(4 UM1718
’l augmented User manual

STM32CubeMX for STM32 configuration
and initialization C code generation

Introduction

STM32CubeMX is a graphical tool for STM32 microcontrollers. It is part of the STM32Cube
initiative (see Section 1) and is available as a standalone application as well as in the
STM32CubelDE toolchain.

STM32CubeMX has the following key features:
e Easy microcontroller selection covering the whole STM32 portfolio
e Board selection from a list of STMicroelectronics boards

e Easy microcontroller configuration (pins, clock tree, peripherals, middleware) and
generation of the corresponding initialization C code

e Easy switching to another microcontroller by importing a previously-saved
configuration to a new MCU project

e Easy exporting of current configuration to a compatible MCU
e Generation of configuration reports

e Generation of embedded C projects for a selection of integrated development
environment tool chains. STM32CubeMX projects include the generated initialization C
code, MISRA 2004 compliant STM32 HAL drivers, the middleware stacks required for the
user configuration, and all the relevant files for opening and building the project in the
selected IDE.

e Power consumption calculation for a user-defined application sequence
e Self-updates allowing the user to keep STM32CubeMX up-to-date

¢ Download and update of STM32Cube embedded software required for user application
development (see Appendix E for details on the STM32Cube embedded software offer)

Although STM32CubeMX offers a user interface and generates C code compliant with
STM32 MCU design and firmware solutions, users need to refer to the product technical
documentation for details on actual implementations of microcontroller peripherals and
firmware.

The following documents are available from www.st.com:
. STM32 microcontroller reference manuals and datasheets

e STM32Cube HAL/LL driver user manuals for STM32F0 (UM1785), STM32F1
(UM1850), STM32F2 (UM1940), STM32F3 (UM1786), STM32F4 (UM1725), STM32F7
(UM1905), STM32G0 (UM2303), STM32G4 (UM2570), STM32H7 (UM2217),
STM32L0 (UM1749), STM32L1 (UM1816), STM32L4/L4+ (UM1884), STM32L5
(UM2659), STM32MP1 (https://wiki.st.com/stm32mpu) and STM32WB (UM2442).,

December 2019 UM1718 Rev 31 1/363

www.st.com

http://www.st.com

Contents UM1718

Contents
1 STM32Cube overview ittt i 17
2 Getting started with STM32CubeMX as. 18
21 Principles 18
2.2 Key features 20
23 Rules and limitations 22
3 Installing and running STM32CubeMX 23
3.1 Systemrequirements 23
3.1.1 Supported operating systems and architectures 23
3.1.2 Memory prerequisites 23
3.1.3 Software requirements 23
3.2 Installing/uninstalling STM32CubeMX standalone version 23
3.2.1 Installing STM32CubeMX standalone version 23
3.2.2 Installing STM32CubeMX from command line 25
3.2.3 Uninstalling STM32CubeMX standalone version 27
3.3 Launching STM32CubeMX 28
3.3.1 Running STM32CubeMX as standalone application 28
3.3.2 Running STM32CubeMX in command-linemode 28
3.4 Getting updates using STM32CubeMX 32
3.4.1 Updater configuration 33
3.4.2 Installing STM32 MCU packages 36
3.4.3 Installing STM32 MCU package patches 37
3.4.4 Installing embedded software packs 37
345 Removing already installed embedded software packages 42
3.4.6 Checkingforupdates 44
4 STM32CubeMX userinterfacecciiiiiiinnn. 45
4.1 Home page e 46
411 Filemenu 47
41.2 Window menu and Qutputstabs 48
41.3 Helpmenu 50
41.4 Social INKS 50
4.2 New Project window 51

2/363 UM1718 Rev 31 ‘Yl

UM1718 Contents

421 MCU selectoro 52
422 Board selector 56
4.2.3 Cross SeleCtort 56
4.3 Projectpage 59
4.4 Pinout & Configurationview 62
4.4.1 Componentlist 63
442 Component Mode panel 65
4.4.3 Pinout view 66
444 Pinout menu and shortcuts L. 67
44.5 Pinout view advanced actions 69
44.6 Keep Current Signals Placement 70
447 Pinning and labeling signalsonpins 71
448 Pinout for multi-bonding packages 72
449 System View 73
4410 Component Configurationpanel 75
4411 User Constants configuration window 78
4412 GPIO Configuration window 83
4413 DMA Configurationwindow, 85
4414 NVIC Configurationwindow 87
4415 FreeRTOS configurationpanel 94
4416 Setting HAL timebase source 99
4.5 Pinout & Configuration view for STM32MP1 Series 103
4.5.1 Run time configuration 104
452 Boot stages configuration L 105

4.6 Pinout & Configuration view for STM32H7 dual-core product lines 106

4.7 Enabling security in Pinout & Configuration view
(STM32L5 Series only)ot 107

471 Privilege access for peripherals, GPIO EXTls and DMA requests ... 108

4.7.2 Secure/non-secure context assignment for

GPIO/Peripherals/Middleware 112

4.7.3 NVIC and context assignment for peripherals interrupts 112

4.7.4 DMA (context assignment and privilege access settings) 112

4.7.5 GTZC . 114

4.7.6 OTFDEC ..o e 115

4.8 Clock Configurationview 116

4.8.1 Clock tree configuration functions 117

482 Securing clock resources (STM32L5 Seriesonly) 120

m UM1718 Rev 31 3/363

Contents UM1718

4.8.3 Recommendations 123

484 STM32F43x/42x power-over drive feature 124

4.8.5 Clock tree glossary e 125

4.9 Project Managerview i e 126
491 Projecttab 127

492 Code Generatortab 132

493 Advanced Settingstab 135

410 Import Project window 137
411 Setunused/Resetused GPIOs windows 143
4.12 Update Managerwindows 145
4.13 Additional software component selection window 146
4.13.1 Introduction on software components 147

4.13.2 Filterpanel 148

413.3 Packspanel 148

4.13.4 Componentdependenciespanel 149

4.13.5 Detailsand Warningspanel 150

4.13.6 Updating the tree view for additional software components 152

414 Aboutwindow 154
5 STM32CubeMX1toolst it e e e e e e nn e 155
5.1 Power Consumption Calculatorview 155
51.1 Building a power consumption sequence 156

51.2 Configuring a step in the power sequence 161

51.3 Managing user-defined power sequence and reviewing results 164

514 Power sequence step parametersglossary 167

51.5 Battery glossary 169

5.1.6 SMPSfeature 169

51.7 BLE support (STM32WB Seriesonly) 175

51.8 Example feature (STM32MP1 and STM32H7 dual-core only) 176

5.2 DDR Suite (for STM32MP1 Seriesonly) 178
5.2.1 DDR configuration 179

5.2.2 Connection to the target and DDR register loading 183

523 DDRtestingo 186

524 DDRtUNING ... 188

6 STM32CubeMX C Code generation overview 192

4/363 UM1718 Rev 31 ‘Yl

3

UM1718 Contents
6.1 STM32Cube code generation using only HAL drivers
(defaultmode) 192
6.2 STM32Cube code generation using Low Layerdrivers 194
6.3 Customcode generation 200
6.3.1 STM32CubeMX data model for FreeMarker user templates 200
6.3.2 Saving and selectingusertemplates 201
6.3.3 Customcode generation 201
6.4 Additional settings for C project generation 203
7 Code generation for dual-core MCUs
(STM32H7 dual-core product linesonly) 207
8 Code generation with Trustzone enabled (STM32L5 Series only) .. 209
9 Device tree generation (STM32MP1 Seriesonly) 213
9.1 Device tree overview 213
9.2 STM32CubeMX Device tree generation 215
9.21 Device tree generation for Linux kernel 216
9.2.2 Device tree generation for U-boot 217
9.2.3 Device tree generationfor TF-A 218
10 Support of additional software components using
CMSIS-Packstandardc it 219
1" Tutorial 1: From pinout to project C code generation

using an MCU of the STM32F4 Seriest 222
11.1 Creating a new STM32CubeMX Project 222
11.2 Configuringthe MCU pinout 224
11.3 Savingtheproject........ 227
11.4 Generatingthereport 228
11.5 Configuringthe MCU clocktree 228
11.6 Configuring the MCU initialization parameters 231
11.6.1 Initial conditions 231

11.6.2 Configuring the peripherals 232

11.6.3 Configuringthe GPIOS 234

11.6.4 Configuringthe DMAS 236

11.6.5 Configuring the middleware 237
UM1718 Rev 31 5/363

Contents UM1718
11.7 Generating a complete Cproject 241
11.7.1 Setting projectoptions 241
11.7.2 Downloading firmware package and generatingthe Ccode 242
11.8 Building and updating the C code project 247
11.9 SwitchingtoanotherMCU 252
12 Tutorial 2 - Example of FatFs on an SD card using
STM324291-EVAL evaluationboard 253
13 Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption and more 261
13.1 Tutorial overview e 261
13.2 Application example description L. 262
13.3 Using the Power Consumption Calculator 262
13.3.1 Creating a power SEqQUENCEottt i 262
13.3.2 Optimizing application power consumption 264
14 Tutorial 4 - Example of UART communications with
an STM32L053xx Nucleoboardcoiiinnn. 271
14.1 Tutorial overview 271
14.2 Creating a new STM32CubeMX project and
selectingthe Nucleoboard 271
14.3 Selecting the features from the Pinoutview 273
14.4 Configuring the MCU clock tree from the Clock Configuration view 275
14.5 Configuring the peripheral parameters from the Configuration view ... 276
14.6 Configuring the project settings and generating the project 279
14.7 Updating the project with the user applicationcode 280
14.8 Compiling and running the project 281
14.9 Configuring Tera Term software as serial communication
clientonthe PC 281
15 Tutorial 5: Exporting current project configuration to
acompatible MCU it 283
16 Tutorial 6 — Adding embedded software packs to user projects . 287
17 Tutorial 7 — Using the X-Cube-BLE1 softwarepack 290
6/363 UM1718 Rev 31 Kys

UM1718 Contents
18 FAQ .. e e e 302
18.1 On the Pinout configuration panel, why does STM32CubeMX
move some functions when | add a new peripheral mode? 302
18.2 How can | manually force a function remapping? 302
18.3 Why are some pins highlighted in yellow or in light green in
the Pinout view? Why cannot | change the function of some
pins (when | click some pins, nothing happens)? 302
18.4 Why do | get the error “Java 7 update 45” when installing
“Java 7 update 45” or a more recent version ofthe JRE? 302
18.5 Why does the RTC multiplexer remain inactive on the Clock tree view? 303
18.6 How can | select LSE and HSE as clock source and
changethefrequency? 304
18.7 Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them
is already configured as anoutput? 304
18.8 Ethernet configuration: why cannot | specify DP83848
or LAN8742A in SOMe CasesS?ttt 305
Appendix A STM32CubeMX pin assignmentrules 306
A1 Block consistency 306
A.2 Blockinter-dependency. 310
A.3 Oneblock =one peripheralmode. 312
A.4 Block remapping (STM32F10xonly). 312
A.5 Functionremapping. i 313
A.6 Block shifting (only for STM32F10x and when
“‘Keep Current Signals placement” is unchecked). 314
A.7 Setting and clearing a peripheralmode., 315
A.8 Mapping a function individually, 315
A9 GPIOsignals mappingc..uiiiiiii i 315
Appendix B STM32CubeMX C code generation design
choices and limitations, 316
B.1 STM32CubeMX generated C code and user sections 316
B.2 STM32CubeMX design choices for peripheral initialization 316
B.3 STM32CubeMX design choices and limitations for
middleware initialization L 317
B.3.1 OVEIVIEW. . . o 317
1S7 UM1718 Rev 31 7/363

Contents UM1718
B.3.2 USB host. e 318
B.3.3 USBdevice. 318
B.3.4 FatFs. ... 318
B.3.5 FreeRTOS. 319
B.3.6 LWIP e 320
B.3.7 LIDIPEG . oot 322
B.3.8 Mbed TLS e 323
B.3.9 ToUChSENSING oo 326
B.3.10 PDM2PCM 329
B.3.11 STM32WPAN BLE/Thread (STM32WB Seriesonly) 330
B.3.12 OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines) 334
Appendix C STM32 microcontrollers naming conventions 337
Appendix D STM32 microcontrollers power consumption parameters 339
D1 Powermodes it 339
DA STMB2LTSeres. . ..o 339
D.1.2 STMB32F4 Series. 340
D.1.3 STM32L0 Series. . ..ot 341
D.2 Powerconsumptionranges.u it 342
D.21 STM32L1 Series features three VCOREranges 342
D.2.2 STM32F4 Series features several VCORE scales 343
D.2.3 STM32L0 Series features three VCORE ranges 343
Appendix E STM32Cube embedded software packages 344
19 Revision history i e 345
8/363 UM1718 Rev 31 ‘W

UM1718

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.

3

Command liNe SUMMaAry. e e 29
Home page shortcuts 47
WINdoW MeNUo e 48
Help menu shortCuts.o 50
Component list, mode icons and colorschemes 64
Pinout menu and shortcuts e 67
Configuration states e 74
Peripheral and Middleware Configuration window buttons and tooltips 77
Clock configuration view widgets 120
Clock Configuration security settings 121
Voltage scaling versus power over-drive and HCLK frequency 125
Relations between power over-drive and HCLK frequency 125
GlOSSaNY . . ot 125
Additional software window - Filtericons 148
Additional Software window — Packs panelcolumns 149
Additional Software window — Packs panelicons. 149
Component dependencies panel contextual help. 150
LL versus HAL code generation: drivers included in STM32CubeMX projects 195
LL versus HAL code generation: STM32CubeMX generated header files............ 195
LL versus HAL: STM32CubeMX generated sourcefiles 196
LL versus HAL: STM32CubeMX generated functions and functioncalls............. 196
Files generated when TrustZoneisenabled. 211
Connection with hardware resources e 296
Document revision history 345

UM1718 Rev 31 9/363

List of figures UM1718

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.

10/363

Overview of STM32CubeMX C code generationflow. 19
Example of STM32CubeMX installation in interactive mode 25
STM32Cube Installation Wizard 26
Auto-install command line. e 27
Displaying Windows default proxy settings. 32
Updater Settings window e 34
Connection Parameters tab - Manual Configuration of Proxy Server. 35
Embedded Software Packages Managerwindowo, 36
Managing embedded software packages-Helpmenu 38
Managing embedded software packages - Addingnewurl 39
Checking the validity of vendor pack.pdscfileurl. 39
User-defined list of software packs. 40
Selecting an embedded software packrelease, 40
License agreement acceptance i 41
Embedded software pack release - Successful installation 42
Removing libraries 43
Removing library confirmation message. 43
Library deletion progress window 43
Help menu: checking forupdates. 44
STM32CubeMX HOome page.o e 46
WINdOW MeNUo e 49
OUIPUL VIEW. . . o e 49
Link to social platforms 50
New Project window shortcuts 51
Enabling Trust-zone for STM32L5 Series. i e 52
New Project window - MCU selector. i 52
Enabling graphics choicein MCU selector. 53
Markingan MCU asfavorite e e 54
New Project window - MCU list with close function 55
New Project window - List showingclose MCUs 55
New Project window - Board selector. 56
Cross selector - Data refresh prerequisite 57
Cross selector - Part number selection pervendor. 57
Cross selector - Partial part number selection completion. 58
Cross selector-Compare cart i 58
Cross selector - Part number selection foranew project. 59
STM32CubeMX Main window upon MCU selection. 60
STM32CubeMX Main window upon board selection (peripherals not initialized). 61
STM32CubeMX Main window upon board selection

(peripherals initialized with default configuration). 62
Contextual Help window (default). 63
Contextual Help detailed information 64
PINOUL VieW . . 66
Modifying pin assignments from the Pinoutview 69
Example of remapping in case of block of pins consistency. 70
Pins/Signals Options window 72
Pinout view: MCUs with multi-bonding 73
Pinout view: multi-bonding with extended mode. 73

UM1718 Rev 31 ‘Yl

UM1718 List of figures
Figure 48. System View 74
Figure 49. Configuration window tabs (GPIO, DMA and NVIC settings for STM32F4 Series) 75
Figure 50. Peripheral Mode and Configurationview 76
Figure 51. Formula when input parameter is setin No Checkmode. 78
Figure 52. User Constantstab. 78
Figure 53. Extract of the generated main.hfile 79
Figure 54. Using constants for peripheral parameter settings 79
Figure 55. Specifying user constantvalueandname 80
Figure 56. Deleting an user constant is not allowed when the

constant is already used for another constant definition. 81
Figure 57. Deleting an user constant used for parameter configuration -

Confirmation request 81
Figure 58. Deleting a user constant used for peripheral configuration -

Consequence on peripheral configuration 81
Figure 59. Searching fora name inauserconstantlist. 82
Figure 60. Searching foravalueinauserconstantlist. 82
Figure 61. GPIO Configuration window - GPIO selection 83
Figure 62. GPIO configuration grouped by peripheral 84
Figure 63. Multiple Pins Configuration. 84
Figure 64. Addinganew DMA request i 85
Figure 65. DMA configuration 86
Figure 66. DMA MemToMem configuration. i 87
Figure 67. NVIC Configuration tab - FreeRTOS disabled 88
Figure 68. NVIC Configuration tab - FreeRTOS enabled 89
Figure 69. [2C NVIC Configuration wWindow 89
Figure 70. NVIC Code generation — All interrupts enabled 91
Figure 71. NVIC Code generation — IRQ Handler generation 93
Figure 72. FreeRTOS configuration View. e 94
Figure 73. FreeRTOS: configuring tasks and queues 95
Figure 74. FreeRTOS: creatinganewtask i 96
Figure 75. FreeRTOS - Configuring timers, mutexes and semaphores. 97
Figure 76. FreeRTOS Heap usaget e e e 99
Figure 77. Selecting a HAL timebase source (STM32F407 example). 100
Figure 78. TIM1 selected as HAL timebase source. i, 100
Figure 79. NVIC settings when using SysTick as HAL timebase, no FreeRTOS 101
Figure 80. NVIC settings when using FreeRTOS and SysTick as HAL timebase 102
Figure 81. NVIC settings when using FreeRTOS and TIM2 as HAL timebase 103
Figure 82. STM32MP1 boot devices and runtime contexts 104
Figure 83. STM32MP1 Series: assignment optionsfor GPIOs 104
Figure 84. Select peripherals as bootdevices. 105
Figure 85. STMB32H7 dual-core: peripheral and middleware context assignment. 106
Figure 86. STM32H7 dual-core: GPIOs context assignment. 107
Figure 87. Pinout & Configuration view for Trustzone-enabled projects 108
Figure 88. Setting privileges for peripherals 109
Figure 89. Setting privileges for GPIO EXTIS e 110
Figure 90. Configuring security and privilege of DMArequests. 111
Figure 91. RCCprivilege mode 111
Figure 92. Configuring security and privilege of DMArequests. 113
Figure 93. Securing peripherals from GTZC panel 115
Figure 94. OTFDEC secured when TrustZone isactive 115
Figure 95. STM32F469NIHx clock tree configurationview 116
Figure 96. Clock tree configuration view witherrors i 117
IS73 UM1718 Rev 31 11/363

List of figures UM1718

Figure 97.

Figure 98.
Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.

Figure 130.

Figure 131.
Figure 132.
Figure 133.
Figure 134.

Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.

