and simulator.

Added Section 17: Tutorial 8 – Using STemWin Graphics framework,
Section 18: Tutorial 9: Using STM32CubeMX Graphics simulator and
their subsections.

Added Section B.3.11: Graphics.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

358/363 UM1718 Rev 31

05-Sep-2018 26 4.27

Updated STM32Cube logo on cover page.

Replaced STMCube™ by STM32Cube™ in the whole document.
Updated Section 1: STM32Cube overview.

Updated Figure 1: Overview of STM32CubeMX C code generation
flow.

Updated Section 2.2: Key features to add new features: graphic
simulator feature, Support of embedded software packages in
CMSIS-Pack format and Contextual Help.

Changed Section 3.4 title into “Getting updates using
STM32CubeMX”. Suppressed figures Connection Parameters tab -
No proxy and Connection Parameters tab - Use System proxy
parameters. Updated Figure 9: Managing embedded software
packages - Help menu.

In Section 3.4.4: Installing embedded software packs, updated step 3f
of the embedded software pack installation sequence and added
Figure 14: License agreement acceptance.

Section 4.2: New Project window: updated Figure 26: New Project
window - MCU selector, Figure 28: Marking an MCU as favorite and
Figure 31: New Project window - Board selector.

Section 5.7.1: File menu: added caution note for New Project in
Table 13: File menu functions. Updated Figure 107: Pinout menus
(Pinout tab selected) and Figure 108: Pinout menus (Pinout tab not
selected).

Section 4.9: Project Manager view:

– Added note related to project saving (step 3).

– Updated Figure 99: Project Settings window

– Updated Section 4.9.1: Project tab and Figure 104: Selecting a
different firmware location.

Added Section 4.13.4: Component dependencies panel, Contextual
help, Section 10: Support of additional software components using
CMSIS-Pack standard and Section 17: Tutorial 7 – Using the X-Cube-
BLE1 software pack.

12-Nov-2018 27 4.28

Updated Section 3.4.2: Installing STM32 MCU packages,
Section 3.4.4: Installing embedded software packs, Section 3.4.5:
Removing already installed embedded software packages,
Section 3.4.6: Checking for updates and the figures in it.

Updated Section 4: STM32CubeMX user interface, its subsections
and the figures and the tables in them.

Updated Section 10: Support of additional software components
using CMSIS-Pack standard, sections 11.6.1 to 11.6.5,
Section 11.7.1: Setting project options, Section 11.7.2: Downloading
firmware package and generating the C code, Section 11.8: Building
and updating the C code project, Section 11.9: Switching to another
MCU, Section 12: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and the figures in it, Section 15:
Tutorial 5: Exporting current project configuration to a compatible
MCU and the figures in it, Section 16: Tutorial 6 – Adding embedded
software packs to user projects and Section 17: Tutorial 7 – Using the
X-Cube-BLE1 software pack.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 359/363

UM1718 Revision history

362

12-Nov-2018
27

(cont’d)
5.0

Added Section 19: Tutorial 10: Using ST-TouchGFX framework and
its subsections.

Updated Table 21: LL versus HAL: STM32CubeMX generated
functions and function calls.

Removed former Figure 164: Enabling and configuring a CMSIS-
Pack software component, Figure 192: FatFs peripheral instances,
Figure 213: Project Import status, Figure 254: Saving software
component selection as user preferences and Figure 268:
Configuring X-Cube-BLE1.

Updated Figure 1: Overview of STM32CubeMX C code generation
flow, Figure 3: STM32Cube Installation Wizard, Figure 7: Closing
STM32CubeMX perspective, Figure 9: Opening Eclipse plug-in,
Figure 10: STM32CubeMX perspective, Figure 139: Overall
peripheral consumption, Figure 170: User constant generating define
statements, Figure 196: Selecting a CMSIS-Pack software
component, Figure 197: Enabling and configuring a CMSIS-Pack
software component, Figure 198: Project generated with CMSIS-
Pack software component, Figure 199: MCU selection, Figure 200:
Pinout view with MCUs selection, Figure 201: Pinout view without
MCUs selection window, Figure 203: Timer configuration, Figure 204:
Simple pinout configuration, Figure 205: Save Project As window,
Figure 206: Generate Project Report - New project creation,
Figure 207: Generate Project Report - Project successfully created,
Figure 208: Clock tree view, Figure 213: Pinout & Configuration view,
Figure 214: Case of Peripheral and Middleware without configuration
parameters, Figure 215: Timer 3 configuration window, Figure 216:
Timer 3 configuration, Figure 217: Enabling Timer 3 interrupt,
Figure 218: GPIO configuration color scheme and tooltip, Figure 219:
GPIO mode configuration, Figure 220: DMA parameters configuration
window, Figure 221: Middleware tooltip, Figure 222: USB Host
configuration, Figure 222: USB Host configuration, Figure 223: FatFs
over USB mode enabled, Figure 224: System view with FatFs and
USB enabled, Figure 225: FatFs define statements, Figure 226:
Project Settings and toolchain selection, Figure 227: Project Manager
menu - Code Generator tab, Figure 228: Missing firmware package
warning message, Figure 230: Updater settings for download,
Figure 231: Updater settings with connection, Figure 232:
Downloading the firmware package, Figure 233: Unzipping the
firmware package, Figure 234: C code generation completion
message, Figure 244: Import Project menu, Figure 274: Project
Settings menu, Figure 284: Additional software components enabled
for the current project, Figure 285: Pack software components - no
configurable parameters, Figure 286: Pack tutorial - project settings,
Figure 289: Embedded software packages, Figure 291: Installing
Embedded software packages, Figure 292: Starting a new project -
selecting the NUCLEO-L053R8 board, Figure 293: Starting a new
project - initializing all peripherals, Figure 294: Selecting X-Cube-
BLE1 components, Figure 295: Configuring peripherals and GPIOs,
Figure 296: Configuring NVIC interrupts, Figure 297: Enabling X-
Cube-BLE1, Figure 297: Enabling X-Cube-BLE1, Figure 298:
Configuring the SensorDemo project and Figure 312: Graphics
simulator user interface.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

360/363 UM1718 Rev 31

19-Feb-2019 28 5.0

Updated Introduction, Section 1: STM32Cube overview, Section 2.2:
Key features, Section 3.1.3: Software requirements, Section 3.4.2:
Installing STM32 MCU packages, Section 4: STM32CubeMX user
interface, Resolving pin conflicts, Section 4.4.10: Component
Configuration panel, Section 4.8: Clock Configuration view,
Section 4.9: Project Manager view, Section 4.9.1: Project tab,
Section 4.9.3: Advanced Settings tab, Using the transition checker,
Section 9.2: STM32CubeMX Device tree generation, Section 6.3.2:
Saving and selecting user templates, .extSettings file example and
generated outcomes and Section 11.6.4: Configuring the DMAs.

Added Section 4.5: Pinout & Configuration view for STM32MP1
Series, Section 4.5.2: Boot stages configuration, Section 5:
STM32CubeMX tools, Section 9: Device tree generation (STM32MP1
Series only), Section B.3.11: STM32WPAN BLE/Thread (STM32WB
Series only), Section B.3.12: OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines) and their
subsections.

Removed former Section 1: General information.

Updated Table 2: Home page shortcuts, Table 5: Component list,
mode icons and color schemes, Table 6: Pinout menu and shortcuts
and title of Table 9: Clock configuration view widgets.

Updated Figure 99: Project Settings window, Figure 100: Project
folder, Figure 104: Selecting a different firmware location, Figure 112:
Automatic project import, Figure 113: Manual project import,
Figure 114: Import Project menu - Try import with errors, Figure 115:
Import Project menu - Successful import after adjustments,
Figure 116: Set unused pins window, Figure 117: Reset used pins
window, Figure 124: About window, Figure 191: STM32CubeMX
generated DTS – Extract 3, Figure 196: Selecting a CMSIS-Pack
software component, Figure 197: Enabling and configuring a CMSIS-
Pack software component, Figure 251: FATFS tutorial - Project
settings and Figure 252: C code generation completion message.

16-Apr-2019 29 5.1

Updated Introduction. Section 3.1.3: Software requirements,
Section 4.2: New Project window, MCU close selector feature,
External clock sources, Importing pinout, Selecting/deselecting all
peripherals, Section 4.5: Pinout & Configuration view for STM32MP1
Series, Section 4.13: Additional software component selection
window, Section 5.2.1: DDR configuration, Section 6.2: STM32Cube
code generation using Low Layer drivers, BLE configuration and
Section B.3.12: OpenAmp and RESMGR_UTILITY (STM32MP1
Series and STM32H7 dual-core product lines).

Added Section 4.2.1: MCU selector, Section 4.2.2: Board selector,
Section 4.2.3: Cross selector, Section 4.6: Pinout & Configuration
view for STM32H7 dual-core product lines, Section 5.1.8: Example
feature (STM32MP1 and STM32H7 dual-core only) and Section 7:
Code generation for dual-core MCUs (STM32H7 dual-core product
lines only).