12/363

Clock tree configuration: enabling RTC, RCC clock source

and outputs from Pinout view 123
Clock tree configuration: RCC peripheral advanced parameters 124
Project Settings window 126
Project folder. 127
Selecting a basic application structure 129
Selecting an advanced application structure 130
OpenSTLinux settings (STM32MP1 Seriesonly) i 130
Selecting a different firmware location 131
Firmware location selection errormessage 131
Recommended new firmware repository structure L. 131
Project Settings code generator e 133
Template Settings window e 134
Generated projecttemplate 135
Advanced Settings Window. 136
Generated init functions without C language “static’ keyword 136
Automatic projectimport. 138
Manual project iImport 139
Import Project menu - Try importwitherrors 141
Import Project menu - Successful import after adjustments 142
Setunused pins WINdOW e 143
Resetused pinswindow 143
Set unused GPIO pins with Keep Current Signals Placement checked. 144
Set unused GPIO pins with Keep Current Signals Placement unchecked. 145
Additional Software window 147
Details and Warnings panel 151
Selection of additional software components L. 152
Additional software components - Updated treeview. 153
AbOUt WINAOW 154
Power Consumption Calculator defaultview 156
Battery selection 157
Step management functions. L 157
Power consumption sequence: New Step defaultview 158
Enabling the transition checker option on an already

configured sequence - All transitions valid 159
Enabling the transition checker option on an already

configured sequence - At least one transitioninvalid 159
Transition checker option - Show log 160
Interpolated power consumption. 162
ADC selected in Pinout view. e 163
Power Consumption Calculator Step configuration window:

ADC enabled using import pinout. 164
Power Consumption Calculator view after sequence building 165
Sequence table management functions L 165
Power Consumption: Peripherals consumptionchart. 166
Descriptionof the Results area. 166
Overall peripheral consumption 168
Selecting SMPS for the current project. 170
SMPS database - Adding new SMPSmodels 171
SMPS database - Selecting a different SMPS model. 171
Current project configuration updated with new SMPSmodel 172
SMPS database management window with new model selected. 172

UM1718 Rev 31 ‘Yl

UM1718 List of figures
Figure 145. SMPS transition checker and state diagram helper window. 173
Figure 146. Configuring the SMPS mode foreachstep 174
Figure 147. RF related consumption (STM32WB Seriesonly) 175
Figure 148. RF BLE mode configuration (STM32WB Seriesonly) 176
Figure 149. Power Consumption Calculator — Exampleset 177
Figure 150. Power Consumption Calculator — Example sequence loading. 177
Figure 151. Power Consumption Calculator — Example sequence new selection. 178
Figure 152. DDR pinout and configuration settings 179
Figure 153. DDR3 configuration 181
Figure 154. DDR tuning parameter e 182
Figure 155. DDR Suite - Connectiontotarget. i 183
Figure 156. DDR Suite - Targetconnected e 184
Figure 157. DDR activity l0gso oo 184
Figure 158. DDRInteractive 10gso 185
Figure 159. DDRregisterloading e 185
Figure 160. DDR test list from U-Boot SPL e 186
Figure 161. DDR testsuiteresults. 187
Figure 162. DDR tests history e 187
Figure 163. DDR tuning pre-requisitest 188
Figure 164. DDR tUNING PrOCESS o ottt it e e e e e e e e e 189
Figure 165. Bit deskew 189
Figure 166. Eye training (centering) panel. 190
Figure 167. DDR Tuning - saving to configuration. 190
Figure 168. DDR configuration update aftertuning L. 191
Figure 169. Labels for pins generating define statements. 193
Figure 170. User constant generating define statements 193
Figure 171. Duplicate labels 194
Figure 172. HAL-based peripheral initialization: usart.c code snippet. 198
Figure 173. LL-based peripheral initialization: usart.c code snippet 199
Figure 174. HAL versus LL: main.ccode snippet 199
Figure 175. extra_templates folder - Defaultcontent. 200
Figure 176. extra_templates folder with usertemplates 201
Figure 177. Project root folder with corresponding custom generated files. 202
Figure 178. User custom folder fortemplates 202
Figure 179. Custom folder with corresponding custom generated files........................ 203
Figure 180. Update of the project .ewp file (EWARM IDE)

for preprocessor define statements 205
Figure 181. Update of stm32f4xx_hal_conf.h file to enable selected modules 205
Figure 182. New groups and new files added to groups in EWARMIDE 205
Figure 183. Preprocessor define statements inEWARMIDE 206
Figure 184. Code generation for STM32H7 dual-core devices 207
Figure 185. Startup and linker files for STM32H7 dual-core devices. 208
Figure 186. ARMv8-M Trustzone overview of building secure and non-secure images 209
Figure 187. Project explorer view for STM32L5 TrustZone enabled projects 210
Figure 188. Project settings for STM32CubelDE toolchain 211
Figure 189. STM32CubeMX generated DTS —Extract 1... 214
Figure 190. STM32CubeMX generated DTS —Extract2......... 214
Figure 191. STM32CubeMX generated DTS —Extract3. 215
Figure 192. Project settings for configuring Device treepath 216
Figure 193. Device tree generation for the Linuxkernel 217
Figure 194. STM32CubeMX Device tree generation for U-boot 217
Figure 195. STM32CubeMX Device tree generationfor TF-A. 218
IS73 UM1718 Rev 31 13/363

List of figures UM1718

Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.
Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.

14/363

Selecting a CMSIS-Pack software component. 219
Enabling and configuring a CMSIS-Pack software component 220
Project generated with CMSIS-Pack software component. 221
MCU seleCtion 222
Pinout view with MCUs selection 223
Pinout view without MCUs selectionwindow 223
GPIO pin configuration e 224
Timer configuration 225
Simple pinout configuration 226
Save Project AS WINAOWot tee 227
Generate Project Report - New projectcreation. 228
Generate Project Report - Project successfullycreated. 228
ClocK tree VIEW 229
HSlclock enabled. 230
HSE clock source disabled. 230
HSE clock source enabled e 230
External PLL clock source enabled 230
Pinout & Configuration view 232
Case of Peripheral and Middleware without configuration parameters. 232
Timer 3 configuration Window 233
Timer 3 configuration 233
Enabling Timer 3interrupt e 234
GPIO configuration color scheme andtooltip. 234
GPIO mode configuration e 235
DMA parameters configuration window 236
Middleware tooltip. 237
USB Host configuration 237
FatFsoverUSB mode enabled 238
System view with FatFs and USB enabled. 239
FatFs define statements 240
Project Settings and toolchain selection. 241
Project Manager menu - Code Generatortab 242
Missing firmware package warning message.t 242
Errorduring download 243
Updater settings for download 243
Updater settings with connection 244
Downloading the firmware package 244
Unzipping the firmware package 245
C code generation completionmessage 245
C code generation output folder 246
C code generation output: Projects folder 247
C code generation for EWARM 248
STM32CubeMX generated projectopen in IAR™ IDE. 249
IAR™ OptioNS oo e 250
SWD CONNECHIONot e 250
Projectbuilding log 250
User Section 2 e 251
User Section 4 251
Import Project menu 252
Board peripheral initialization dialogbox 253
Board selection. 254
SDIO peripheral configuration 254

UM1718 Rev 31 ‘Yl

UM1718

List of figures

Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.
Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.
Figure 263.
Figure 264.
Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.
Figure 277.
Figure 278.
Figure 279.
Figure 280.

Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.
Figure 293.
Figure 294.
Figure 295.
Figure 296.
Figure 297.
Figure 298.

S74

FatFs mode configuration. 255
RCC peripheral configuration 255
Clock tree VIeW 255
FATFS tutorial - Project settings.o 256
C code generation completionmessage 256
IDE WOrKSPACE oot e 257
Power Consumption Calculation example 263
VDD and battery selectionmenu 263
Sequencetable. 264
sequence results before optimization. 264
Step 1 optimization 265
Step Soptimization L 266
Step 6 optimization 267
Step 7 optimization 268
Step 8 optimization L 269
Step 10 optimization 270
Power sequence results after optimizations L. 270
Selecting NUCLEO_LOS3R8 board 272
Selecting debug piNso e 273
Selecting TIM2 clock SOUrCe. e 273
Selecting asynchronous mode for USART2 i 274
Checking pin assignment e 274
Configuring the MCU clock tree e 275
Configuring USART2 parameters. e 276
Configuring TIM2 parameters. 277
Enabling TIM2 interrupt e 278
Project Settings menu. 279
Generatingthe code e 280
Checking the communication port 281
Setting Tera Term port parameters i 282
Setting Tera Term port parameters 282
Existing or new project pinout. 283
List of pinout compatible MCUs - Partial match
with hardware compatibility. 284
List of Pinout compatible MCUs - Exact and partial match. 284
Selecting a compatible MCU and importing the configuration 285
Configuration imported to the selected compatible MCU 285
Additional software components enabled for the current project 287
Pack software components - no configurable parameters 288
Pack tutorial - project settings. 288
Generated project with third party pack components 289
Hardware prerequisites. 290
Embedded software packages 291
Mobile application. 291
Installing Embedded software packages i i 292
Starting a new project - selecting the NUCLEO-LOS3R8 board 293
Starting a new project - initializing all peripherals. L. 293
Selecting X-Cube-BLE1 components 294
Configuring peripherals and GPIOS 295
Configuring NVIC interrupts e 296
Enabling X-Cube-BLET. 297
Configuring the SensorDemo project 298
UM1718 Rev 31 15/363

List of figures UM1718

Figure 299.
Figure 300.
Figure 301.
Figure 302.
Figure 303.
Figure 304.
Figure 305.
Figure 306.
Figure 307.
Figure 308.
Figure 309.
Figure 310.
Figure 311.
Figure 312.
Figure 313.
Figure 314.
Figure 315.
Figure 316.
Figure 317.
Figure 318.
Figure 319.
Figure 320.
Figure 321.
Figure 322.
Figure 323.
Figure 324.
Figure 325.
Figure 326.
Figure 327.
Figure 328.
Figure 329.
Figure 330.
Figure 331.
Figure 332.
Figure 333.
Figure 334.
Figure 335.
Figure 336.
Figure 337.
Figure 338.
Figure 339.

16/363

Open SensorDemo project in the IDE toolchain. 298
Launching the SensorDemo project in Atollic® TrueStudio® 299
Viewing the SensorDemo project in Atollic® TrueStudio®. 299
Configuring the SensorDemo project in Atollic® TrueStudio® 300
Testing the SensorDemo application 301
Java™ Control Panel 303
Pinout view - Enablingthe RTC 303
Pinout view - Enabling LSE and HSE clocks 304
Pinout view - Setting LSE/HSE clock frequency. L. 304
BloCK Mapping 307
Block remappingo 308
Block remapping - Example 1. e 309
Block remapping - Example 2. 309
Block inter-dependency - SPI signals assignedto PB3/4/5 310
Block inter-dependency - SPI1_MISO function assignedto PAG6 311
One block = one peripheral mode - 12C1_SMBA function assignedtoPB5. 312
Block remapping - Example 2. 313
Function remapping example 313
Block shifting not applied 314
Block shifting applied 315
FreeRTOS HOOK functions to be completed by user 319
LwiIP 1.4.1 configuration 320
LwiIP 1.5 configuration 321
Libjpeg configuration window 323
Mbed TLS without LWIP 324
Mbed TLS with LwIP and FreeRTOS 325
Mbed TLS configuration window. 326
Enabling the TouchSensing peripheral. 327
Touch-sensing sensor selectionpanel i 328
TouchSensing configuration panel 329
BLE and Thread middleware support in STM32CubeMX. 330
STM32CubeWB Package download i 331
STM32CubeWB BLE applications folder 332
BLE Server profile selection 333
BLE Client profile selection. 333
Thread application selection. 334
Enabling OpenAmp for STM32MP1 devices i . 335
Enabling the Resource Manager for STM32MP1 devices 335
Resource Manager: peripheral assignmentview 336
STM32 microcontroller part numbering scheme 338
STM32Cube Embedded Software package i 344
UM1718 Rev 31 Kys

UM1718

STM32Cube overview

3

STM32Cube overview

STM32Cube is an STMicroelectronics original initiative to make developers’ lives easier by
reducing development effort, time and cost. STM32Cube covers the whole portfolio of
STM32 microcontrollers, based on 32-bit Arm®®) Cortex® cores.

STM32Cube includes:
e STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards.

e A comprehensive embedded software platform, delivered per Series (such as
STM32CubeF2 for STM32F2 Series and STM32CubeF4 for STM32F4 Series)

The STM32Cube HAL, STM32 abstraction layer embedded software ensuring
maximized portability across the STM32 portfolio

Low-layer APIs (LL) offering a fast light-weight expert-oriented layer which is
closer to the hardware than the HAL. LL APIs are available only for a set of
peripherals.

A consistent set of middleware components such as RTOS, USB, TCP/IP
All embedded software utilities, delivered with a full set of examples.

arm

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM1718 Rev 31 17/363

Getting started with STM32CubeMX UM1718

2

2.1

18/363

Getting started with STM32CubeMX

Principles

Customers need to quickly identify the MCU that best meets their requirements (core
architecture, features, memory size, performance...). While board designers main concerns
are to optimize the microcontroller pin configuration for their board layout and to fulfill the
application requirements (choice of peripherals operating modes), embedded system
developers are more interested in developing new applications for a specific target device,
and migrating existing designs to different microcontrollers.

The time taken to migrate to new platforms and update the C code to new firmware drivers
adds unnecessary delays to the project. STM32CubeMX was developed within STM32Cube
initiative which purpose is to meet customer key requirements to maximize software reuse

and minimize the time to create the target system:

e Software reuse and application design portability are achieved through STM32Cube
firmware solution proposing a common Hardware Abstraction Layer APl across STM32
portfolio.

e Optimized migration time is achieved thanks to STM32CubeMX built-in knowledge of
STM32 microcontrollers, peripherals and middleware (LwIP and USB communication
protocol stacks, FatFs file system for small embedded systems, FreeRTOS).

STM32CubeMX graphical interface performs the following functions:

e Fast and easy configuration of the MCU pins, clock tree and operating modes for the
selected peripherals and middleware

e Generation of pin configuration report for board designers

e Generation of a complete project with all the necessary libraries and initialization C
code to set up the device in the user defined operating mode. The project can be

directly open in the selected application development environment (for a selection of
supported IDEs) to proceed with application development (see Figure 1).

During the configuration process, STM32CubeMX detects conflicts and invalid settings and
highlights them through meaningful icons and useful tool tips.

3

UM1718 Rev 31

UM1718 Getting started with STM32CubeMX

Figure 1. Overview of STM32CubeMX C code generation flow

STM32 Microcontrollers
Reference Manual & Datasheets S§TM32CubeF4 Embedded Software Package

C projects,
Documentation, Utilities

Middleware Libraries
(freeRTOS, LwiP, USB, Graphics, etc.)

2O - —— © fev X &7

Drivers
BSP, CMSIS,
HAL(Hardware abstraction layer)
LL (Low level drivers)

STM32CubeMX generated C project
']

STM3IZCubeF4 Libraries Initialization Files
(Copied) (Generated C Coda)
) 4 et 4 ethement
b MR - - hwpc
b STMO2F4_HAL Derved & hmpopth - -
I = ok - i B el rapc
| Ml Bovens o [pny
k 5T - s | 4t il
| L. Third_Party [- an hostc
IDE Specific project files “ o cond PR
(Ganarated) :
S$TM32 Microcontroller configuration b EwaRM
using STM32CubeMX b MOK AR
b SWasTMIZ
Kys UM1718 Rev 31 19/363

Getting started with STM32CubeMX UM1718

2.2

20/363

Key features
STM32CubeMX comes with the following features:

Project management
STM32CubeMX allows the user to create, save and load previously saved projects:

— When STM32CubeMX is launched, the user can choose to create a new project or
to load a previously saved project.

— Saving the project saves user settings and configuration performed within the
project in an .ioc file to be used when the project will be loaded in STM32CubeMX
again.

STM32CubeMX also allows the user to import previously saved projects in new ones.

STM32CubeMX projects come in two flavors:

— MCU configuration only: .ioc file is saved in a dedicated project folder.

— MCU configuration with C code generation: in this case .ioc files are saved in a
dedicated project folder along with the generated source C code. There can be
only one .ioc file per project.

Easy MCU and STMicroelectronics board selection

When starting a new project, a dedicated window opens to select either a
microcontroller or an STMicroelectronics board from STM32 portfolio. Different filtering
options are available to ease the MCU and board selection. There is also the possibility
to select an MCU through the Cross selector tab by comparing characteristics to those
of competitors portfolio. Comparison criteria can be adjusted.

Easy pinout configuration

— From the Pinout view, the user can select the peripherals from a list and configure
the peripheral modes required for the application. STM32CubeMX assigns and
configures the pins accordingly.

— For more advanced users, it is also possible to directly map a peripheral function
to a physical pin using the Pinout view. The signals can be locked on pins to
prevent STM32CubeMX conflict solver from moving the signal to another pin.

— Pinout configuration can be exported as a .csv file.
Complete project generation

The project generation includes pinout, firmware and middleware initialization C code
for a set of IDEs. It is based on STM32Cube embedded software libraries. The
following actions can be performed:

— Starting from the previously defined pinout, the user can proceed with the
configuration of middleware, clock tree, services (RNG, CRC, etc...) and
peripheral parameters. STM32CubeMX generates the corresponding initialization
C code. The result is a project directory including generated main.c file and C
header files for configuration and initialization, plus a copy of the necessary HAL
and middleware libraries as well as specific files for the selected IDE.

— The user can modify the generated source files by adding user-defined C code in
user dedicated sections. STM32CubeMX ensures that the user C code is

3

UM1718 Rev 31

UM1718

Getting started with STM32CubeMX

3

preserved upon next C code generation (the user C code is commented if it is no
longer relevant for the current configuration).

— STM32CubeMX can generate user files by using user-defined freemarker ftl
template files.

— From the Project settings menu, the user can select the development toolchain
(IDE) for which the C code has to be generated. STM32CubeMX ensures that the
IDE relevant project files are added to the project folder so that the project can be
directly imported as a new project within third party IDE (IAR™ EWARM, Keil ™
MDK-ARM, Atollic® TrueSTUDIO® and AC6 System Workbench for STM32).

Power consumption calculation

Starting with the selection of a microcontroller part number and a battery type, the user
can define a sequence of steps representing the application life cycle and parameters
(choice of frequencies, enabled peripherals, step duration). STM32CubeMX Power
Consumption Calculator returns the corresponding power consumption and battery life
estimates.

Clock tree configuration

STM32CubeMX offers a graphic representation of the clock tree as it can be found in
the device reference manual. The user can change the default settings (clock sources,
prescaler and frequency values). The clock tree is then updated accordingly. Invalid
settings and limitations are highlighted and documented with tool tips. Clock tree
configuration conflicts can be solved by using the solver feature. When no exact match
is found for a given user configuration, STM32CubeMX proposes the closest solution.

Automatic updates of STM32CubeMX and STM32Cube MCU packages

STM32CubeMX comes with an updater mechanism that can be configured for
automatic or on-demand check for updates. It supports STM32CubeMX self-updates
as well as STM32Cube firmware library package updates. The updater mechanism
also allows deleting previously installed packages.

Report generation
.pdf and .csv reports can be generated to document user configuration work.
Graphics simulator

For graphics-capable microcontrollers, STM32CubeMX allows the user to simulate a
graphics configuration and adjust graphics parameters to optimize the performance.
Once the results are satisfactory, the current project configuration can be adjusted
accordingly.

Support of embedded software packages in CMSIS-Pack format

STM32CubeMX allows getting and downloading updates of embedded software
packages delivered in CMSIS-Pack format. Selected software components belonging
to these new releases can then be added to the current project.

Contextual help

Contextual help windows can be displayed by hovering the mouse over Cores, Series,
Peripherals and Middleware. They provide a short description and links to the relevant
documentation corresponding to the selected item.