Removed former Section 3.3: Installing STM32CubeMX plug-in
version and its subsections, and former Section 3.4.3: Running
STM32CubeMX plug-in from Eclipse IDE.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 361/363

UM1718 Revision history

362

16-Apr-2019
29

(cont’d)
5.1

Updated Table 3: Window menu.

Updated figures 27 to 31, Figure 110: Advanced Settings window,
figures 125 to 132, 134 to 137 and 139 to 148, Figure 226: Project
Settings and toolchain selection and figures 254 to 264,

Added Figure 24: New Project window shortcuts, Figure 83:
STM32MP1 Series: assignment options for GPIOs, Figure 337:
Resource Manager: peripheral assignment view and Figure 339:
STM32Cube Embedded Software package.

01-Oct-2019 30 5.2

Updated Introduction. Section 2.2: Key features, Section 3.3.2:
Running STM32CubeMX in command-line mode, Part number
selection, Section 4.13: Additional software component selection
window, Section 4.13.1: Introduction on software components,
Section 4.13.2: Filter panel, Section 4.13.3: Packs panel,
Section 4.13.4: Component dependencies panel, Section 4.13.6:
Updating the tree view for additional software components,
Section 5.1: Power Consumption Calculator view and Section 6.2:
STM32Cube code generation using Low Layer drivers.

Updated Table 1: Command line summary, Table 6: Pinout menu and
shortcuts, Table 16: Additional Software window – Packs panel icons
and Table 17: Component dependencies panel contextual help.

Updated Figure 20: STM32CubeMX Home page, Figure 122:
Selection of additional software components, Figure 123: Additional
software components - Updated tree view, Figure 196: Selecting a
CMSIS-Pack software component and Figure 294: Selecting X-Cube-
BLE1 components.

Added Section 4.4.8: Pinout for multi-bonding packages and
Section 4.13.5: Details and Warnings panel.

Added Table 15: Additional Software window – Packs panel columns

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

Revision history UM1718

362/363 UM1718 Rev 31

13-Dec-2019 31 5.4

Updated Introduction, Section 1: STM32Cube overview, Section 4.2:
New Project window, MCU/MPU selection for a new project and
Section 11.7.1: Setting project options.

Added Section 4.7: Enabling security in Pinout & Configuration view
(STM32L5 Series only) with its subsections, Section 4.8.2: Securing
clock resources (STM32L5 Series only) and Section 8: Code
generation with Trustzone enabled (STM32L5 Series only).

Removed former Section 4.4.16: Graphics frameworks and simulator,
Section 17: Tutorial 8 – Using STemWin Graphics framework,
Section 18: Tutorial 9: Using STM32CubeMX Graphics simulator,
Section 19: Tutorial 10: Using ST-TouchGFX framework and
Section B.3.11: Graphics.

Minor text edits across the whole document.

Updated Table 1: Command line summary.

Updated Figure 46: Pinout view: MCUs with multi-bonding, Figure 47:
Pinout view: multi-bonding with extended mode, Figure 83:
STM32MP1 Series: assignment options for GPIOs, Figure 99: Project
Settings window, Figure 155: DDR Suite - Connection to target,
Figure 156: DDR Suite - Target connected, Figure 157: DDR activity
logs, Figure 158: DDR interactive logs, Figure 159: DDR register
loading, Figure 160: DDR test list from U-Boot SPL, Figure 161: DDR
test suite results, Figure 162: DDR tests history, Figure 163: DDR
tuning pre-requisites, Figure 164: DDR tuning process, Figure 165:
Bit deskew, Figure 166: Eye training (centering) panel, Figure 167:
DDR Tuning - saving to configuration, Figure 188: Project settings for
STM32CubeIDE toolchain and Figure 226: Project Settings and
toolchain selection.

Added Figure 25: Enabling Trust-zone for STM32L5 Series.

Table 24. Document revision history

Date Revision
STM32CubeMX
release number

Changes

UM1718 Rev 31 363/363

UM1718

363

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 STM32Cube overview
	2 Getting started with STM32CubeMX
	2.1 Principles
	2.2 Key features
	2.3 Rules and limitations

	3 Installing and running STM32CubeMX
	3.1 System requirements
	3.1.1 Supported operating systems and architectures
	3.1.2 Memory prerequisites
	3.1.3 Software requirements

	3.2 Installing/uninstalling STM32CubeMX standalone version
	3.2.1 Installing STM32CubeMX standalone version
	3.2.2 Installing STM32CubeMX from command line
	Interactive mode
	Auto-install mode

	3.2.3 Uninstalling STM32CubeMX standalone version
	Uninstalling STM32CubeMX on macOS®
	Uninstalling STM32CubeMX on Linux®
	Uninstalling STM32CubeMX on Windows®

	3.3 Launching STM32CubeMX
	3.3.1 Running STM32CubeMX as standalone application
	3.3.2 Running STM32CubeMX in command-line mode
	Table 1. Command line summary

	3.4 Getting updates using STM32CubeMX
	3.4.1 Updater configuration
	3.4.2 Installing STM32 MCU packages
	3.4.3 Installing STM32 MCU package patches
	3.4.4 Installing embedded software packs
	3.4.5 Removing already installed embedded software packages
	3.4.6 Checking for updates

	4 STM32CubeMX user interface
	4.1 Home page
	4.1.1 File menu
	Table 2. Home page shortcuts

	4.1.2 Window menu and Outputs tabs
	Table 3. Window menu

	4.1.3 Help menu
	Table 4. Help menu shortcuts

	4.1.4 Social links

	4.2 New Project window
	4.2.1 MCU selector
	MCU selection
	MCU selection based on graphics criteria
	Export to Excel feature
	Show favorite MCUs feature
	MCU close selector feature

	4.2.2 Board selector
	4.2.3 Cross selector
	Part number selection
	Compare cart
	MCU/MPU selection for a new project

	4.3 Project page
	4.4 Pinout & Configuration view
	Tips
	4.4.1 Component list
	Contextual help
	Icons and color schemes
	Table 5. Component list, mode icons and color schemes

	4.4.2 Component Mode panel
	4.4.3 Pinout view
	Tips and tricks

	4.4.4 Pinout menu and shortcuts
	Table 6. Pinout menu and shortcuts

	4.4.5 Pinout view advanced actions
	Manually modifying pin assignments
	Manually remapping a function to another pin
	Manual remapping with destination pin ambiguity
	Resolving pin conflicts

	4.4.6 Keep Current Signals Placement
	Keep Current Signals Placement is unchecked
	Keep Current Signals Placement is checked
	Tip

	4.4.7 Pinning and labeling signals on pins
	4.4.8 Pinout for multi-bonding packages
	4.4.9 System view
	Table 7. Configuration states

	4.4.10 Component Configuration panel
	Table 8. Peripheral and Middleware Configuration window buttons and tooltips
	No check option

	4.4.11 User Constants configuration window
	Creating/editing user constants
	Deleting user constants
	Searching for user constants

	4.4.12 GPIO Configuration window
	4.4.13 DMA Configuration window
	4.4.14 NVIC Configuration window
	Enabling interruptions using the NVIC tab view
	Code generation options for interrupt handling

	4.4.15 FreeRTOS configuration panel
	Tasks and Queues Tab
	Timers, Mutexes and Semaphores
	FreeRTOS heap usage

	4.4.16 Setting HAL timebase source
	Example of configuration using SysTick without FreeRTOS
	Example of configuration using SysTick and FreeRTOS
	Example of configuration using TIM2 as HAL timebase source

	4.5 Pinout & Configuration view for STM32MP1 Series
	4.5.1 Run time configuration
	4.5.2 Boot stages configuration
	Boot ROM peripherals selection
	Boot loader (A7BL) peripherals selection

	4.6 Pinout & Configuration view for STM32H7 dual-core product lines
	4.7 Enabling security in Pinout & Configuration view (STM32L5 Series only)
	4.7.1 Privilege access for peripherals, GPIO EXTIs and DMA requests
	4.7.2 Secure/non-secure context assignment for GPIO/Peripherals/Middleware
	4.7.3 NVIC and context assignment for peripherals interrupts
	4.7.4 DMA (context assignment and privilege access settings)
	4.7.5 GTZC
	4.7.6 OTFDEC

	4.8 Clock Configuration view
	4.8.1 Clock tree configuration functions
	External clock sources
	Peripheral clock configuration options
	Table 9. Clock configuration view widgets

	4.8.2 Securing clock resources (STM32L5 Series only)
	Table 10. Clock Configuration security settings

	4.8.3 Recommendations
	4.8.4 STM32F43x/42x power-over drive feature
	Table 11. Voltage scaling versus power over-drive and HCLK frequency
	Table 12. Relations between power over-drive and HCLK frequency