UM1718 Rev 31 21/363

Getting started with STM32CubeMX UM1718

2.3 Rules and limitations

e C code generation covers only peripheral and middleware initialization. It is based on
STM32Cube HAL firmware libraries.

e STM32CubeMX C code generation covers only initialization code for peripherals and
middleware components that use the drivers included in STM32Cube embedded
software packages. The code generation of some peripherals and middleware
components is not yet supported.

o Refer to Appendix A for a description of pin assignment rules.

e Refer to Appendix B for a description of STM32CubeMX C code generation design
choices and limitations.

3

22/363 UM1718 Rev 31

UM1718

Installing and running STM32CubeMX

3

3.1

3.1.1

3.1.2

3.1.3

3.2

3.2.1

3

Installing and running STM32CubeMX

System requirements

Supported operating systems and architectures

e Windows® 7: 32-bit (x86), 64-bit (x64)

e Windows® 8: 32-bit (x86), 64-bit (x64)

e Windows® 10: 32-bit (x86), 64-bit (x64)

e Linux®: 32-bit (x86) and 64-bit (x64) (tested on RedHat, Ubuntu and Fedora)

Since STM32CubeMX is a 32-bit application, some versions of Linux 64-bit
distributions require to install 32-bit compliant packages such as ia32-libs.

e macOS®: 64-bit (x64) (tested on OS X El Capitan and Sierra)

Memory prerequisites

e Recommended minimum RAM: 2 Gbytes.

Software requirements

The Java™ Run Time Environment 1.8 must be installed.

Note that Java 9 and Java 10 are not supported and there is limited validation done with
Java 11.

After Oracle announcement related to ‘End of Public Updates for Oracle JDK 8’, you can
access OpendDK 8 via https://adoptopenjdk.net/.

Installing/uninstalling STM32CubeMX standalone version

Installing STM32CubeMX standalone version

To install STM32CubeMX, follow the steps below:
1. Download STM32CubeMX installation package from www.st.com/stm32cubemx.
2. Extract (unzip) stm32cubemx.zip whole package into the same directory.
3. Check your access rights and launch the installation wizard:
On Windows®:
a) Make sure you have administrators rights.

b) Double-click the SetupSTM32CubeMX-VERSION.exe file to launch the
installation wizard.

On Linux®:
a) Make sure you have access rights to the target installation directory. You can run
the installation as root (or sudo) to install STM32CubeMX in shared directories.

b) Do "chmod 777 SetupSTM32CubeMX-5.0.0.linux" to change the properties, so
that the file is executable.

UM1718 Rev 31 23/363

Installing and running STM32CubeMX UM1718

Note:

24/363

c) Double-click on the SetupSTM32CubeMX-VERSION.linux file, or launch it from
the console window.

On macOS®:
a) Make sure you have administrators rights.

b) Double- click SetupSTM32CubeMX-VERSION application file to launch the
installation wizard.
In case of error, launch the .exe file with the following command:
sudo java -jar SetupSTM32CubeMX-4.14.0.exe.

4. Upon successful installation of STM32CubeMX on Windows, STM32CubeMX icon is
displayed on your desktop and STM32CubeMX application is available from the
Program menu. STM32CubeMX .ioc files are displayed with a cube icon. Double-click
them to open up them using STM32CubeMX.

5. Delete the content of the zip from your disk.

If the proper version of the Java™ Runtime Environment (version 1.7_45 or newer) is not
installed, the wizard proposes to download it and stop. Restart STM32CubeMX installation
once Java™ installation is complete. Refer to Section 18: FAQ for issues when installing the
JRE.

When working on Windows, only the latest installation of STM32CubeMX is enabled in the
Program menu. Previous versions can be kept on your PC (not recommended) when
different installation folders have been specified. Otherwise, the new installation overwrites
the previous ones.

3

UM1718 Rev 31

UM1718

Installing and running STM32CubeMX

3.2.2

3

Installing STM32CubeMX from command line

There are two ways to launch an installation from a console window: either in console
interactive mode or via a script.

Interactive mode

To perform interactive installation, type the following command:
java -jar SetupSTM32CubeMX-4.14.0.exe -console

At each installation step, an answer is requested (see Figure 2).

Figure 2. Example of STM32CubeMX installation in interactive mode
E8 Administrator: CAWindows\system32cmd.exe |ﬂ‘éj

Press 1 to accept, 2 to reject, 3 to redisplay
1

Select target path [C:“Program Files“5TMicroelectronics~53TM32Cube~5TH3I2CubeM®]
C:“Program Files“M:&
et uninstallMame=8TM32CubeMX(3>

Press 1 to continue, 2 to guit. 3 to redisplay
1

Create shortcuts in the Start—Menu

Enter ¥ for Yes, N for No:

n

Create additional shortcuts on the desktop
Enter ¥ for Yes. N for No:

ul

create shortcut for: all users

Enter ¥ for Yes. N for MNo:

n

[Starting to unpack 1

[Processing package: Core <1-3) 1

[Processzing package: 0ld DataBases (2-3> 1
[Proceszing package: Help <3-3) 1

[Unpacking finished 1

Generate an automatic installation script
Enter ¥ for Yes, N for No:

n
Installation was successful

application installed on C:“Program Files-Mid
[Writing the uninstaller data ...

[Console installation done 1

C:Uzeprs™ >

UM1718 Rev 31 25/363

Installing and running STM32CubeMX UM1718

Auto-install mode

At end of an installation, performed either using STM32CubeMX graphical wizard or console
mode, it is possible to generate an auto-installation script containing user preferences (see
Figure 3).

Figure 3. STM32Cube Installation Wizard

-
&7 STM32CubeMX Installation Wizard (=] [

STM32CubeMX Installation done m

Installation has completed successfully.

An uninstaller program has been created in:
C:\Program Files\S TMicroelectronics\S TM32Cube\STM32CubeM¥_5.0.0\Uninsta...

STMicroelectronics

You can then launch the installation by typing the following command:
java —jar SetupSTM32CubeMX-4.14.0.exe auto-install.xml

3

26/363 UM1718 Rev 31

UM1718 Installing and running STM32CubeMX

Figure 4. Auto-install command line

-

~
Administrator: C:\Windows\system32\cmd.exe {ilgli-j

he STM32CubeM® installer you are attempting to run seems to have a copy already
running.

his could bhe from a previous failed installation attempt o» you may have accide
Intally launched
the installer twice. The recommended action is to select ’No’ and wait for the ol
ther copy of
the installer to start. If you are sure there is no other copy of the installer
running, click
the ’‘Yes’ button to allow this installer to run.

Are you sure you want to continue with this installation?
Enter ¥ for Yes, N for No:

Y
[Starting automated installation 1]
set uninstallName=8TM32CubeMX{2>

Starting to unpack 1]

Processing package: Core <1/3> 1
Processing package: 0ld DataBases (2/3> 1
Processing package: Help <(3/3>

Unpacking finished 1

Writing the uninstaller data ... 1
Automated installation done]

3.2.3 Uninstalling STM32CubeMX standalone version
Uninstalling STM32CubeMX on macOS®

To uninstall STM32CubeMX on macOS use the following command line:

java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

Uninstalling STM32CubeMX on Linux®

There are three different ways to uninstall STM32CubeMX on Linux:
e By using the following command line
java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.
e Through a Windows Explorer window:
a) Use afile explorer.
b) Go to the Uninstaller directory of STM32CubeMX installation.
c) Double-click the start uninstall desktop shortcut.

Uninstalling STM32CubeMX on Windows®

There are three different ways to uninstall STM32CubeMX on Windows:
e By using the following command line
java -jar <STM32CubeMX installation path>/Uninstaller/uninstaller.jar.

e Through a Windows Explorer window:

a) Use afile explorer.

b) Go to the Uninstaller directory of STM32CubeMX installation.

c) Double-click the start uninstall desktop shortcut.
e Through the Windows Control Panel:

a) Select Programs and Features from the Windows Control Panel to display the
list of programs installed on your computer.

b) Right-click STM32CubeMX and select uninstall.

3

UM1718 Rev 31 271363

Installing and running STM32CubeMX UM1718

3.3

3.3.1

Note:

3.3.2

28/363

Launching STM32CubeMX

Running STM32CubeMX as standalone application

To run STM32CubeMX as a standalone application on Windows:
e select STM32CubeMX from Program Files > ST Microelectronics > STM32CubeMX.
e or double-click STM32CubeMX icon on your desktop.

To run STM32CubeMX as a standalone application on Linux, launch the STM32CubeMX
executable from STM32CubeMX installation directory.

To run STM32CubeMX as a standalone application on macOS®, launch the STM32CubeMX
application from the launchpad.

There is no STM32CubeMX desktop icon on macOS®.

Running STM32CubeMX in command-line mode

To facilitate its integration with other tools, STM32CubeMX provides a command-line mode.
Using a set of commands, you can:

e load an MCU

e load an existing configuration

e save a current configuration

e set project parameters and generate corresponding code

e generate user code from templates

e load a board identified through its part number

e refresh the list of embedded software packages (packs and STM32Cube MCU
packages) and install/remove a package

e select additional software (packs) components to add to the project.

Three command-line modes are available:
e Torun STM32CubeMX in interactive command-line mode, use the following command
line:
— On Windows:
java -jar STM32CubeMX.exe -1
- On Linux® and macOS®:
java -jar STM32CubeMX -i

The “MX>" prompt is then displayed to indicate that the application is ready to accept
commands.

e Torun STM32CubeMX in command-line mode getting commands from a script, use
the following command line:

— On Windows:

java -jar STM32CubeMX.exe -s <script filename>
— On Linux and macOS:

java -jar STM32CubeMX -s <script filename>

All the commands to be executed must be listed in the script file. An example of script
file content is shown below:

load STM32F417VETx

UM1718 Rev 31 ‘Yl

UM1718

Installing and running STM32CubeMX

project name MyFirstMXGeneratedProject

project toolchain "MDK-ARM v4"
project path C:\STM32CubeProjects\STM32F417VETx

project generate

exit

e Torun STM32CubeMX in command-line mode getting commands from a scripts and

without Ul, use the following command line:
— On Windows:
java -jar STM32CubeMX.exe -g <script filename>

— On Linux and macOS:

java -jar STM32CubeMX -g <script filename>
Here again, the user can enter commands when the MX prompt is displayed.

See Table 1 for the list of available commands.

Table 1. Command line summary

Command line

Purpose

Example

help

Displays the list of available commands.

help

swmgr refresh

Refreshes the list of embedded
software package versions available for
download.

swmgr refresh

swmgr install
stm32cube_<series>
_<version> <license-mode
(accept|ask)>

Installs the specified STM32Cube MCU

package version.

The second parameter license-mode is

mandatory but really matters for

packages coming with a license:

— accept: the license is automatically
accepted.

— ask: the license is presented in a
popup window for the user to accept.

swmgr install stm32cube_f1_1.8.0
accept

swmgr remove
stm32cube_<series>

Removes the specified STM32Cube
MCU package version.

swmgr remove stm32cube_f1_1.8.0

<packVendor>.<packName>.

<packVersion> <license-mode
(accept|ask)>

_<version>
Installs the specified pack version.
The second parameter license-mode is
swmgr install mandatory but really matters for

packages coming with a license:

— accept: the license is automatically
accepted.

— ask: the license is presented in a
popup window for the user to accept.

swmgr install STMicroelectronics.
X-CUBE-NFC4.1.4.1 ask

swmgr remove
<packVendor>.<packName>.
<packVersion>

Removes the specified pack version.

swmgr remove STMicroelectronics.
X-CUBE-BLE1.4.2.0

swmgr install <filename path>
<license-mode (accept|ask)

Installs an embedded software
package.

swmgr install
"C:\repo\packs\STMicroelectronics.
X-CUBE-BLE1.4.2.0.pack" accept

S74

UM1718 Rev 31

29/363

Installing and running STM32CubeMX

UM1718

Table 1. Command line summary (continued)

Command line

Purpose

Example

pack enable <vendor>
<pack>[/bundle] <version>
<class> <group>[/subgroup]
[variant]

Selects a software pack component to
add in the project.

The presence of the “/” in the second
and/or the fifth parameter(s) indicates
respectively the explicit mention of a
bundle and/or a subgroup (reference:
ARM CMSIS pack pdsc format).

To find out the
pack/bundle/class/group/subgroup
names of the component to enable,
select the component and click
“Hide/Show details” from the Additional
software window.

pack enable STMicroelectronics “X-
CUBE-BLE1/BlueNRG-MS” 1.0.0
"Wireless" "Controller"

pack validate

Applies in the project all pack
components enabled since the “pack
validate” command was last called.

pack validate

load <mcu>

Loads the selected MCU.

load STM32F101RCTx
load STM32F101Z(F-G)Tx

load <board part number>
<allmodes|nomode>

Loads the selected board with all
peripherals configured in their default
mode (allmodes) or without any
peripheral configuration (nomode).

loadboard NUCLEO-F030RS8 allmodes
loadboard NUCLEO-F030R8 nomode

config load <filename>

Loads a previously saved configuration.

config load C:\Cube\ccmram\ccmram.ioc

config save <filename>

Saves the current configuration.

config save
C:\Cube\ccmram\ccmram.ioc

config saveext <filename>

Saves the current configuration with all
parameters, including those for which
values have been kept to default
(unchanged by the user).

config saveext
C:\Cube\ccmram\ccmram.ioc

config saveas <filename>

Saves the current project under a new
name.

config saveas
C:\Cube\ccmram2\ccmram2.ioc

csv pinout <filename>

Exports the current pin configuration as
a csv file. This file can be (later)
imported into a board layout tool.

Csv pinout mypinout.csv

script <filename>

Runs all commands in the script file.
There must be one command per line.

script myscript.txt

project couplefilesbyip <0|1>

This code generation option allows the
user to choose between 0 (to
generating the peripheral initializations
in the main) or 1 (to generate each
peripheral initialization in dedicated
.cl.h files).

project couplefilesbyip 1

30/363

UM1718 Rev 31

3

UM1718

Installing and running STM32CubeMX

Table 1. Command line summary (continued)

Command line

Purpose

Example

setDriver <Peripheral Name>
<HAL | LL>

For supported Series, STM32CubeMX
can generate peripheral initialization
code based on LL drivers or on HAL
drivers.

This command line allows the user to
choose, for each peripheral, between
HAL-based and LL-based code
generation.

By default code generation is based on
HAL drivers.

setDriver ADC LL
setDriver 12C HAL

generate code <path>

Generates only “STM32CubeMX
generated” code and not a complete
project that would include STM32Cube
firmware libraries and Toolchains
project files.

To generate a project, use “project
generate”.

generate code C:\mypath

set tpl_path <path>

Sets the path to the source folder
containing the .ftl user template files.
All the template files stored in this folder
are used for code generation.

set tpl_path C:\myTemplates\

set dest_path <path>

Sets the path to the destination folder
that will hold the code generated
according to user templates.

set dest_path C:\myMXProject\inc\

get tpl_path

Retrieves the path name of the user
template source folder

get tpl_path

get dest_path

Retrieves the path name of the user
template destination folder.

get dest_path

project toolchain <toolchain>

Specifies the toolchain to be used for
the project.

Use the “project generate” command to
generate the project for that toolchain.

project toolchain EWARM
project toolchain “MDK-ARM V4~
project toolchain “MDK-ARM V5”
project toolchain TrueSTUDIO
project toolchain SW4STM32

project name <name>

Specifies the project name.

project name ccmram

project path <path>

Specifies the path where to generate
the project.

project path C:\Cube\ccmram

project generate

Generates the full project.

project generate

exit

Ends STM32CubeMX process.

exit

3

UM1718 Rev 31

31/363

Installing and running STM32CubeMX UM1718

3.4 Getting updates using STM32CubeMX

STM32CubeMX implements a mechanism to access the Internet and to:

e download embedded software packages: STM32Cube MCU packages (full releases
and patches) and third-party packages (.pack) based on the Arm® CMIS pack format

e manage a user-defined list of third-party packs

e check for STM32CubeMX and embedded software packages updates
e perform self-updates of STM32CubeMX

e refresh STM32 MCUs descriptions and documentation offer.

Installation and update related submenus are available under the Help menu.

Off-line updates can also be performed on computers without Internet access (see
Section 3.4.2). This is done by browsing the filesystem and selecting available STM32Cube
MCU packages.

If the PC on which STM32CubeMX runs is connected to a computer network using a proxy
server, STM32CubeMX needs to connect to that server to access the Internet, get self-
updates and download firmware packages. Refer to Section 3.4.1 for a description of this
connection configuration.

To view Windows default proxy settings, select Internet options from the Control panel and
select LAN settings from the Connections tab (see Figure 5).

Figure 5. Displaying Windows default proxy settings
& Internet Properties |M‘

General] Secuntyl Privacy | Content | Connections | Programs | Advanced

—9 To set up an Internet connection, click Setup

Setup.

Dial-up and Virtual Private Network settings

add.. |

‘ AddVEN... |

‘ Choose Settings if you need to configure a proxy Sett
server for a connection.

LAN Settings do not apply to dial-up [LAN settings 3
connections. Choose Settings above for dial-up -

settings.

‘ Local Area Network (LAN) settings

0K Cancel

3

32/363 UM1718 Rev 31

UM1718

Installing and running STM32CubeMX

3.4.1

3

Several proxy types exist and different computer network configurations are possible:

Without proxy: the application directly accesses the web (Windows default
configuration).

Proxy without login/password

Proxy with login/password: when using an Internet browser, a dialog box opens and
prompts the user to enter its login/password.

Web proxies with login/password: when using an Internet browser, a web page opens
and prompts the user to enter its login/password.

If needed, contact your IT administrator for proxy information (proxy type, http address,
port).

STM32CubeMX does not support web proxies. In this case, the user cannot benefit from the
update mechanism and has to manually copy the STM32Cube MCU packages from
http://www.st.com/stm32cube to the repository. To do it, follow the sequence below:

1.

Go to http://lwww.st.com/stm32cube and download the relevant STM32Cube MCU
package from the Associated Software section.

Unzip the zip package to your STM32Cube repository. Find out the default repository
folder location in the Updater settings tab as shown in Figure 6 (you might need to
update it to use a different location or name).

Updater configuration

To perform STM32Cube new library package installation or updates, the tool must be
configured as follows:

1.
2.

Select Help > Updater Settings to open the Updater Settings window.
From the Updater Settings tab (see Figure 6)

a) Specify the repository destination folder where the downloaded packages will be
stored.

b) Enable/Disable the automatic check for updates.

UM1718 Rev 31 33/363

Installing and running STM32CubeMX

UM1718

34/363

Figure 6. Updater Settings window

[@ Updater Settings

mei=

Updater Settings

Connection Parameters

Firmware Repository

Repository Folder

[C:\Users\JohnDoe\STM32Cube'\Repository

Check and Update Settings

O Manual Check

@ Automatic Check Interval between two Checks (days)

Data Auto-Refresh

O Mo Auto-Refresh at Application start
@ Auto-Refresh Data-only at Application start
O Auto-Refresh Data and Docs at Application start

Interval between two data-refreshs (days)

In the Connection Parameters tab, specify the proxy server settings appropriate for
your network configuration by selecting a proxy type among the following possibilities

(see Figure 7):
— No Proxy
— Use System Proxy Parameters

On Windows, proxy parameters are retrieved from the PC system settings.
Uncheck “Require Authentication” if a proxy server without login/password

configuration is used.
— Manual Configuration of Proxy Server

Enter the Proxy server http address and port number. Enter login/password
information or uncheck “Require Authentication” if a proxy server without

login/password configuration is used.

Optionally uncheck Remember my credentials to prevent STM32CubeMX to save
encrypted login/password information in a file. This implies reentering login/password

information each time STM32CubeMX is launched.