	4.8.5 Clock tree glossary
	Table 13. Glossary

	4.9 Project Manager view
	4.9.1 Project tab
	4.9.2 Code Generator tab
	STM32Cube Firmware Library Package option
	Generated files options
	HAL settings options
	Custom code template options

	4.9.3 Advanced Settings tab
	Ordering initialization function calls
	Disabling calls to initialization functions
	Choosing between HAL and LL based code generation for a given peripheral instance

	4.10 Import Project window
	4.11 Set unused / Reset used GPIOs windows
	4.12 Update Manager windows
	4.13 Additional software component selection window
	4.13.1 Introduction on software components
	4.13.2 Filter panel
	Table 14. Additional software window - Filter icons

	4.13.3 Packs panel
	Table 15. Additional Software window – Packs panel columns
	Table 16. Additional Software window – Packs panel icons

	4.13.4 Component dependencies panel
	Table 17. Component dependencies panel contextual help

	4.13.5 Details and Warnings panel
	4.13.6 Updating the tree view for additional software components

	4.14 About window

	5 STM32CubeMX tools
	5.1 Power Consumption Calculator view
	5.1.1 Building a power consumption sequence
	Selecting a VDD value
	Selecting a battery model (optional)
	Power sequence default view
	Managing sequence steps
	Adding a step
	Editing a step
	Moving a step
	Deleting a step
	Using the transition checker

	5.1.2 Configuring a step in the power sequence
	Using interpolation
	Importing pinout
	Selecting/deselecting all peripherals

	5.1.3 Managing user-defined power sequence and reviewing results
	Managing the whole sequence (load, save and compare)
	Managing the results charts and display options
	Overview of the Results summary area

	5.1.4 Power sequence step parameters glossary
	5.1.5 Battery glossary
	5.1.6 SMPS feature
	5.1.7 BLE support (STM32WB Series only)
	5.1.8 Example feature (STM32MP1 and STM32H7 dual-core only)

	5.2 DDR Suite (for STM32MP1 Series only)
	5.2.1 DDR configuration
	DDR type, width and density
	DDR configuration
	DDR3 configuration
	DDR tuning tab (read-only)

	5.2.2 Connection to the target and DDR register loading
	Prerequisites
	Connection to the target
	Output/Log messages
	DDR register loading (optional)

	5.2.3 DDR testing
	Prerequisites
	DDR test list
	DDR test results

	5.2.4 DDR tuning
	Prerequisites
	Tunable signals
	Tuning process
	Bit deskew
	Eye training (centering)
	Propagating tuning results

	6 STM32CubeMX C Code generation overview
	6.1 STM32Cube code generation using only HAL drivers (default mode)
	6.2 STM32Cube code generation using Low Layer drivers
	Table 18. LL versus HAL code generation: drivers included in STM32CubeMX projects
	Table 19. LL versus HAL code generation: STM32CubeMX generated header files
	Table 20. LL versus HAL: STM32CubeMX generated source files
	Table 21. LL versus HAL: STM32CubeMX generated functions and function calls

	6.3 Custom code generation
	6.3.1 STM32CubeMX data model for FreeMarker user templates
	6.3.2 Saving and selecting user templates
	6.3.3 Custom code generation

	6.4 Additional settings for C project generation
	Possible entries and syntax
	.extSettings file example and generated outcomes
	[Groups]
	[Others]

	7 Code generation for dual-core MCUs (STM32H7 dual-core product lines only)
	Generated initialization code
	Generated startup and linker files
	Generated boot mode code

	8 Code generation with Trustzone enabled (STM32L5 Series only)
	Specificities
	Table 22. Files generated when TrustZone is enabled

	9 Device tree generation (STM32MP1 Series only)
	9.1 Device tree overview
	9.2 STM32CubeMX Device tree generation
	9.2.1 Device tree generation for Linux kernel
	9.2.2 Device tree generation for U-boot
	9.2.3 Device tree generation for TF-A

	10 Support of additional software components using CMSIS-Pack standard
	11 Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series
	11.1 Creating a new STM32CubeMX Project
	11.2 Configuring the MCU pinout
	11.3 Saving the project
	11.4 Generating the report
	11.5 Configuring the MCU clock tree
	11.6 Configuring the MCU initialization parameters
	11.6.1 Initial conditions
	11.6.2 Configuring the peripherals
	11.6.3 Configuring the GPIOs
	11.6.4 Configuring the DMAs
	11.6.5 Configuring the middleware