Click the Check Connection button to verify if the connection works. A green check

mark appears to confirm that the connection operates correctly ’

UM1718 Rev 31

Q/? Check Connection]

3

UM1718

Installing and running STM32CubeMX

3

Figure 7. Connection Parameters tab - Manual Configuration of Proxy Server

[Updater Settings

~Authentication

meim

Updater Settings | Connection Parameters

« Proxy Server Type

O No Proxy
O Use System Proxy Parameters
@ Manual Configuration of Proxy Server

«Manual Configuration of Proxy Server

Proxy HTTP [myproxy.mycompany.com

| Port [080 |

Require Authentication Remember my Credentials

User Lagin [JohnDoe

Password |ooo----------ooo-

& Check Connection

Select Help > Install New Libraries submenu to select among a list of possible

packages to install.

If the tool is configured for manual checks, select Help > Check for Updates to find out
about new tool versions or firmware library patches available to install.

UM1718 Rev 31

35/363

Installing and running STM32CubeMX UM1718

3.4.2

36/363

Installing STM32 MCU packages
To download new STM32 MCU packages, follow the steps below:

1.

2.

Select Help > Manage embedded software packages to open the Embedded
Software Packages Manager (see Figure 8), or use Install/Remove button from the
Home page.

Expand/collapse buttons == = expands/collapses the list of packages,
respectively.

If the installation was performed using STM32CubeMX, all the packages available for
download are displayed along with their version including the version currently installed
on the user PC (if any), and the latest version available from www.st.com.

If no Internet access is available at that time, choose “From Local ...”, then browse to
select the zip file of the desired STM32Cube MCU package that has been previously
downloaded. An integrity check is performed on the file to ensure that it is fully
supported by STM32CubeMX.

The package is marked in green when the version installed matches the latest version
available from www.st.com.

Click the checkbox to select a package then “Install Now” to start the download.

See Figure 8 for an example.

Figure 8. Embedded Software Packages Manager window

[@ Embedded Software Packages Manager ﬁ

| ! STM32Cube MCU Packages and embedded software packs releases

STM32Cube MCU Packages | STMicroelectronics

| [Description Installed Version

> STM32F3 '
¥ STM32F4

] STM32Cube MCU Package for STM32F4 Series (Size : 648 MB) 1.22.0RC1

[] STM32Cube MCU Package for STM32F4 Series 1210 1210

[| STM32Cube MCU Package for STM32F4 Series 1.19.0 1.19.0

Details

Releases Information was last refreshed 2 hours ago.

STM32CubeF4 Firmware Package V1.21.0 / 23-February-2018
Main Changes
® General updates to fix known defects and enhancements implementation.
& Add new STemWin applications for STM32F4x0T EVAL, STM32F429I-Discovery, STM32F469_EVAL and
STM32F469-Discovery platforms.

3

UM1718 Rev 31

UM1718 Installing and running STM32CubeMX
343 Installing STM32 MCU package patches
Use the procedure described in Section 3.4.2 to download STM32 MCU package patches.
A library patch, such as STM32Cube FW_F7_1.4.1, can be easily identified by its version
number which third digit is non-null (e.g. ‘1’ for the 1.4.1 version).
The patch is not a complete library package but only the set of library files that need to be
updated. The patched files go on top of the original package (e.g.
STM32Cube FW_F7_1.4.1 complements STM32Cube FW_F7_1.4.0 package).
Prior to 4.17 version, STM32CubeMX copies the patches within the original baseline
directory (e.g. STM32Cube_FW_F7_V1.4.1 patched files are copied within the directory
called STM32Cube_FW_F7_V1.4.0).
Starting with STM32CubeMX 4.17, downloading a patch leads to the creation of a dedicated
directory. As an example, downloading STM32Cube FW_F7_V1.4.1 patch creates the
STM32Cube FW_F7_V1.4.1 directory that contains the original
STM32Cube FW_F7_V1.4.0 baseline plus the patched files contained in
STM32Cube FW_F7_V1.4.1 package.
Users can then choose to go on using the original package (without patches) for some
projects and upgrade to a patched version for others projects.
344 Installing embedded software packs

3

Starting from the release 4.24, STM32CubeMX offers the possibility to select third-party
embedded software packages coming in the Arm® Keil™ CMSIS-Pack format (.pack),
whose contents are described thanks to the pack description (.pdsc) file. Reference
documentation is available from http://www.keil.com.

1. Select Help > Manage embedded software packages to open the New Libraries
Manager window (see Figure 9), or use Install/Remove button from the Home page.

Use Expand/collapse buttons <= = to expand/collapse the list of packages,
respectively.

UM1718 Rev 31 37/363

Installing and running STM32CubeMX UM1718

Figure 9. Managing embedded software packages - Help menu

11 Embedded Software Packages Manager ﬂ

STM32Cube MCU Packages and embedded software packs releases

L —
m Releases Information was last refreshed 2 hours ago
=
ac 25

¥ X-.CUBE-BLE1 ﬁ X-Cube-BLE1 pack

[] BLE stack and sample applications for BlueNRG-MS module 1.1.0

Details

Click Refresh to retrieve
the latest versions

!

2. Click From Local ... button to browse the computer filesystem and select an
embedded software package. STM32Cube MCU packages come as zip archives and
embedded software packs come as .pack archives.

This action is required in the following cases:

— No Internet access is possible but the embedded software package is available
locally on the computer.

— The embedded software package is not public and hence not available on
Internet. For such packages, STM32CubeMX cannot detect and propose updates.

3. Click From URL... button to specify the download location from Internet for either one
of the pack .pdsc file or the vendor pack index (.pidx).

Proceed as follow:
a) Choose From URL ... and click New (see Figure 10).

b) Specify the .pdsc file url. As an example, the url of Oryx-Embedded middleware
pack is https://www.oryx-embedded.com/download/pack/Oryx-
Embedded.Middleware.pdsc (see Figure 11).

3

38/363 UM1718 Rev 31

UM1718 Installing and running STM32CubeMX

Figure 10. Managing embedded software packages - Adding new url

[user Defined Packs Manager | £ |

ﬂ Manage Urls for user defined embedded software packs

T T I I

[Add new Url | X

To add packs, please enter url to either one of the following:
- Avalid pdsc (Ex: httpc/fwww.vendor.com/pack/\endor.PackMame.pdsc
- Avalid pack index (Ex: http:/fwww vendor.com/pack/Vendor.pidx)

I |
Check oK

m Remove Ok Cancel

c) Click the Check button to verify that the url provided is valid (see Figure 11).

Figure 11. Checking the validity of vendor pack.pdsc file url

[Add new Url -

To add packs, please enter url to either one of the following:
- Avalid pdsc (Ex: http2/www vendor com/pack/Vendor. PackMName. pdsc
- A valid pack index [Ex: http:/fwww vendor.com/pack/NVendor_pidx)

[http:/fwww_oryx-embedded com/download/pack/Onyc-Embedded Middleware pdsc |

Check oK

3

UM1718 Rev 31 39/363

Installing and running STM32CubeMX UM1718

d) Click OK. The pack pdsc information is now available in the user defined pack list
(see Figure 12).

To delete a url from the list, select the url checkbox and click Remove.

Figure 12. User-defined list of software packs

ﬂ Manage Urls for user defined embedded software packs

|l wveor | ___mName | k|
[0 Oryx-Embedded Middleware http:/ffwww_oryx-embedded.com/download/pack/Oryx-Embedded Middleware pdsc

i

I

l ET Remove ! oK

e) Click OK to close the window and start retrieving psdc information. Upon
successful completion, the available pack versions are shown in the list of libraries
that can be installed. Use the corresponding checkbox to select a given release.
Figure 13. Selecting an embedded software pack release
[[Embedded Software Packages Manager M1

I E STM32Cube MCU Packages and embedded software packs releases

+ -

Releases Information was last refreshed less than one hour ago.

Cube MCU Packages | COBgEEmMbBedded™| STMicroelectronics

| | Description Available Version

v Middleware

Middleware Package (CycloneTCP, Cyclone35L and CycloneCrypto) (Size : 10.28 MB) 182
(] Middleware Package (CycloneTCP, CycloneSSL and CycloneCrypto) (Size - 10.9 MB) 1.8.0
] Middleware Package (CycloneTCP, CycloneS5L and CycloneCrypto) 178
(] Middleware Package (CycloneTCP, Cyclone35L and CycloneCrypto) (Size : 6.6 MB) 1.7.6
Details

1.8.2:

- CoAP clientimplementation {including support for DTLS-secured CoAP, Observe and Block-Wise Transfers)
- Support for TLS/DTLS Raw Public Keys (RPK)

- Support for ECOH key exchange based on X25519 and X448

- Support for Curve25519 and Curve44s elliptic curves (constant time implementation)

- Support for SHA3 hash algorithm for digital signatures (RSA, DSA and ECDSA)

- Added RCZ2 block cipher

- Added HKDF (HMAC-based Key Derivation Function)

- Added support for SNMP-MPD-MIB database (RFC 3412)

40/363 UM1718 Rev 31 ‘Yl

UM1718

Installing and running STM32CubeMX

3

f) Click Install Now to start downloading the software pack. A progress bar opens to
indicate the installation progress. If the pack comes with a license agreement, a
window pops up to ask for user’s acceptance (see Figure 14). When the

installation is successful, the check box turns green (see Figure 15).

The user can then add software components from this pack to its projects.

Figure 14. License agreement acceptance

-

[I7 Licensing Agreement

=

Oryx-Embedded Middleware 1.8.2 License Agreement

Please read and accept the following agreement carefully to finish the installation:

GNU GENMEBRAL PUBLIC LICENSE
Version 2, June 1951

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

875 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute werbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most scftware are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

T mmemmm S G emdm] e mmmn o mmimemidm e mmmamm T S, TP [, B

@ | accept the terms of this license agreement

O | do not accept the terms of this license agreement

“riisn | cmesl

T

UM1718 Rev 31

41/363

Installing and running STM32CubeMX UM1718

3.4.5

42/363

Figure 15. Embedded software pack release - Successful installation

[I1 Embedded Software Packages Managejl ‘ u

i E STM32Cube MCU Packages and embedded software packs releases

Releases Information was last refreshed less than one hour ago.

STM32Cube MCU Packages OnpeEmbedded | STMicroelectronics

| | Description Available Version

v Middleware

[] Middleware Package (CycloneTCP, CycloneSSL and CycloneCrypto) 182
(] Middleware Package (CycloneTCP, Cyclone35L and CycloneCrypto) (Size : 10.9 MB) 18.0
= Middleware Package (CycloneTCP, CycloneSSL and CycloneCrypto) 1.7.8
(] Middleware Package (CycloneTCP, CycloneSSL and CycloneCrypto) (Size - 6.6 MB) 1.7.6
Details

Removing already installed embedded software packages
Proceed as follows (see figures 76 to 18) to clean up the repository from old library versions,
thus saving disk space:

1. Select Help > Manage embedded software packages to open the Embedded
Software Packages Manager, or use Install/Remove button from the Home page.

2. Click a green checkbox to select a package available in stm32cube repository.

3. Click the Remove Now button and confirm. A progress window then opens to show the
deletion status.

UM1718 Rev 31

3

UM1718

Installing and running STM32CubeMX

3

Figure 16. Removing libraries

—
[! Embedded Software Packages Manager

B STM32Cube MCU Packages and embedded software packs releases +
Releases Information was last refreshed less than one hour ago.
STM32Cube MCU Packages -Embedded | STMicroelectronics
| | Description Installed Version | Available Version

» STM32F3 '

v STM32F4

STM32Cube MCU Package for STM32F4 Series

B STM32Cube MCU Package for STM32F4 Series

Details

STM32CubeF4 Firmware Package V1.19.0 / 29-december-2017
Main Changes

@ HAL CAN driver has been redesigned with new API's.
@ Support latest mbedTLS, LwIP and FatFs stacks.

From Local ... Refresh Install Mow Remaove Now

Figure 17. Removing library confirmation message

You are about to remove the following package(s) :
Please note: Once package will be removed, You will not anymore be able to generate projects that were based on this package.

-FW.F4.1.19.0 (C:\WUsersifrg09031\STM32Cube'\RepositorASTM32Cube_FW_F4_V1.19.0)

Please confirm package(s) deletion

Figure 18. Library deletion progress window

-
[@] Remove selected Firmware n

Preparing to delete selected Files._.

Preparing to delete selected Firmware Packs__

| |

UM1718 Rev 31 43/363

Installing and running STM32CubeMX UM1718

3.4.6 Checking for updates

STM32CubeMX can check if updates are available for STM32CubeMX currently installed
version or for the embedded software packages installed in the repository folder (Figure 19).

When the updater is configured for automatic checks, it regularly verifies if updates are
available.

When automatic checks have been disabled in the updater settings window, the user can
manually check if updates are available:

1. Click the icon to open the Update Manager window or Select Help > Check for
Updates. All the updates available for the user current installation are listed.

2. Click the check box to select a package, and then Install Now to download the update.
Figure 19. Help menu: checking for updates

[@ Check Update Manager u

E Updates are available for STM32CubeMX, STM32Cube MCU Packages.

Update Information was last refreshed less than one hour ago.

new STM32CubeMX Release

MX.5.0.0

o Mew version of STM32CubeMX Software
|
new STM32Cube MCU Package releases

o FW.L4.1.13.0

STM32Cube MCU Package for STM32Ldxx Series. (Size - 777 MB).
o FW.L0.1.11.0

STM32Cube MCU Package for STM32L0xxx Series. (Size - 101 MB).
o FW.H7.1.5.0

STM32Cube MCU Package for STM32HTxx Series. (Size : 230 MB).

Details

STM32Cubel0 Firmware Package V1.11.0/ 17-September-2018
Main Changes

Introduced STM32CubeL0 Value Lines.

@ Fixed known defects and several enhancements implementation.
& Upgrade to use STM32 TouchSensing Library V2.2.0.

® Upgrade to use STM32 USB Device Library V2.5.0.

& Upgrade to use FreeRTOS V10.0.1 (5T modified 201804097,

- I Tnmrnda #aica EatBES PO 1%~ QT maadifiad 301711174

Refresh Install Now

44/363 UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

4

3

STM32CubeMX user interface

STM32CubeMX user interface comes with three main views the user can navigate through
using convenient breadcrumbs:

1. the Home page

2. the New project window

3. the project page

They come with panels, buttons and menus allowing users to take actions and make
configuration choices with a single click.

The user interface is detailed in the following sections.

For C code generation, although the user can switch back and forth between the different
configuration views, it is recommended to follow the sequence below:

1. From the Project Manager view, configure the project settings.

2. From the Mode panel in the Pinout & Configuration view, configure the RCC
peripheral by enabling the external clocks, master output clocks, audio input clocks
(when relevant for your application). This automatically displays more options on the
Clock configuration view (see Figure 95). Then, select the features (peripherals,
middlewares) and their operating modes relevant to the application.

3. If necessary, adjust the clock tree configuration from the clock configuration view.

4. From the Configuration panel in the Pinout & Configuration view configure the
parameters required to initialize the peripherals and middleware operating modes.

5. Generate the initialization C code by clicking | =l5/[=:7) (= +e]s1 =

UM1718 Rev 31 45/363

STM32CubeMX user interface UM1718

4.1 Home page

The Home page is the first window that opens up when launching STM32CubeMX program
(see Figure 20). Closing it closes down the application. It offers shortcuts for some top level
menus and access to social networks sites. Top-level menus and social network links
remain accessible from the subsequent project page and are detailed in the following

sections.
Figure 20. STM32CubeMX Home page
[sTM32CubeMx - O x |
e @ Filo Window e © oY > Gy

Home 2 STM32GA31CET:

Existing Projects New Project Manage software installations

Recent Opened Projects Check for STM32CubeMX and embedded software pac.

I need to :

test_blepack_advanced. ioc CHECK FOR UPDATES
Last modified date - 2207/2019 18:51:52 ojec
TO MCU R Install or remove embedded software packages
test_multiMW_advanced.ioc B e S
Last modified date - 22/07/2019 18:45:43 INSTALL / REMOVE
My
Colhe 50 = ACCESS T6) BOARD SELECTOR
Slart My project fros . . : "
- R for Industrial and loT applications

ACCESS TO CROSS SELECTOR

A

17 o

STM3ZMP1 @

3

3

46/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface
4.1.1 File menu
Refer to Table 2 for a description of the File menu and shortcuts.
Table 2. Home page shortcuts
Name .
Keyboard shortcut Description Home page shortcut

New Project...
Ctrl-N

Opens a new project window showing
all supported MCUs and a set of
STMicroelectronics boards to choose
from(®).

To create a new project starting from a board click

To create a new project starting from an MCU click

ACCESS TO MCU SELECTOR

Load Project...
Ctrl-L

Loads an existing STM32CubeMX
project configuration by selecting an
STM32CubeMX configuration .ioc file
(see Caution:).

Under Other project, click browse icon E?

WA

Import Project...

Opens a new window to select the
configuration file to be imported as
well as the import settings. The import

Ctrl-1 is possible only if you start from an None
empty MCU configuration. Otherwise,
the menu is disabled(®).
Saves current project configuration
(pinout, clock tree, peripherals,
S Proiect middlewares, Power Consumption
avgtﬂrgjec Calculator) as a new project. None
This action creates a project folder
including an .ioc file, according to user
defined project settings.
Save Project as... .
Ctrl-A Saves the current project. None
Close Project Closes the current project and
None

Ctrl-C

switches back to the welcome page.

Recent Projects
none

Displays the list of the five most
recently saved projects.

Under Recent Project, click
the project name.

m icon next to

Generate Report

Saves the project current configuration
as two documents (pdf and text

None

U formats).

To close the window and the application click on .
Exit Proposes to save the project (if
Ctrl-X needed), then closes the application. ﬂh

1. On New project: to avoid any popup error messages at this stage, make sure an Internet connection is available
(Connection Parameters tab under Help > Updater settings menu) or that Data Auto-refresh settings are set to No
Auto-Refresh at application start (Updater Settings tab under Help > Updater Settings menu).

2. OnImport, a status window displays the warnings or errors detected when checking for import conflicts. The user can then
decide to cancel the import.

S74

UM1718 Rev 31

47/363

STM32CubeMX user interface

UM1718

Caution:

41.2

48/363

On project load: STM32CubeMX detects if the project was created with an older version of
the tool and if this is the case, it proposes the user to either migrate to use the latest
STM32CubeMX database and STM32Cube firmware version, or to continue.
Prior to STM32CubeMX 4.17, clicking Continue still upgrades to the latest database
“compatible” with the SMT32Cube firmware version used by the project.
Starting from STM32CubeMX 4.17, clicking Continue keeps the database used to create the
project untouched. If the required database version is not available on the computer, it is
automatically downloaded.
When upgrading to a new version of STM32CubeMX, make sure to always backup your
projects before loading the new project (especially when the project includes user code).

Window menu and Outputs tabs

The Window menu allows the user to access the Outputs function.

Table 3. Window menu

Name

Description

Outputs

Selecting/deselecting Outputs from the Window menu hides/shows the following

Outputs tabs at the bottom of STM32CubeMX project page (see Figure 21)

— MCUs selection tab that lists the MCUs of a given family matching the user criteria

(Series, peripherals, package,...) when an MCU was selected last(!).

— Outputs tab that displays a non-exhaustive list of the actions performed, raised errors

and warnings (see Figure 22) found upon user actions.

Font size

Makes possible to change STM32CubeMX font size settings. STM32CubeMX must be

re-launched for changes to take effect.

1.

Selecting a different MCU from the list resets the current project configuration and switches to the new
MCU. The user is then prompted to confirm this action before proceeding.

UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

Figure 21. Window menu

@ stazcubebixnats SR R0Ke I
SIMHL}'G File Help A9 li D , k ",
CubeMX g
Untitled
Clock Configuration
Additional Softvares
] Pinout view System view
i
’
ADC
CRC
OMA
FATFS
FREERTOS
GPIO
12c1
IWDG
NVIC
RCC
RTC
SPI
r r
TIiM1 :-I Q| =
TIAAY
MCUs Selection
(| senes | unes | wew | Package | __RequiredParipherais |
STM32FD STM32FOxD Value Line STMI2FO30CHTE LQFP48 Noneg =
STM3I2FD STM32F0AD Value Line STM3I2FO30CETx LOFP48 None
STM32FD STM32F04D Value Line STM32F030CCTx LOFP48 Hone
STM32F0 STM3IZF040 Value Line STMIZFOI0F4Px TSSOP20 Hone
STMIZFD STM3IZFOAD Value Line STMAZFO30KETx LoFP32 Hone '
STM32FD STM32FOxD Value Line STMIZFO30RATE LOFPE4 Nong
STM2FD STM32F0AD Value Line STM32FO30RCTx LOFPE4 Hone
STM32FD STM32FOx1 STM32F031C4Te LOFP48 Hone |
STM32F0 STM3ZFOx1 STMIZFO31CETx LOFP4S Hone
STMI2FD STMI2FOx1 STMIZFOITESYx WLCSP25 None
STM3ZFON STUIZFOITF4Px TSS0P20 None
_ STM32FOK1 STM32FO31FEPK TS50P20 _Mone |
.2 — = — — 4/

Figure 22. Output view

Import Analysis: C:\Git MicroXplorer 4 P\MicroXplorer\microxplorer\src\main\resources\db\plugins\boardmanager\boards\a72 Nucl
The Mcu (STM32F722ZETx) found in the Project being imported is not the same as the Mcu (SIM32F030K6Tx) currently edited

® Import error: CORTEX M7 peripheral doesn't exist in STM32F030K&Tx

® Import error: USB_OTG FS5 peripheral doesn't exist in SIM32ZF030K6Tx

TImport
® import RCC partly failed
® error: Low Speed Clock (LSE) :Crystal/Ceramic Resonator mode doesn't exist in STM32F030K6Tx , it could not be imported
. . it 1 . . S

Importing project completed
® Only compatible part of project is imported. Import RCC : FAILED; Set STM32F030K€Ix clock tree as "DEFAULT'.

3

UM1718 Rev 31 49/363

STM32CubeMX user interface UM1718

41.3 Help menu

Refer to Table 4 for a description of the Help menu and shortcuts.

Table 4. Help menu shortcuts

Name i
Keyboard shortcut Description Home page shortcut
Help
E1 Opens the STM32CubeMX user manual. None
About Lo .
AlLA Shows version information. None

Docs & Resources | Displays the official documentation available for

Alt-D the MCU used in the current project. None

Opens a dialog window that proposes to refresh
STM32CubeMX database with STM32 MCU latest
information (description and list of official None
documents), and allows the user to download of
all official documentation in one shot.

Check for Updates Shqws the software and firmware release updates Click CHECK FOR UPDATES
Alt-C available for download.

Shows all the embedded software packages

Manage embedded available for installation.

A green check box indicates that the package is . _
softwar;:lfzckages already installed in the user repository folder (the ol [NSTALL/REMOVE

repository folder location is specified under
Help > Updater Settings menu).

Refresh Data
Alt-R

Opens the updater settings window to configure
manual versus automatic updates, proxy settings
for Internet connections, repository folder where | None
the downloaded software and firmware releases
will be stored.

Updater Settings...
Alt-S

Opens the user preference window to enable or

disable collect of features usage statistics. None

User Preferences

414 Social links

Developer communities on popular social platforms such as Facebook™, Twitter™, STM32
YouTube™ channel, as well as ST Community can be accessed from the STM32CubeMX
toolbar (see Figure 23).

Figure 23. Link to social platforms

[loy x

3

50/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface

4.2 New Project window

The New Project window is accessible through the File Menu or directly through shortcuts
from the Home page (see Figure 24).

Figure 24. New Project window shortcuts

New Project

| need to :

Start My project from MCU
ACCESS TO MCU SELECTOR

Start My project from STBoard
ACCESS TO BOARD SELECTOR

Start My project from Cross Selector
ACCESS TO CROSS SELECTOR

The main purpose here is to select from the STM32 portfolio a microcontroller or board part
number that best fits the user application needs.

This window shows three tabs to choose from:
e the MCU selector tab (offering a list of target processors)
e a Board selector tab (showing a list of STMicroelectronics boards)

e aCross selector tab (allows the user to find, for a given MCU/MPU part number and
for a set of criteria, the best replacement within the STM32 portfolio)

3

UM1718 Rev 31 51/363

STM32CubeMX user interface

UM1718

For STM32L5 Series the security features of the Arm Cortex-M33 processor and its

TrustZone for Armv8-M are combined with ST security implementation. Selecting an
STM32L5 MCU or board requires to choose whether to enable TrustZone (hardware
security) or not (see Figure 25). The project is adjusted accordingly:

. if Trustzone is not enabled, the solution is the same as for other STM32Lx Series

o if TrustZone is enabled, the project configuration and the generated project shows
specificities related to the security features (refer to dedicated sections in this manual).

Figure 25. Enabling Trust-zone for STM32L5 Series

m TrustZone feature available

X

Do you want to activate hardware security (TrustZone) on this MCU,
in order to run secure applications ?

 yes Mo

421 MCU selector

MCU selection

The MCU selector enables filtering on a combination of criteria: series, lines, packages,
peripherals, or additional characteristics such as price, memory size or number of I/Os (see
Figure 26), and on their graphics capabilities as well.

Figure 26. New Project window - MCU selector

Load favorite MCUs,
Savel/Load/Delete search criteria,
[T New Project from| Reget search criteria

-

ir After selecting an MCU,

[Quick access to resources] start a project

MCU Selector [Board Se tor

MCU/MPU Filter:

(F‘an Number Search "\
Q

Core >
Series >
Line >
Package >
Other >
Advanced Graphic >

\Penphera\ >/

[Features Black Diagram Docs & Resources [¥] Datashest [Buy] [=» Start Project

* STM32F030C6

Mainstream ARM Cortex-M0 Value line MCU with 32 Kbytes Flash, 48 MHz '
CPU

Unit Price for 10kU (US$) : 0.542
Active
Productis in mass production

Close selector

The STM32F030x4/x6/x8/xC microcortro grr-performance ARM®Cortex®-MO 32-bit RISC core

Export MCUs list g
to Excel X

[~ | PartNo | Refersnce [MarketngStJuneP. | Packsge | Flash | Ram | 10 | GhxSeore | TRNG _fuc.]
* -

.

W LaFPag

[MCUS List: 1247 items _ms] [Display similar items]

STM32F030CE STM32F0.. Active 0542 LQFP48 32 kBytes 4 kBytes 39 00 0 0
STM32F030C8 STM32F0.. Active 0657 LQFP48 64 kBytes 8 kBytes 39 0o 0 o
STM32F030CC STM32F0.. Active 10 LQFP48 256 kBytes 32 kBytes 37 0o 0 0
STM32F030F4 STM32F0.. Active 0385 TSS0P20 16 kBytes 4 kByles 15 0o 0 0
STM32F030K6E STM32F0.. Active 0471 LQFP32 32 kBytes 4 kBytes 25 0o 0 0
STM32F030RE STM32F0.. Active 0685 LQFPG4 64 kBytes 8 kBytes 55 0o 0 0
STM32F030RC STM32F0.. Active 11 LQFP64 256 kBytes 32 kBytes 51 0o 0 0
STM32F031C4 STM32F0_. Active 097 LQFP48 16 kBytes 4 kBytes 39 00 0 0
STM32F031C6 STM32F0.. Active 1013 LQFP48 32 kBytes 4 kBytes 39 00 0 0
STM32F031E6 STM32F0.. Active 0776 WLCSP25 32 kBytes 4 kBytes 20 00 0 0
STM32F031F4 STM32F0.. Active 0711 TSS0P20 16kBytes 4 kBytes 15 0o 0 0

52/363

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

MCU selection based on graphics criteria

Selecting the checkbox to enable the Graphic Choice refreshes the MCU selector view (as
shown in Figure 27) with:

1.
2.

A set of Graphics specific filtering criteria

The list of MCUs, meeting these criteria along with their graphics performance score.
The graphics performance score is an indicative estimation of the graphics
performance that can be achieved using the MCU for the selected graphics system
configuration: the higher the score, better is the performance. It is shown in the GFX
column. Moreover, selecting an MCU from this list makes it possible to use graphical
stacks in the project.

A graphics summary panel, showing the minimum requirements for pixel clock and
graphics RAM size to meet the selected graphics criteria.

It also displays the performance ranges (maximum system clock and Graphics
performance score) that can be achieved with the current list of MCUs.

Parameters descriptions are provided in tooltips (to display: hover the mouse over the
parameter name).

Figure 27. Enabling graphics choice in MCU selector

[New Project from a MCU .) _
MCLIMPL Selector| Board Selector | Cross Selector

B

Features Docs & Resaurces [4] Datashest [Buy
Core
. STM32F429BG
Series ’ High-performance advanced line, ARM Cortex-M4 core with DSP and FPU, 1 Mbyte I |

Flash, 180 MHz CPU, ART Accelerator, Chrom-ART Accelerator, FMC with SDRAM,
Line > T
Package > Unit Price for 10kU (US$):8.314
 Active .
LOFP208

Product is in mass production
Other ; »

Advanced Graphic - T 3 M32F427xx and STM32F429xx devices are based on the high-performance Arm® Corlex®-Md4 32-bit RISC core operating
. al uency of up to 180 MHz The Cortex-M4 core features a Fioating point unit (FPU) single precision which supports all
Enable Enable Graphlcs r S0 a full set of DSP instructions and a memory

r

u

m—— pr Check summary for minimum requirements
. \ i and achievable performances pmbedded memories (Flash memory up to 2 Mbyte, up to

T roT v - range of enhanced I'Os and peripherals connected to |
Height 240 Pixels w0 APB DUSEs. two AHB nu;esta 32-bit multi-AHB bus matrix
- | Graphic Summary
Width: 320 Pixsls Required Pixel Clock (MHz) 553 Required Graphic RAM (kBytes) 4500
& s e s, Mok —_—
Maximum System Pixel Clock (MHz). Graphic Performance Score (GFXMark)

See Graphics performance score I

MCUs List: 153 items

STM32F4294G STM32F42. Active 7504 UFBGAS3 1024 kByles 256 kByles
GFX Flash STM32F429A1 STM32F42. Active 8429 UFBGA163 2048 kBytes 256 kBytes
intemal Flash v STM3ZF429BE STM3ZF4Z. Actve 7388 LOFP208 S12kBjtes 256 kByles

j Y STM32F4208G STM3ZF429. Adive 8314 LOFP208 1024 kByles 256 kBytes

¥ STM32F42981 STM32F42 Adive 9239 LQFP208 2048 kByles 256 kByles
Peripheral '. STM32FAZ9IE ST 2. Active n 925 U?BGME’E fiE kBytes s
Tune Graphics criteria

Export to Excel feature

Clicking on the icon k&: allows the user to save the MCU table information to an Excel file.

UM1718 Rev 31 53/363

STM32CubeMX user interface

UM1718

Show favorite MCUs feature

Clicking the 'i_':? icon for an MCU from the list marks it as favorite, see Figure 28.

Figure 28. Marking an MCU as favorite

[New Project from a MCU [
|
Q ~ new Value Lines
Core |
= New price point
Series ? « Flash kept to the essential
« Full features
Line v |
Click to export |
Click column I
[J STM32F0x0 Value Line N the MCU list to Excel
to group favorite
[sTM3zZFOx1
O sTM32F0x2
O sTM32F0x8 List 1247 ftems x5
£ STHIS2FI00 Value Line L= | puitc | Retersnce fiarisingsia | ciag Lo | cncseoe | T __Juciol
[sTaize1ns * STM32F030CE STM32F03... Active 0542 LOFP48 32 kBytes 4 kBytes 39 00 0 0 -
C|ICk star icon * STM32F030CE STM32F03.. Active 0657 LOFP43 64 kBytes 8 kBytes 39 00 0 0
to save MCU as favorlte * STM32F030CC STM32F03.. Active 10 LOFP48 256 kBytes 32 kBytes 37 0o o 0
% STM32FO30F4 STM3ZFO3.. Active 0385 TSSOP20 16kBiles 4KBytes 15 00] 0
T ST TOSTOT % STM3IZFO31CE STMIZFO3.. Acive 1013 LOFP4S 32kByles 4kByies 38 00 o 0
O sTM32F2x5 * STM32F031E6 STM32F03_. Active 0776 WLCSP25 32 kBytes 4 kBytes 20 00 o 0
[sTM32F2x7 * STM32FO30K6 STM32F03.. Active 0471 LOFP32 32 kBytes 4 kBytes 25 00 0 0
P— STM32FO30RE STM3ZF03.. Adive 0685 LOFP64 64kBites BkBtes 55 00] 0
STM32FO30RC STM3ZFO3... Active 11 LOFPS4 256kByes 32kBtes 51 00] 0
O sTM32F302 STM32F031C4 STM3ZF03... Active 097 LOFP48 16 kBytes 4 kBytes 39 00 o 0
[STM32F303 ey STM32ZFO31F4 STM32F03.. Active 0711 TSSOP20 16kBytes 4kByles 15 0.0] 0
[STM32F334 STM32F031F6 STM32F03.. Active 0755 TSSOP20 32 kBytes 4 kBytes 15 0o o 0
STM32F031G4 STM3ZFO3.. Acive 0733 UFOFPNZB 16KBiles 4KBjtes 23 00 0 0
O STax2F sz STM3ZFO31G6 STM32FO3.. Active 0776 UFOFPN2B 32kBytes 4kBytes 23 00 0 0
[STM32F3x8

MCU close selector feature

When the number of MCUs found is lower than 50, the selector offers to list the MCUs with
close features (see Figure 29). Clicking the Display similar items button displays them
(see Figure 30): by default, MCUs are sorted first by matching ratio, then by part number.
For close MCUs (those with a matching ratio lower than 100%) rows are shown in gray and

non matching cells are highlighted in dark gray.

54/363 UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

Figure 29. New Project window - MCU list with close function

Features Diagram Buy f
Advanced Graphic ~ I
o STM32 high-performance MCUs
new Value Lines
Peripheral ~
[ADC 16-bit 26 + New price point "
P2} « Flash kept to the essential
COMP 0 « Full features
CRYP o '
DAC 12-bit 0
DCHi o o7 |
DFSDH 0 > /4
DSIHOST o
Ethernet o
FDCAN 0
- Fue o MCUs List: 40 items -p - Display similar items
@
[2) |- [ratio [Reference JuarietngSta Junieri | Package | Fasn] _Rav | 0| ehcscore | 7RG Juceo]
HASH [m] v STM32HT43AG STMA2HT4. 0.0 UFBCA189 1024 kByles 1024 kBytes 132 0.0 0 0
HDMI CEC [m} b4 STM32ZHT43A1 STM32H74 . Active 10478 UFBGA169 2048 kBytes 1024 kBytes 132 0.0 o o
HRTIM o Yr STM3ZHT43BIl STM3ZHT4.. Adlive 11103 LOFP208 2048 kBytes 1024 kBytes 168 00 0 0
Eg ‘; v STM32HT43N STM32HT4.. Aclive 1064 UFBGA176 2048 kByles 1024 kBytes 140 0.0 0 0
w STM32H7431 STM32H74 . Active 1064 LQFP176 2048 kByles 1024 kBytes 140 0.0 o o
JPEG [m] w STM32H743X1 STM32H74 . Active 11.866 TFBGA240 2048 kBytes 1024 kBytes 168 0.0 0 o
LPTIM 0 v STM32HT43ZI STM32HT4.. Aclive 10408 LOFP144 2048 kByles 1024 kBytes 114 0.0 0 0
LPUART a v STM32H745BG STM32H74. 00 LaFP208 1024 kBytes 1056 kBytes 150 0.0 0 o
uDIos o ¥r STM32H74SBI STM3ZH74 00 LOFP208 2048 kBytes 1024 kBytes 150 00 0 0 [
oBAlP 0 v STM32HTAEIC STM3ZH7A.. 0.0 UFBGA176 1024 kByles 1024 kBytes 128 0.0 0 0
QUADSPI o Y STM3HT4SEIC STM32HT4. 0.0 LOFP76 1024 kBytes 1024 KBytes 121 0.0 0 0
RNG [m] w STM32H7451 STM32H74. 00 UFBGA176 2048 kBytes 1024 kBytes 128 0.0 o o
RTC [m] v STM32HT4EN STM3ZH7A.. 00 LOFP176 2048 kByles 1024 KBytes 121 0.0 0 0
SAl 0 Y STM32HT4SXG STM32H74 00 TFBGA240 1024 kBytes 1024 kBytes 168 0.0 0 0
SDMMC 0

Figure 30. New Project window - List showing close MCUs

MCUIMPU Selector | Board
Features Diagram Buy f
Advanced Graphic ~ I
o STM32 high-performance MCUs
new Value Lines Right click a column header to
Peripheral display the contextual menu.
[ADC 16-bit 26] « New price point !
g « Flash kept to the essential Pack All Golumns
Horizontal Scroll
COMP 0 « Full features Remove Current Column '
CRYP o Add Columns for Selected Criterias
DAC 12-bit 0
pcuml a ‘— |
DFSDH 0 2 /4 Marketing Status
DSIHOST a Unit Price for 10kU (USS)
Ethemet o 0 Board
FDCAN 0
Fue o MCUs List- 40 items | Hide similar tems | \
@
[2) - waten | |_Reference Juarketing StatusJunitpric | Package] Fasn | Rai | 10
HASH [u] r 100 % STM32H75pZ1 STM32H753Z... Active 10756 LQFP144 2048 kBytes 1024 kBytes 114
:gk“"?m E % 100% STW3ZH7EEBI STM3IZHTSEE 00 LOFF208 204BkByles 1024KByles 150
e n Y 100% STW32H7ESI STM3ZHTSEN 00 UFBGAT76 2048kByles 1024kBytes 128
125 3 * 100 % STM32H7 5511 STM32H755I1. 0.0 LQFP176 2048 kBytes 1024 kBytes 121
° Y 100% STH3ZHT) STH3ZHTSEX.. 00 TFBGAZ40 2048kByles 1024kBytes 168
JPEG o Y 100% STM32HTSTAl STW3ZHTSTA 00 UFBGAIGY 2048KBfles 1024KkBles 114
LPTIM E ¥ 100% STM3ZH{57BI STM32HTS7B 0.0 LOFP208 2048kBjtes 1024kBytes 141 32
hPDL‘IgSRT o T 100 % STM32HT571l STM32H757I1. 0.0 LQFP176 2048 kBytes 1024 kBytes 114 28
M
> o 100% 2 STHEZHTSTX 00 TFBGA24D 2048kByles 1024kBytes 163 3 I
OPAMP 0 x4 96 % STM32H745ZG | STM32H745Z. 00 LOFP144 1024 kBytes 1024 kBytes 99 23
QUADSPI a r 96 % STM32H745Z1 STM32H745Z. 0.0 LQFP144 2048 kBytes 1024 kBytes 99 23
RNG o v 8% | STME2H74TZI | STWEZHT4TZ.. 00 WLCSP156 2048kByles 1024KBytes 101 2
’;{;‘C ? w 96 % STM32H755Z1 STM32H755Z. 0.0 LQFP144 2048 kBytes 1024 kBytes 99 23
44 96 % STM32H75721 STM32H757Z. 0.0 WLCSP156 2048 kBytes 1024 kBytes 101 23
SDMMC 0
Note: A matching percentage is computed for each user selected criteria, for example:

- when requesting four instances of the CAN peripheral, the MCUs with only three instances
reaches a 75% match on the CAN criteria
- if the maximum price criteria is selected, the matching ratio for a given MCU is the

3

UM1718 Rev 31 55/363

STM32CubeMX user interface UM1718

4.2.2

423

56/363

maximum requested price divided by the actual MCU price. In the case of a minimum price
criteria, the matching ratio is the MCU price divided by the minimum requested price.
Finally, all criteria ratios are averaged to give the Match column percentage value.