	11.7 Generating a complete C project
	11.7.1 Setting project options
	11.7.2 Downloading firmware package and generating the C code

	11.8 Building and updating the C code project
	11.9 Switching to another MCU

	12 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board
	13 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application consumption and more
	13.1 Tutorial overview
	13.2 Application example description
	13.3 Using the Power Consumption Calculator
	13.3.1 Creating a power sequence
	13.3.2 Optimizing application power consumption
	Step 1 (Run)
	Step 4 (Run, RTC)
	Step 5 (Run, ADC, DMA, RTC)
	Step 6 (Sleep, DMA, ADC,RTC)
	Step 7 (Run, DMA, RTC, USART)
	Step 8 (Stop 0, USART)
	Step 10 (RTC, USART)

	14 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board
	14.1 Tutorial overview
	14.2 Creating a new STM32CubeMX project and selecting the Nucleo board
	14.3 Selecting the features from the Pinout view
	14.4 Configuring the MCU clock tree from the Clock Configuration view
	14.5 Configuring the peripheral parameters from the Configuration view
	14.6 Configuring the project settings and generating the project
	14.7 Updating the project with the user application code
	14.8 Compiling and running the project
	14.9 Configuring Tera Term software as serial communication client on the PC

	15 Tutorial 5: Exporting current project configuration to a compatible MCU
	16 Tutorial 6 – Adding embedded software packs to user projects
	17 Tutorial 7 – Using the X-Cube-BLE1 software pack
	Table 23. Connection with hardware resources

	18 FAQ
	18.1 On the Pinout configuration panel, why does STM32CubeMX move some functions when I add a new peripheral mode?
	18.2 How can I manually force a function remapping?
	18.3 Why are some pins highlighted in yellow or in light green in the Pinout view? Why cannot I change the function of some pins (when I click some pins, nothing happens)?
	18.4 Why do I get the error “Java 7 update 45” when installing “Java 7 update 45” or a more recent version of the JRE?
	18.5 Why does the RTC multiplexer remain inactive on the Clock tree view?
	18.6 How can I select LSE and HSE as clock source and change the frequency?
	18.7 Why STM32CubeMX does not allow me to configure PC13, PC14, PC15 and PI8 as outputs when one of them is already configured as an output?
	18.8 Ethernet configuration: why cannot I specify DP83848 or LAN8742A in some cases?

	Appendix A STM32CubeMX pin assignment rules
	A.1 Block consistency
	Example of block mapping with a STM32F107x MCU
	Example of block remapping with a STM32F107x MCU

	A.2 Block inter-dependency
	Example of block remapping of SPI in full-duplex master mode with a STM32F107x MCU

	A.3 One block = one peripheral mode
	Example of STM32F107x MCU

	A.4 Block remapping (STM32F10x only)
	Example

	A.5 Function remapping
	Example using STM32F415x

	A.6 Block shifting (only for STM32F10x and when “Keep Current Signals placement” is unchecked)
	Example

	A.7 Setting and clearing a peripheral mode
	A.8 Mapping a function individually
	A.9 GPIO signals mapping

	Appendix B STM32CubeMX C code generation design choices and limitations
	B.1 STM32CubeMX generated C code and user sections
	B.2 STM32CubeMX design choices for peripheral initialization
	B.3 STM32CubeMX design choices and limitations for middleware initialization
	B.3.1 Overview
	B.3.2 USB host
	B.3.3 USB device
	B.3.4 FatFs
	B.3.5 FreeRTOS
	B.3.6 LwIP
	B.3.7 Libjpeg
	B.3.8 Mbed TLS
	B.3.9 TouchSensing
	B.3.10 PDM2PCM
	B.3.11 STM32WPAN BLE/Thread (STM32WB Series only)
	BLE configuration
	Thread configuration

	B.3.12 OpenAmp and RESMGR_UTILITY (STM32MP1 Series and STM32H7 dual-core product lines)

	Appendix C STM32 microcontrollers naming conventions
	Appendix D STM32 microcontrollers power consumption parameters
	D.1 Power modes
	D.1.1 STM32L1 Series
	D.1.2 STM32F4 Series
	D.1.3 STM32L0 Series

	D.2 Power consumption ranges
	D.2.1 STM32L1 Series features three VCORE ranges
	D.2.2 STM32F4 Series features several VCORE scales
	D.2.3 STM32L0 Series features three VCORE ranges

	Appendix E STM32Cube embedded software packages
	19 Revision history
	Table 24. Document revision history