Board selector

The Board selector enables filtering on STM32 board types, Series and peripherals (see
Figure 31). Only the default board configuration is proposed. Alternative board
configurations obtained by reconfiguring jumpers or by using solder bridges are not
supported.

When a board is selected, the Pinout view is initialized with the relevant MCU part number
along with the pin assignments for the LCD, buttons, communication interfaces, LEDs, and
other functions. Optionally, the user can choose to initialize it with the default peripheral
modes.

When a board configuration is selected, the signals change to 'pinned', i.e. they cannot be
moved automatically by STM32CubeMX constraint solver (user action on the peripheral
tree, such as the selection of a peripheral mode, does not move the signals). This ensures
that the user configuration remains compatible with the board.

Figure 31. New Project window - Board selector

[New Project from a Board b
MCU/MPU Selector |\Board SElEetor Cross Selector
Board Filters
[@ E 3 Features Large Picture Docs & Resources m Datasheet [/ Buy [Start Project
. - NUCLEO-F303RE
Part Number Search ~ =
STMicroelectronics NUCLEO-F303RE Board Support and Examples
Q -
Unit Price (US$):10.32
Active
WVendor ’ Productis in mass production)
Mounted device: STM32F303RETx
Type ™
- The STM32 Nucleo board provides an affordable and flexible way for users to try
Check/Uncheck All | out new concepts and build prototypes with the STM32 microcontroller, choosing
[Discovery from the various combinations of performance, power consumption and features.
! For the compatible boards, the SMPS significantly reduces power consumption in
[Evaluation Board Run mode.
[Hucleo144 The Arduino™ Uno V3 connectivity support and the ST morpho headers allow the
X % e easy expansion of the functionality of the STM32 Nucleo open development
O ucleo32 — eI S A ol B " "
Hucleo64
Boards List: 3 items Ej
MCUMPU Series v -
Check/Uncheck All ‘.i
[sTM32F0 N STW32F302R. STM32F3 0 0 0
[sTM32F1 -
STM32F3
4
[STM32F4 ‘I.i =
[5TM3260 Y m NUCLEQ-F303RE NucleoBd Acive 1032 STM32F3 0 0 0
[sTM32L0 i o
[sTm32L1 yhate
0O sTHa2L4 7 m NUCLEG-F334R8 Nucleobd Adive 10.32 0 0 0
[B
Other ~

Cross selector

Part number selection

The Cross selector allows users to find products of the STM32 portfolio that best replace the
MCU or MPU they are currently using (from ST or other silicon vendors).

To access this functionality, STM32CubeMX data must be up to date. This is ensured using
Refresh Data from the Help menu (see Figure 32).

UM1718 Rev 31 ‘Yl

UM1718

STM32CubeMX user interface

3

Figure 32. Cross selector - Data refresh prerequisite

— O x ‘
Help T n oV _.:.__‘_; E—TI
Help 1 GENERATE CODE
About m Data Refresh ot

New F Refresh Data _’

User Preference
rerest 0aa SR r oo |
Check for Updat MCUs & Boards Data Refresh REFRESH

Manage embedded software packa
Updater Settings ... Download all Documents DOWNLOAD
B0 L0 .

Start My project from MCU
ACCESS TO MCU SELECTOR

Start My project from STBoard
ACCESS TO BOARD SELECTOR

for Industrial and loT applications

8

NS

Start My project from Cross S...
ACCESS TO CROSS SELECTOR

Clicking “ACCESS TO CROSS SELECTOR” under the “Start my project from Cross
Selector” section of the main page opens the New Project window on the Cross selector tab.

Two drop downs menus allow the user to select the vendor and the part number of the

product to be compared to (see Figure 33). A part number can also be entered partially:
STM32CubeMX proposes a list of matching products (see Figure 34).

Figure 33. Cross selector - Part number selection per vendor

m Mew Project from Cross Selector
MCU/MPU Selector | Board Selector |MCross Selector
Filters [COMPARE CART]
At first the compare cart is empty.
VENDOR You must select a part number to be compared with.
Part Number Search x < Select your MCU using the pick-lists on the left (you can filter by vendor)
; PART NUMBER
nfineon Technologies Note:
The information pres s-reference tool is intended to help
data published b nd might
suital par Urpo I s that you make your p
C161KLM3VHAFXUMA1-QFP80 information is an estimate for budgetary purposes only
C161KLMHAFXQMA1-QF P80
Mat C1610LM3VHABXUMA1-QFPB0
2l 1610LM3VHAFXUMA1-QF P80
C1610LMHABXUMA1-QFP80
IC1610LMHAFXQMA1-QFP80
C161PIL25FCABXUMA1-QFP100
IC1681PIL25FCAFXUMA1-QFP100
UM1718 Rev 31 57/363

STM32CubeMX user interface UM1718

58/363

Figure 34. Cross selector - Partial part number selection completion

[0 New Project from Cross Selector %

MCU/MPU Selector | Board Selector |NEroSS Selector

Filters

« Select your MCU using the pick-lists on the left (you can filter by vendor)

Part Number Search

Partial Part Number
- All uer\dcrst

| G181PILF| I

CTETPILF 3VCABXUMA1-QFP100 Matching
CTOTPILEIVCAPXUMAT-OFPIO0 o)1y
IC161PILFCABXUMA1-QFP100
C161PILFCAFXUMA1-QFP100

Matcl

Hide unused how unus Reset comparison to clipboa

Compare cart

Once a part number is selected, a list of matching ST part number candidates is displayed
along with their matching ratio in the Matching ST candidates panel.

By default, the three closest matches are selected and added to the compare cart along with
the part number to be compared to (see Figure 35).

Figure 35. Cross selector - Compare cart

[New Project from Cross Selector [COMPARE CART] X
MCU/MPU Selector | Board Selector |GioSSSeleston Criteria MCU to compare with ST three closest matches
Fiters Comparing D17618ABGN 1wy vy m*ads Ele lutions
=] J o
Used ? Importan... Category Parametric D17618ABGN100V STM32H7501BKx G+ STM32F207ICHX > STM32F207IEHX G
Part Number Search:
R _ woll Product “« Lio 10K) USD (for 10K)
enesas Bloctronies Change the criteria importance level
0176|Select one or more part numbers| -0 < this will affect the matching ratio o o
to add to compare cart ol System(] Level 0 : Nice to have 72t 400 MHz ARM Cortex-M3 at 120 MHz ARM Cortex-M3 at 120 Mz
Matching ST candidates (500) ul Sysomc] Level 1 : Should have —_— —_—
STM IBKx L] Level 2 : Must have
e By | I : _ . .
M32E407|ER 4 Click to set t d
Mgﬁ%ﬂﬂm §3 e ¢ ick to set to unuse: _
M E‘} lERx 4 criteria that are not relevant
Ve g
VR 4 wl SplemCos RAM o s s ks
L ; :
M35F4201EHx 4 No comparison
HHE?‘EFEE H P when feature is not present
Verz i] . I .
M%gé;‘gl%@ §§ or when information is unavailable
M F4g |1Ex -
Mié;éég@g; §§ for the MCU to compare with Copy then paste
MazEgzghm‘ & Cart view
VErifis &
M32F439HH; a3
HSRETSH & | fdewses] n Reset comparison Gopy 1o cipboard

This selection can be changed anytime in the Matching ST candidates panel.

The comparison can be customized: the features to be used for comparison can be
unselected when considered as irrelevant and their level of importance can be adjusted.
These choices affect the computed matching ratio.

The comparison is disabled for features that are not supported on the part number to be
compared with, or when the feature information is unavailable.

UM1718 Rev 31 ‘Yl

ube user interface
UM1718 STM32CubeMX terf
Buttons are available to manipulate and save a copy of the compare cart view:
e to hide criteria that are not used for the comparison or show all criteria.
e to come back to default STM32CubeMX comparison settings
e to copy and paste the current cart view in a document or email.
MCU/MPU selection for a new project
Clicking an STM32 part number from the compare cart selects it in the MCU/MPU Selector
tab, and clicking on [WENEFINENN creates a new project for that part number (see
Figure 36).
igu . - u i w j
Figure 36. Cross selector - Part number selection for a new project
EC'DSSE“ S Click to create a new project X
[e,s §) § Comparing D17618ABGN100V by Renesas Electronics with STMicroele with this pan number
B 5 s v
Used ? Importan... Category Parametric D17618ABGN100V STM32H7501IBKx =+ STM32F745IEKx 5+ STM32FT45IGKx =+
Part Number Search:
Renesas Electronics =00 Product Public Price No info USD (for K USD (for 10K) USD (for 10K)
D17618ABGN100V-BGA176 -l sArch 32 bit 32 bit 22 bit bt
) SH-2 at 100 MHz ARM Cortex-M7jat 400 MHz ~ ARM Cortex-M7 at 216 MHz ARM Cortex-M7 at 216 MHz
Matching ST candidates (500)) System Core package BGA176 BGA176 BGA176 BGA176
STM32H7501BKx gﬁ%ﬂ_l R N
il s] - o o
sl ag >
f i 1
Ei%;gﬁégi%g{ [0 New Project from Cross Selector X
TM32F469IEHX MCUIMBU SEIECIon Board Selector | Cross Selector -
gmgggﬁﬁéag B B Features Block Diagram Docs & Resources (9 Datasheet Buy
S}Mgg;:gg:gu; Part Number Search
gmaé;;as@x VAT STM32H75018
smgzgﬁgsibﬁx S
gi%ggzggiﬁgi Core MCUs/MPUs List: 1 item = o
SIMEEa [Checkincheck AT | |- [Patto | Roforonco |8 [Fiasn|Raw | 10_Jorx s coroic] oor [oes [rwac] vop [uac| pra [pwr | mr [sva [rawe]
gm%giégﬁgg ARM Cortex-M7 STM32H7... STM32H750... 12..10.. 138 1960..0 o 1 0o 0 o0 o 0 0 o0]
Clicking the Cross Selector Tab allows the user to go back to the cart and change the
current selection for another part number.
4.3 Project page

3

Once an STM32 part number or a board has been selected or a previously saved project
has been loaded, the project page opens, showing the following set of views (refer to
dedicated sections for their detailed description):

o Pinout & Configuration
e Clock Configuration

e Project Manager

e Tools

The user can move across them without impacting his currently saved configuration.

A | elEli=Eeir=ielels|=) button is always accessible for the user to click and allows to
generate the code corresponding to the current project configuration.

Moreover, thanks to convenient navigation breadcrumbs (see Figure 37), the user can
detect what its current location is in STM32CubeMX user interface, and can move to other

UM1718 Rev 31 59/363

STM32CubeMX user interface UM1718

locations:
o to the home page by clicking the Home breadcrumb
o tothe new project window by clicking the part number

e back to the project page by clicking the project name (or Untitled if the project does not
have a name yet).

Figure 37. STM32CubeMX Main window upon MCU selection

Untitled - Pinout & Configuration

Options K8 : £ Pinout view £ System view
4
L
System Core >
[=]
Analog > g
rat)
Timers > %
o
Connectiity > g
pco |
Multimedia > g
=
Securnity > :-.ﬁ
=m
==
Computing » STM32F439VITx =
= LOFP100 g
) 5 -
Middleware =
rass]
jcati > o
Application ==
a)
Y r 1]
2 Ld X)\ 2 ﬂ Q V
MCUS Selection | Output |
L] seies] unes] _ Ma | Package] Required Peripharals
STM32F4 STM32F429/439 STM32F429AGHx UFBGA189 Mong [
STM32F4 STM32F 4291439 STM32F42941Hx UFBGA169 Mone
L STM32F4 STM32F4291439 STM32F429BETx LOFP208 MNone

3

60/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface

Selecting a board, then answering No in the dialog window requesting to initialize all
peripherals to their default mode, automatically sets the pinout for this board. However, only
the pins set as GPIOs are marked as configured, i.e. highlighted in green, while no
peripheral mode is set. The user can then manually select from the peripheral tree the
peripheral modes required for its application (see Figure 38).

Figure 38. STM32CubeMX Main window upon board selection (peripherals not initialized)

[l STM32CubeMX Untitled: STM32F429Z1Tx 32F429IDISCOVERY

>
STM32 ﬁ i i
L File Window Help

Untitled - Pinout & Configuration GENERATE CODE

Pinout & Configuration Clock Configuration Project Manager
Additional Softwares Pinout

iE Pinout view === System view

Categories i

System Core >

Analog >
Timers >
Connectivity >
Multimedia >
Security >
Computing >
Middleware >

STM3Z2F429Z1Tx
Application >

BR8 U5 BUBOBEPDANAH BEH 0L HAREEN

@ oo a @ 4o Q] -

UM1718 Rev 31 61/363

3

STM32CubeMX user interface UM1718

Selecting a board and accepting to initialize all peripherals to their default mode
automatically sets both the pinout and the default modes for the peripherals available on the
board. This means that STM32CubeMX generates the C initialization code for all the
peripherals available on the board and not only for those relevant to the user application
(see Figure 39).

Figure 39. STM32CubeMX Main window upon board selection
(peripherals initialized with default configuration)

[STM32CubeMX Untitled: STM32F429Z1Tx 32F4291DISCOVERY

e

srcl\lamgﬂ? File Window Help © oy x Ly
9ZTx - 32F429IDISCOVERY Untitled - Pinout & Configuration GENERATE CODE
Pinout & Configuration @ Clock Configuration Project Manager
Additional Softwares Pinout
Options [@8 : #F Pinout view £ System view
Categories =7 L. V. N 1

System Core >
Analog >
Timers >
Connectmity >
Multimedia >
Security >
Computing >

Middleware >

STM32F429ZITx

Application >

4.4 Pinout & Configuration view

The Pinout & Configuration view comes with the following main panels, function and

menu:

e A Component list that can be visualized in alphabetical order and per categories. By
default, it consists of the list of peripheral and middleware that the selected MCU
supports. Selecting a component from that list opens two additional panels (Mode and
Configuration) that allow the user to set its functional mode and configure the
initialization parameters that will be included in the generated code.

e A Pinout view that shows a graphic representation of the pinout for the selected
package (e.g. BGA, QFP) where each pin is represented with its name (e.g. PC4) and
its current alternate function assignment, if any.

o A System view that gives an overview of all the software configurable components:
GPIOs, peripherals, middleware and additional software components. Clickable

62/363 UM1718 Rev 31 Kys

UM1718

STM32CubeMX user interface

441

3

buttons allow opening the configuration options for the given component (Mode and
Configuration panels). The button icon color reflects the status of the configuration
status.

o An Additional Software function that allows to select, for the current project, software
components that are not available by default. Selecting an additional software
component updates the Pinout & Configuration view accordingly.

¢ A Pinout menu that allows the user to perform pinout related actions such as clear
pinout configuration or export pinout configuration as csv file.

Tips

e You can resize the different panels at will: hovering the mouse over a panel border
displays a two-ended arrow: right-click and pull in a direction to either extend or reduce
the panel.

e You can show/hide the Configuration, Mode, Pinout and System views using the
open » and close 4 arrows.
Component list

The component list shows all the components available for the project. Selecting a
component from the component list, opens the Mode and Configuration panels.

Contextual help

The Contextual Help window is displayed when hovering the mouse over a peripheral or a
middleware short name.

By default, the window displays the extended name and source of configuration conflicts if
any (see Figure 40).

Figure 40. Contextual Help window (default)

Pinout & Configuration Clock Configuration
Additional Softwares
IRTIM Mode and Configuration

InfraRed Interface

Status:
Mot available:
Channel 1 of TIM16 and TIM17 must be configured in one of the availables output modes

Clicking the details and documentation link (or CTRL+d) provides additional information
such as summary and reference documentation links (see Figure 41). For a given
peripheral, clicking Datasheet or Reference manual opens the corresponding document,
stored in STM32CubeMX repository folder, at the relevant chapter. Since microcontrollers

UM1718 Rev 31 63/363

STM32CubeMX user interface UM1718

datasheets and reference manuals are downloaded to STM32CubeMX repository only upon
users’ request, a functional Internet connection is required:

e To check your Internet connection, open the Connection tab from the Help > Updater
Settings menu.

o To request the download of reference documentation for the currently selected
microcontroller, click Refresh from the Help > Refresh Data menu window.

Figure 41. Contextual Help detailed information

Pinout & Configuration Clock Configuration

Additional Softwares
Options Q, ~ IRTIM Mode and Configuration

InfraRed Interface
Status:
Mot available:
Channel 1 of TIM16 and TIM17 must be configured in one of the availables out 15
| Summary:
IRTIM (InfraRed Interface) offers important advantages as a form of wireless communication.
Mowadays, almost all audio and video equipment can be controlled using an infrared remote control.

the information they contain.

Related documentation:

Icons and color schemes

Table 5 shows the icons and color scheme used in the component list view and the
corresponding color scheme in the Mode panel.

Table 5. Component list, mode icons and color schemes

Display Component status Corresponding Mode view / Tooltips
Plain black text I S
The peripheral is not o [Disable -
Example: configured (no mode is set) e
i and all modes are available. Sioghs Wi PlafDuples).
UARTE r:g';umocessu Commurecation
LIt

Gray italic text

Peripheral is not available
Example: because some constraints s R

. Active only ift ETH IP configured / FREERTOS is enabled when MBEDTLS is enabled.
are not solved. See tooltip.

Lightweight TCP/IP sfack

3

64/363 UM1718 Rev 31

UM1718

STM32CubeMX user interface

4.4.2

Note:

3

Table 5. Component list, mode icons and color schemes (continued)

Display Component status Corresponding Mode view / Tooltips
The peripheral is configured
® (atleast one mode is set) and
: L Mode |
all other modes are available. o
Example:: The green check mark D S
indicates that all parameters S =y
are properly configured, a
cross indicates they are not.
The peripheral is not
Example: configured (no mode is set) ﬁ;'?“b
L and at least one of its modes O
USB_OTG_HS |is unavailable. O
The peripheral is configured
Examole: (one mode is set) and at least
ple: one of its other modes is =
OTG_| unavailable.
) The peripheral is not
configured (no mode is set) T
and no mode is available. v
Example: Move the mouse over the :
peripheral name to display
© 12C2 the tooltip describing the
conflict.
Examole: Peripheral is not available mﬁdmwﬂ
pie: because of constraints. B N

Component Mode panel

Select a component from the component list on the left panel to open the Mode panel.

The Mode panel helps the user configuring the MCU pins based on a selection of
peripherals and of their operating modes. Since STM32 MCUs allow a same pin to be used
by different peripherals and for several functions (alternate functions), the tool searches for
the pinout configuration that best fits the set of peripherals selected by the user.
STM32CubeMX highlights the conflicts that cannot be solved automatically (see Table 5).

The Mode panel also allows to enable middleware and other software components for the

project.

For some middleware (USB, FATS, LwiP), a peripheral mode must be enabled before
activating the middleware mode. Tooltips guide the user through the configuration. For
FatFs, a user-defined mode has been introduced. This allows STM32CubeMX to generate

UM1718 Rev 31

65/363

STM32CubeMX user interface

UM1718

443

FatFs code without a predefined peripheral mode. Then, it is up to the user to connect the
middleware with a user-defined peripheral by updating the generated user_diskio.c/.h driver
files with the necessary code.

Pinout view

Select = Pinoutview o show for the selected part number, a graphic representation

of the pinout for the selected package (e.g. BGA, QFP...) where each pin is represented with
its name (e.g. PC4), its configuration state and its current alternate function assignment if
any (e.g. ETH_MII_RXDO), see Figure 42 for an example.

Figure 42. Pinout view

r —
[I] STM32CubeMX Untitled*: STM32F429VITx

sz @

CubeMX

System Core
Analog
Timers

Connectivity

CAN1
CANZ

FNC
12¢A

N @uwc
123
SDI0

i SPI
SPI2
SPI3
5P
UART4
UARTS
UART?
UARTS
USART1
USARTZ
USART3

File Window Help

Untitled - Pinout & Configuration

@ Clock Configuration Project Manager

Additional Softwares ~ Pinout

£ Pinout view = System view

ETH_MDC |
ETH_TAD2
ETH_TX_CLK

STM32F429VITx
LQFP100

FB15

USARTE
USB_0TG_FS
USB_OTG_HS

ETH_CRS

ETH_RX_CLK |3
ETH_MDIO %)

FE14
PE13

P12

ETH_TxD1

ETH_TXDO

Multimedia

Security

Computing

Middleware

ol wl sl ew] 2
Al B WD
Al ol 2l o] o

WCA,
WoD

o ofkSl
B 2
(36)-PB1:

® ETH_RXD3 (Mode M) B S e reTel o]

al]

ETH_RXDO
%_EN [N

ETH_RxD2 [g:a)

ETH_RX_DV |3
ETH_RXD1

ETH

v
o
ra
L
o

L o

66/363

The Pinout view is automatically refreshed to match the user’s component configuration
performed in the Mode panel.

Assigning pins directly through the Pinout view instead of the Mode panel requires a good
knowledge of the MCU since each individual pin can be assigned to a specific function.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Tips and tricks

See Table 2: Home page shortcuts for list of menus and shortcuts.
e Use the mouse wheel to zoom in and out.

e Click and drag the chip diagram to move it.

e Click best fit to reset it to best suited position and size.

e Use Pinout > Export pinout menus to export the pinout configuration as .csv text
format.

e Some basic controls, such as insuring blocks of pins consistency, are built-in. See
Appendix A: STM32CubeMX pin assignment rules for details.

444 Pinout menu and shortcuts

Table 6. Pinout menu and shortcuts

Name or Icon Shortcut Description

Prevents moving pin assignments to match a new peripheral operating

Keep Current Signals Ctrl-K | mode. It is recommended to use the new pinning feature that can block

Placement each pin assignment individually and leave this checkbox unchecked.
Show User Label None Displays user defined labels in the Pinout view.
Undo Mode and pinout Ctrl-Z | Undoes last configuration steps (one by one).
Redoes steps that have been undone (one by one).
Redo Mode and pinout Ctrl-Y | Warning (limitation): configurations in the platform settings tabs are not

restored.

Resets to “Disabled” all peripherals and middleware modes that have
been enabled. The pins configured in these modes (green color) are
Disable All Modes Ctrl-D | consequently reset to “Unused” (gray color).

Peripheral and middleware labels change from green to black (when
unused) or gray (when not available).

Clears user pinout configuration in the Pinout view.

Ctrl-P Note that this action puts all configured pins back to their reset state
and disables all the peripheral and middleware modes previously
enabled (whether they were using signals on pins or not).

Clear Pinouts

Opens a window showing the list of all the configured pins together with
the name of the signal on the pin and a Label field allowing the user to
specify a label name for each pin of the list.

For this menu to be active, at least one pin must have been configured.
Pins/Signals Option Ctrl-O | Click the pin icon to pin/unpin signals individually.

Select multiple rows then right click to open contextual menu and
select action to pin or unpin all selected signals at once.

Click column header names to sort alphabetically by name or
according to placement on MCU.

Clears signal assignments to pins for signals that have no associated

Clear Single Mapped Signals Ctri-M mode (highlighted in orange and not pinned).

3

UM1718 Rev 31 67/363

STM32CubeMX user interface

UM1718

Table 6. Pinout menu and shortcuts (continued)

Name or Icon

Shortcut

Description

Provides a list of MCUs that best match the pin configuration of the
current project. The matching can be:

— An exact match
— A partial match with hardware compatibility: pin locations are the

List Pinout Compatible MCUs Alt-L same, pin names may have been changed
— A partial match without hardware compatibility: all signals could be
mapped but not all at the same pin location
Refer to Section 15: Tutorial 5: Exporting current project configuration
to a compatible MCU.
Export pinout) Generates pin configuration as a .csv text file including alternate
with Alt. Functions functions information.
Export pinout Generates pin configuration as a .csv text file excluding alternate
. . Ctrl-U : . .
without Alt. Functions functions information.
Opens a window to specify the number of GPIOs to be freed among
Reset used GPIOs Alt-G the total number of GPIO pins that are configured.
Opens a window to specify the number of GPIOs to be configured
among the total number of GPIO pins that are not used yet.
Specify their mode: Input, Output or Analog (recommended
Set unused GPIOs Ctrl-G | configuration to optimize power consumption).

Caution: Before using this menu, make sure that debug pins
(available under SYS peripheral) are set to access
microcontroller debug facilities.

Layout reset

Zooms-in the pinout view.

Adjusts the chip pinout diagram to the best fit size.

Zooms-out the pinout view.

Rotates 90 degrees clock wise.

.
Bl - Rotate 90 degrees counter-clock wise.
I - Flips horizontally between bottom view and top view.

Flips vertically between bottom view and top view.

This Search field allows the user to search for a pin name, signal name
or signal label in the Pinout view.

When it is found, the pin or set of pins that matches the search criteria
blinks on the Pinout view.

Click the Pinout view to stop blinking.

68/363

UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX user interface
445 Pinout view advanced actions
Manually modifying pin assignments
To manually modify a pin assignment, follow the sequence below:
1. Click the pin in the Pinout view to display the list of all other possible alternate
functions together with the current assignment highlighted in blue (see Figure 43).
2. Click to select the new function to assign to the pin.
Figure 43. Modifying pin assignments from the Pinout view
ETH_CRS |53
ETH_Rx_cLK [Reset_State
ETH_MDIC |5 ADC1_INO
ADC2_IND
ADC3_INO i 2
ETH_CRS a— —
SYS_WKUP 2 8 o &
TIM2_CH1 < B E
TIM2_ETR -
TIMS_CH1 T
TIME_ETR
UART4_TX
USART2_CTS
GPIO_Input
GPIO_Qutput
GPIO_Analog
EVENTOUT
GPIO_EXTIO
Manually remapping a function to another pin
To manually remap a function to another pin, follow the sequence below:
1. Press the CTRL key and click the pin in the Pinout view. Possible pins for relocation, if
any, are highlighted in blue.
2. Drag the function to the target pin.
Caution: A pin assignment performed from the Pinout view overwrites any previous assignment.
Manual remapping with destination pin ambiguity
For MCUs with block of pins consistency (STM32F100x / F101x / F102x / F103x and
STM32F105x / F107x), the destination pin can be ambiguous, e.g. there can be more than
one destination block including the destination pin. To display all the possible alternative
remapping blocks, move the mouse over the target pin.
Note: A “block of pins” is a group of pins that must be assigned together to achieve a given

3

peripheral mode. As shown in Figure 44, two blocks of pins are available on a
STM32F107xx MCU to configure the Ethernet peripheral in RMII synchronous mode:
{PC1, PA1, PA2, PA7, PC4, PC5, PB11, PB12, PB13, PB5} and {PC1, PA1, PA2, PD10,
PD9, PD8, PB11, PB12, PB13, PB5}.

UM1718 Rev 31 69/363

STM32CubeMX user interface UM1718

4.4.6

70/363

Figure 44. Example of remapping in case of block of pins consistency

12
ETH_RMII_MDC

STM32F107VBTx
LQFP100

ETH_RMII_REF_CLK [Z) ETH_RMIL_TXD1
ETH_RMIL_MDIO [Al ETH_RMII_TXDO

T I HLT
ERT T RTE]

STM32F107VBTx =
LQFP100 ETH_RMII_RXD1

ETH_RMII_RXD0
ETH_RMII_CRS DV

ETH_RMIL_REF_CLK [J08 ETH_RMII_TXD1
ETH_RMIL_MDIO [0 B ETH_RMII_TXDO

NI T LS R

Resolving pin conflicts

To resolve the pin conflicts that may occur when some peripheral modes use the same pins,
STM32CubeMX attempts to reassign the peripheral mode functions to other pins. The
peripherals for which pin conflicts cannot be solved are highlighted in fuchsia with a tooltip
describing the conflict.

If the conflict cannot be solved by remapping the modes, the user can try the following:

e Ifthe Keep Current Signals Placement box is checked, try to select the
peripherals in a different sequence.

e Uncheck the Keep Current Signals Placement box and let STM32CubeMX try all the
remap combinations to find a solution.

e Manually remap a mode of a peripheral when you cannot use it because there is no
pin available for one of the signals of that mode.

Keep Current Signals Placement

This checkbox is available from the Pinout menu. It can be selected or deselected at any
time during the configuration. It is unselected by default.

It is recommended to keep the checkbox unchecked for an optimized placement of the
peripherals (maximum number of peripherals concurrently used).

The Keep Current Signals Placement checkbox should be selected when the objective is
to match a board design.

Keep Current Signals Placement is unchecked

This allows STM32CubeMX to remap previously mapped blocks to other pins in order to
serve a new request (selection of a new peripheral mode or a new peripheral mode
function) which conflicts with the current pinout configuration.

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

Note:

447

3

Keep Current Signals Placement is checked

This ensures that all the functions corresponding to a given peripheral mode remain
allocated (mapped) to a given pin. Once the allocation is done, STM32CubeMX cannot
move a peripheral mode function from one pin to another. New configuration requests are
served if feasible within current pin configuration.

This functionality is useful to:

e lock all the pins corresponding to peripherals that have been configured using the
Peripherals panel

e maintain a function mapped to a pin while doing manual remapping from the Pinout
view.

Tip

If a mode becomes unavailable (highlighted in fuchsia), try to find another pin remapping
configuration for this mode by following the steps below:

1. From the Pinout view, deselect the assigned functions one by one until the mode
becomes available again.

2. Then, select the mode again and continue the pinout configuration with the new
sequence (see Appendix A: STM32CubeMX pin assignment rules for a remapping
example). This operation being time consuming, it is recommended to deselect the
Keep Current Signals Placement checkbox.

Even if Keep Current Signals Placement is unchecked, GPIO_ functions (excepted
GPIO_EXTI functions) are not moved by STM32CubeMX.

Pinning and labeling signals on pins

STM32CubeMX comes with a feature allowing the user to selectively lock (or pin) signals to
pins. This prevents STM32CubeMX from automatically moving pinned signals to other pins
when resolving conflicts. Labels, that are used for code generation, can also be assigned to
the signals (see Section 6.1 for details).

There are several ways to pin, unpin and label the signals:

1. From the Pinout view, right-click a pin with a signal assignment. This opens a
contextual menu:

a) For unpinned signals, select Signal Pinning to pin the signal. A pin icon is then
displayed on the relevant pin. The signal can no longer be moved automatically
(for example when resolving pin assignment conflicts).

b) For pinned signals, select Signal Unpinning to unpin the signal. The pin icon is
removed. From now on, to resolve a conflict (such as peripheral mode conflict),
this signal can be moved to another pin, provided the Keep user placement option
is unchecked.

c) Select Enter User Label to specify a user defined label for this signal. The new
label replaces the default signal name in the Pinout view.

UM1718 Rev 31 71/363

STM32CubeMX user interface UM1718

Note:

448

72/363

2. From the Pinout menu, select Pins/Signals Options
The Pins/Signals Options window (see Figure 45) lists all configured pins.

Figure 45. Pins/Signals Options window

[Pinout Signal Option M

| PinName | SignalName | UserLabel |
[| E1TH_NL
PC2 ETH_TXD2
PC3 ETH_TX_CLK
PAOAVELIP ETH_CRS
P& ETH_RX_CLK
Paz ETH_MDIO
Pa3 ETH_COL
o PAd DAaC_OUTH DACH
o PAS DAC_OUTZ DACZ
PaAT ETH_RX_DW
P4 FTH R¥NN

a) Click the first column to individually pin/unpin signals.

b) Select multiple rows and right-click to open the contextual menu and select
Signal(s) Pinning or Unpinning.

c) Select the User Label field to edit the field and enter a user-defined label.

d) Order list alphabetically by Pin or Signal name by clicking the column header.
Click once more to go back to default i.e. to list ordered according to pin
placement on MCU.

Even if a signal is pinned, it is still possible however to manually change the pin signal
assignment from the Pinout view: click the pin to display other possible signals for this pin
and select the relevant one.

Pinout for multi-bonding packages

Multi-bonding has been introduced for packages with low pin counts (less than 20 pins)
such as SO8N, TSSOP20 and WLCSP18 packages. it consists of having several MCU pads
share a same pin on the package.

Multi-bonding has been introduced on the STM32GO0 series for the STM32G031/G041
MCUs.

STM32CubeMX pinout view allows to displays all signals arriving on the pin and allows to
select only one per pin, except for analog signals that can be combined with other analog
GPIOs.

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

4.4.9

3

Figure 46. Pinout view: MCUs with multi-bonding

~ Pinout

nal Software

i Pinout view System view

PBO
Reset_State
ADCA_INS
1251_WS
LPTIM1_OUT
SPI1_NSS
TIM1_CH2N
TIM3_CH3
GPIO_Input
GPIO_Output
GPIO_Analogf
GPIO_EXTI0

) /4

STM32G031F4Px
TSSOP20

PB1 PB2 PA8
Reset_State Reset_State Reset_State
ADC1_IN9 ADC1_IN10 LPTIMZ_CUT
LPTIM2_IN1 LPTIM1_OUT] RCC_MCO
LPUART1_DE SPI2_MISO SPI2_NSS
LPUART1_RTS} GPIO_Input TIM1_CH1
TIM14_CH1 GPIO_Output] GPIO_Input
TIM1_CH3N GPIO_Analogy GPIO_Output]
TIM3_CH4 EVENTOUT GPIO_Analog
GPIO_Input GPIO_EXTI2 EVENTOUT
GFIO_Output GPIO_EXTI8
GPIO_Analog
EVENTOUT
GPIO_EXT

STM32CUbeMX offers also an extended mode selected by right-clicking the pin: it allows to
select more than one signal per pin. This mode is meant for test purposes such as loopback
tests. It is to be used with caution as it can lead to electrical conflicts or increased power

consumption that can damage the device.

Figure 47. Pinout view: multi-bonding with extended mode

HE Enter User Label
PA Signal Unpinning
pa, Fin reservation

A:;GD to Extended Mode m=i

kys

STM32G031F4Px
TSSOP20

Reset_State
ADC1_ING
251_Ws
LPTIM1_OUT
SPI1_NSS
TIM1_CHZN
TIM3_CH3
GPIO_Input
GPIO_QOutput
GPIO_Analog
GPIO_EXTI0

PB1 PAB
Reset_State Reset_State Reset_State
ADC1_ING ADC1_IN10 LPTIMZ_OUT
LPTIM2_IN1 LPTIM1_OUT] RCC_MCO
LPUART1_DE SPI2_MISO SPI2_NSS
LPUART1_RTS| GPIO_Input TIM1_CH1
TIM14_CH1 GPIO_Output] GPIO_Input
TIM1_CH3N GPIO GPIO_Output
TIM3_CH4 EVENTOUT GPIO_Analog
GPIO_Input GPIO_EXTI2 EVENTOUT
GPIO_Output GPIO_EXTIg
GPIO_Analog
EVENTOUT
GPIO_EXTI1

System view

Select System view

to show all the software configurable components: GPIOs,

peripherals and middleware. Clickable buttons allow the user to open the mode and

UM1718 Rev 31

73/363

STM32CubeMX user interface

UM1718

74/363

configuration options of the component. The button icon reflects the component
configuration status (see Table 7 for configuration states and Figure System view).

When the user changes the component configuration from the Configuration panel, the
system view is automatically refreshed with the new configuration state.

If the user disables the component from the Mode panel, the system view is automatically
refreshed and there is no longer a button showing for that component.

Figure 48. System view

[0 STM32CubeMX Untitled*: STM32F423VHHx (= [
.
smat @ i i A n —}< L
ma2 ¥ File Window Help 9 oy Y/

Untitled - Pinout & Configuration

Clock Configuration Project Manager

Additional Softwares ~ Pinout
£ Pinout view b SEem view

Middlewares
System Core >
Timers >
System Core Analog Timers Connectivity Multimedia Security Computing
Connectivity >
I
L
Table 7. Configuration states
Icon Description

Configuration is complete and correct.

u Configuration is correct but some parts remain to be configured (may be optional).

Configuration is invalid and needs to be fixed for the generated C project to be functional.

UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

GPIO, DMA and NVIC settings can be accessed either via a dedicated button (like other
peripherals or via a tab in the Configuration panel (see Figure 49).

Figure 49. Configuration window tabs (GPIO, DMA and NVIC settings for STM32F4 Series)

I2C1 Mode and Configuration |
28]12C v|

Reset Configuration

@ Parameter Settings | @ User Constants | @ NVIC Settings ([GPIO Settings | @ DMA Settings

Search Signals
| r | [Show only Modified Pins

GPIO Pin State| GPIO mode |GPIO Pull-up!.. User Label Modlﬁed

FPB& 12C1_SCL nia Alternate Fun... Pull-up ngh
FB9 12C1_SDA n/a Alternate Fun... Pull-up High |:|

4.4.10 Component Configuration panel

This panel appears when clicking on a component name in the left panel. It allows the user
to configure the functional parameters required to initialize the peripheral or the middleware
in the selected operating mode (see Figure 50). STM32CubeMX uses these settings to
generate the corresponding initialization C code.

3

UM1718 Rev 31 75/363

STM32CubeMX user interface UM1718

76/363

Figure 50. Peripheral Mode and Configuration view

——— = = — ~
[T STM32CubeMX Untitled*: STM32FA23VHHx f] 5
szt @ File Window Help © oy < Ly
CubeMX =
[S b Untitled - Pinout & Configuration GENERATE CODE
Pinout & Configuration Clock Configuration Project Manager
Additional Softwares » Pinout
Options Q 12C1 Mode and Configuration :
| Cacooie: T2 ks
- # i28izc ~]
il
GPIO
A 12C1 Configuration
12c2
12C3 Reset Configuration
1251
1252 & Parameter Seitings| @ User Constants | @ NVIC Settings | @ GPIO Settings | @ DMA Settings
Egi IConfigure the below parameters :]
1285 Q ©
WDG al l
LIBJPEG ~ Waster Features
rﬁrgghs 12C Speed Mode Standard Mode
NVIC 12C Clock Speed (Hz) 100000
~ Slave Features
QUADSPI Clock No Stretch Mode Disabled
;ﬁg Primary Address Length selection 7-bit
RTC Dual Address Acknowledged
sAl Primary slave address 0
sDIo General Call address detection Disabled
SPI
SP12 W
SPI3 |
SPI4
SPl5 Dual Address Acknowledged
DualAddresshlode
Diagnostic:
TIM2 When primary address is 7 bits length we can have 3 dual address
TIM3
Tin4
TIM5

The configuration window includes several tabs:

Parameter settings to configure library dedicated parameters for the selected
peripheral or middleware,

NVIC, GPIO and DMA settings to set the parameters for the selected peripheral (see
Section 4.4.14, Section 4.4.12 and Section 4.4.13 for configuration details).

User constants to create one or several user defined constants, common to the whole
project (see Section 4.4.11 for user constants details).

Invalid settings are detected and are:

reset to minimum / maximum valid value if user choice is, respectively, smaller / larger
than minimum / maximum threshold

reset to previous valid value if the previous value is neither a maximum nor a minimum
threshold value

highlighted in fuchsia.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface
Table 8 describes peripheral and middleware configuration buttons and messages.
Table 8. Peripheral and Middleware Configuration window buttons and tooltips
Buttons and messages Action
ﬂ Shows and Hides the description panel.
Tooltip
Guides the user through the settings of
Epabled parameters with valid min-max range.
Disabled To display it, move the mouse over a
Enabled parameter value from a list of possible
Disabled values.
[2C Clock Spaed |,Hz',_ 100000 Clicking on the gear icon allows to
v Decimal select whether to display hexadecimal
Himadecrmal or decimal values, or any value
Mo check unchecked (No check option).
Search
Resets the component back to its
default configuration (initial settings
from STM32CubeMX).
No check option
By default, STM32CubeMX checks that the parameter values entered by the user are valid.
You can bypass this check by selecting the option No Check for a given parameter. This
allows entering you any value (such as a constant) that might not be known by
STM32CubeMX configuration.
The validity check can be bypassed only on parameters whose values are of integer type
(either hexadecimal or decimal). It cannot be bypassed on parameters coming from a
predefined list of possible values or on those which are of non-integer or text type.
To go back to the default mode (decimal or hexadecimal values with validity check enabled),
enter a decimal or hexadecimal value and check the relevant option (hexadecimal or
decimal check).
Caution: When a parameter depends upon another parameter that is set to No Check:

3

e Case of a parameter depending on another parameter for the evaluation of its minimum
or maximum possible value: If the other parameter is set to No Check, the minimum or
maximum value is no longer evaluated and checked.

e Case of a parameter depending on another parameter for the evaluation of its current
value: If the other parameter is set to No Check, the value is no longer automatically
derived. Instead, it is replaced with the formula text showing as variable the string of
the parameter set to No check (see Figure 57).

UM1718 Rev 31 771363

STM32CubeMX user interface UM1718

4411

78/363

Figure 51. Formula when input parameter is set in No Check mode

LTDC Mode and Configuration

Display Type [RGB888 (24 bits) v

Reset Configuration

® Parameter Setfings | @ Layer Settings | @ User Constants | @ MNVIC Settings | @ GPIO Settings

[Configure the below parameters |

Q] - |

=)
Lo
fn
L

~ Synchronization for Width

Horizontal Synchronization Width MY_HSYMNC_VALUE pixels

Horizontal Back Porch 7 pixels

Active Width 640 pixels

Harizontal Front Parch G pixels v
MY_HSYNC_VALUE-1

tal Back Porch Width MY_HSYNC_VALUE-1+7
d idth MY_HSYMNC_VALUE-1+7+6
Total Width MY_HSYNC_VALUE-1+7+640
~ Synchronization for Height
Vertical Synchronization Height
Vertical Back Porch 2lines
Active Height 450 lines

Accumulated Active

User Constants configuration window

An User Constants tab is available to define user constants (see Figure 52). Constants are
automatically generated in the STM32CubeMX user project within the main.h file (see
Figure 53). Once defined, they can be used to configure peripheral and middleware
parameters (see Figure 54).

Figure 52. User Constants tab

SWPMI Mode and Configuration :
Mode |FuII—DupIex (normal mode) V|

@ Parameter Settings [N UsSer Constants | @ NVIC Settings | @ GPIO Settings | @ DMA Settings

Search Constants

Search lcArh] EN EXE

CONSTANT_1 10

CONSTANT_2 0uff

CONSTANT_3 CONSTANT_1

CONSTANT_4 (CONSTANT_3 + CONSTANT_1)*100/CONSTANT_1
CONSTANT_5 (CONSTANT_2 - CONSTANT_1)

UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

3

Figure 53. Extract of the generated main.h file

/* Incluges -—-———-—-—-—-—-—-—-—-—-+--+—-+-+"+"+—"H-4"-—H—H""-"—-H"+—"—""""" - . — — *7
/* USER CODE BEGIN Includes */

/* U3ER CODE END Includes */

/* Private defiig --------—--------------------------------- -\ -+ - -\« + —«+—\—«(— ——— *J
#define CONSTANT 1 10

#define CONSTANT 2 Oxff

f#define CONSTANT 3 CONSTANT 1

#define COMSTANT 4 (CONSTANT 3S+CONSTANT 1) *100/CONSTANT 1

#define CONSTANT 5 (CONSTANT 2 - CONSTANT 1)

/* USER CODE BEGIN Priwvate defines +*/

S* USER CODE END Priwvate defines */

Figure 54. Using constants for peripheral parameter settings

Reset Configuration

& Parameter Settings | @ User Constants | @ NVIC Settings | @ GPIO Settings | @ DMA Settings

[Configure the below parameters :

Q | 1 | Fn ey
Y v

~ Basic Parameters

Voltage Class Class B
Bit Rate Prescaler
SWPMI Clock frequency 64000 kHz
Bit Rate 1455 kBits/s
Transmission Buffering Mode Mo Software buffer
Reception Buffering Mode Mo Software buffer
UM1718 Rev 31 79/363

STM32CubeMX user interface UM1718

80/363

Creating/editing user constants

Click the Add button to open the User Constants tab and create a new user-defined
constant (see Figure 55).

A constant consists of:

e A name that must comply with the following rules:

It must be unique.

It shall not be a C/C++ keyword.

It shall not contain a space.

It shall not start with digits.

e Avalue
The constant value can be (see Figure 52 for examples):
— asimple decimal or hexadecimal value
— apreviously defined constant

— aformula using arithmetic operators (subtraction, addition, division, multiplication,
and remainder) and numeric value or user-defined numeric constants as operands

— acharacter string: the string value must be between double quotes (example:
“constant_for_usart”).

Once a constant is defined, its name and/or its value can still be changed: double- click the
row that specifies the user constant to be modified. This opens the User Constants tab for
edition. The change of constant name is applied wherever the constant is used. This does
not affect the peripheral or middleware configuration state. However changing the constant
value impacts the parameters that use it and might result in invalid settings (e.g. exceeding
a maximum threshold). Invalid parameter settings are highlighted in fuchsia.

Figure 55. Specifying user constant value and name

User Constants [ﬁ

constant Mame [COMSTANT 1
constant Value 10

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Deleting user constants
Click the Remove button to delete an existing user-defined constant.

The user constant is then automatically removed except in the following cases:

o When the constant is used for the definition of another constant. In this case, a popup
window displays an explanatory message (see Figure 56).

Figure 56. Deleting an user constant is not allowed when the
constant is already used for another constant definition

F .
[[1 Delete user constant warning: ﬁ

Cannot delete, the selected user constant is used in the definition of another constant |

0K _J Cancel |

e When the constant is used for the configuration of a peripheral or middleware library
parameter. In this case, the user is requested to confirm the deletion since the constant
removal results in a invalid peripheral or middleware configuration (see Figure 57).

Figure 57. Deleting an user constant used for parameter configuration -
Confirmation request

- \
[0 Delete user constant warning: @

The selected user constant is used in the configuration of some ips! Are you sure you want to delete it ?

=y

Clicking Yes leads to an invalid peripheral configuration (see Figure 58)

Figure 58. Deleting a user constant used for peripheral configuration -
Consequence on peripheral configuration

& Parameter Settings || @ User Constants | @ NVIC Settings | @ GPIO Settings | @ DMA Settings

[Configure the below parameters
Q] |

~ @ Basic Parameters
Voltage Class Class B
Bit Rate Prescaler & COMSTANT_1
Transmission Buffering Mode Mo Software buffer
Reception Buffering Mode Mo Software buffer

Kys UM1718 Rev 31 81/363

STM32CubeMX user interface UM1718

Searching for user constants

The Search Constants field makes it possible the search of a constant name or value in the
complete list of user constants (see Figure 59 and Figure 60).

Figure 59. Searching for a name in a user constant list

@ NVIC Settings | @ GPIO Settings @ DMA Settings

@ Parameter Settings & User Constants

Search Constants

|CONSTANT 1 | add remaove
Constant Mame Constant Value
[[consTANT 1 10
COMNSTANT_3 CONSTANT_1p COMSTAMNT_2

Figure 60. Searching for a value in a user constant list

@ NVIC Settings @ GPIO Settings @ DMA Settings
@ Parameter Settings & User Constants

Search Constants

0] | Kl o

Constant Mame
CONSTAMT_1 m

Constant Value

82/363 UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

4.4.12

Note:

3

GPIO Configuration window

Click GPIO in the System view panel to open the GPIO configuration window that allows
you to configure the GPIO pin settings (see Figure 61). The configuration is populated with
default values that might not be adequate for some peripheral configurations. In particular,

check if the GPIO speed is sufficient for the peripheral communication speed and select the
internal pull-up whenever needed.

GPIO settings can also be accessed for a specific peripheral instance via the dedicated
window in the peripheral instance configuration window. In addition, GPIOs can be
configured in output mode (default output level). The generated code is updated
accordingly.

Figure 61. GPIO Configuration window - GPIO selection

GPIO Mode and Configuration

[Group By Peripherals
® ADC1 | @ ADC2

Search Signals
I | [Show only Modified Pins

[Pin Na.___[Signal on Pl GPIO outp._] GPIO mode JGPIO Pull-__[Maximum o.f Fast Mode | User Label | _Modified]

PA9 nia nia External Int... No pull up ... nfa n/a
PB15 nia Low Qutput Pus... No pull up . Low n/a I:I
PC3 nia nfa Input mode MNo pullup ... n/a n/a O

Click on a row or select a set of rows to display the corresponding GPIO parameters:
e GPIO PIN state

It changes the default value of the GPIO Output level. It is set to low by default and can
be changed to high.

e GPIO mode (analog, input, output, alternate function)

Selecting a peripheral mode in the Pinout view automatically configures the pins with
the relevant alternate function and GP1O mode.

e GPIO pull-up/pull-down
It is set to a default value and can be configured when other choices are possible.
e GPIO maximum output speed (for communication peripherals only)

Itis set to Low by default for power consumption optimization and can be changed to a
higher frequency to fit application requirements.

. User Label

It changes the default name (e.g. GPIO_input) into a user defined name. The Pinout
view is updated accordingly. The GPIO can be found under this new name via the Find
menu.

UM1718 Rev 31 83/363

STM32CubeMX user interface UM1718

The Group by Peripherals checkbox allows the user to group all instances of a peripheral
under the same window (see Figure 62).

Figure 62. GPIO configuration grouped by peripheral

Group By Peripherals
& GPIO

Search Signals
| r | [Show only Modified Pins

PES nia Low DutputF‘u No pull-u.. Low m'a
PE14 nfa nia Analog m... Mo pull-u... n/a n/a |:|
PF15 nia nia Input mode Mo pull-u... nia nl/a O

As shown in Figure 63, row multi-selection can be performed to change a set of pins to a
given configuration at the same time.

Figure 63. Multiple Pins Configuration

Group By Peripherals

& GPIO

Search Signals
| r | O Show only Modified Pins

m

PBEG 121 SCL nia Alternate. Mo pullu Low D|sable
PB9 12C1_SDA nfa Alternate ... Pull-up Low Dizable
PF1 12C2_SCL nfa Alternate . Pull-up Low nla
FFED 12C2_SDA nfa Alternate ... Pull-up Low nia
PAS 12C3_SCL nfa Alternate ... Pull-up Low nia
PCo 12C3_SDA nfa Alternate . Mo pull-u... Low nia O
- PBY#PF1#PFI#PAS Configuration :
GPIO maode | v|
GPIO Pull-up/Pull-down [Pull-up v|
Maximum output speed | v|
User Label | |
84/363 UM1718 Rev 31 Kyy

UM1718 STM32CubeMX user interface
4413 DMA Configuration window
Click DMA in the System view to open the DMA configuration window.
This window is used to configure the generic DMA controllers available on the MCU. The
DMA interfaces allow to perform data transfers between memories and peripherals while the
CPU is running, and memory to memory transfers (if supported).
Note: Some peripherals (such as USB or Ethernet) have their own DMA controller, which is

3

enabled by default or via the Peripheral Configuration window.

Clicking Add in the DMA configuration window adds a new line at the end of the DMA
configuration window with a combo box proposing to choose between possible DMA
requests to be mapped to peripherals signals (see Figure 64).

Figure 64. Adding a new DMA request

Configuration
& DAY DMAZ | @ MemTolMem

Select)
DMA_GEMERATORT

o [Cose:]

12C1_TX
[2C2_RX

12c2_TX eriphera Aemon,
[2C3_RX H

[12C3 TX] ncrement Address]]
MEMTOMEM

Use Fifo O Threshold Data Width | | | |

1n}
[
]

T

DMA Request Generator Settings

Request generation Signa | |

nal polarity | |

Selecting a DMA request automatically assigns a stream among all the streams available, a
direction and a priority. When the DMA channel is configured, it is up to the application code
to fully describe the DMA transfer run-time parameters such as the start address.

The DMA request (called channel for STM32F4 MCUSs) is used to reserve a stream to
transfer data between peripherals and memories (see Figure 65). The stream priority is
used to decide which stream to select for the next DMA transfer.

DMA controllers support a dual priority system using the software priority first, and in case of
equal software priorities, a hardware priority that is given by the stream number.

UM1718 Rev 31 85/363

STM32CubeMX user interface UM1718

86/363

Figure 65. DMA configuration

& DMAT DMAZ Y @ MemToMem

DIIA Request
12C1_TX DWAT Stream 0 Memory To Peripheral Low
12C1_RX DMAT Stream 1 Peripheral To Memory Low
Add Delete
DMA Request Settingsi
Peripheral Memary
Mode |Normal v | Increment Address O
UseFifo O Threshold [] Data Width [Byte v] | [Byte v]
Burst Size | | | |

+DMA Reguest Generator Settings

Request generation Signal | |

Signal polarity | |

Additional DMA configuration settings can be done through the DMA configuration
window:

Mode: regular mode, circular mode, or peripheral flow controller mode (only available
for the SDIO peripheral).

Increment Add: the type of peripheral address and memory address increment (fixed
or post-incremented in which case the address is incremented after each transfer).
Click the checkbox to enable the post-incremented mode.

Peripheral data width: 8, 16 or 32 bits

Switching from the default direct mode to the FIFO mode with programmable threshold:
a) Click the Use FIFO checkbox.

b) Then, configure the peripheral and memory data width (8, 16 or 32 bits).

c) Select between single transfer and burst transfer. If you select burst transfer,
choose a burst size (1, 4, 8 or 16).

In case of memory-to-memory transfer (MemToMem), the DMA configuration applies to a
source memory and to a destination memory.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 66. DMA MemToMem configuration

@ DMAT, DvA2Z |[E MemTolMem

DIIA Request [steam | Direction | Proity |
MEMTOMEM DMA1 Stream 2 Memaory To Memory Low
Add Delete

DMA, Request Settings

Src Memory Dst Memaory
Mode [Mormal v | Increment Address
Use Fifo Threshold Data Width [Byte v || PByte v|
Burst Size |Single v | |Sing|e v |

DMA Request Generator Settings

4414 NVIC Configuration window

Click NVIC in the System view to open the Nested Vector interrupt controller configuration
window (see Figure 67).
Interrupt unmasking and interrupt handlers are managed within two tabs:

e The NVIC tab allows enabling peripheral interrupts in the NVIC controller and setting
their priorities.

o The Code generation tab allows selecting options for interrupt related code
generation.

Enabling interruptions using the NVIC tab view

The NVIC view (see Figure 67) does not show all possible interrupts but only the ones
available for the peripherals selected in the Pinout & Configuration panels. System
interrupts are displayed but can never be disabled.

Check/Uncheck the Show only enabled interrupts box to filter or not enabled interrupts.

Use the search field to filter out the interrupt vector table according to a string value. As an
example, after enabling UART peripherals from the Pinout panel, type UART in the NVIC
search field and click the green arrow close to it: all UART interrupts are then displayed.

Enabling a peripheral interrupt generates NVIC function calls HAL_NVIC_SetPriority and
HAL_NVIC_EnablelRQ for this peripheral.

3

UM1718 Rev 31 87/363

STM32CubeMX user interface UM1718

Figure 67. NVIC Configuration tab - FreeRTOS disabled

& NVIC | @ Code generation

Priority Group |4 bits for pre-emption priori... V| [Sort by Premption Priority and Sub Priority

Search | i | (© () [Show only enabled interrupts
NVIC Interrupt Table Enabled | Preemption Priority

Mon maskable interrupt

Hard fault interrupt

Memaory management fault
Pre-fetch fault, memaory access fault
Undefined instruction or illegal state
System service call via SWI instruction
Debug monitor

FPendable request for system senvice
Time base: System tick timer

PVD interrupt through EXTI line 16
Flash global interrupt

RCC global interrupt

12C1 event interrupt

121 error interrupt

SPI1 global interrupt

USB On The Go F3S global interrupt
FPLU global interrupt

OO0O000000 e aEE
[R o o R o e R e R e R R R o M R R R R
o= R o= o R o R o R e e R o R e N e e B R R

O Preemption Priority I:I Sub Priority I:I

When FreeRTOS is enabled, an additional column is shown (see Figure 68).

In this case, all the interrupt service routines (ISRs) that are calling the interrupt safe
FreeRTOS APIs must have a priority lower than the priority defined in the

LIBRARY_MAX SYSCALL_INTERRUPT_PRIORITY parameter (the highest the value, the
lowest the priority). The check in the corresponding checkbox guarantees that the restriction
is applied.

If an ISR does not use such functions, the checkbox can be unchecked and any priority level
can be set. It is possible to check/uncheck multiple rows (see rows highlighted in blue in
Figure 68).

3

88/363 UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

Figure 68. NVIC Configuration tab - FreeRTOS enabled

& NVIC | @ Code generation

Priority Group |4 bits for pre-emption priori... V| [Sort by Premption Priority and Sub Priority

Search | ' | © @ [Show only enabled interrupts

MVIC Interrupt Table F'reemphc-n Pri... Uses FreeRTDa fun...

Mon maskable interrupt

Hard fault interrupt

Memaory management fault

Pre-fetch fault, memaory access fault
Undefined instruction or illegal state
System senvice call via SWI instruction
Debug maonitor

Fendable request for system service
Time base: System tick timer

PVD interrupt through EXTI line 16
Flash global interrupt

RCC global interrupt

I2C1 event interrupt

121 error interrupt

SPI1 global interrupt

USBE On The Go FS global interrupt
FPU global interrupt

O Preemption Priority I:I Sub Priarity I:I O

o

OO0O000000O e EE
nmimmonminionimm = = O O O O O O

=R o o R e e R e R e e R o e B e e B R R
< f<f< << << mim|mimjjmimim

Peripheral dedicated interrupts can also be accessed through the NVIC window in the
Peripheral Configuration window (see Figure 69).

Figure 69. 12C NVIC Configuration window

& NVIC Settings | @ GFPIO Seitings | & DMA Settings

@ Parameter Setting User Constants

NVIC Interrupt Table Enabled Preemption Priority

[2C1 event interrupt
1221 error interrupt I:I IZI

UM1718 Rev 31 89/363

STM32CubeMX user interface UM1718

90/363

STM32CubeMX NVIC configuration consists in selecting a priority group, enabling/disabling
interrupts and configuring interrupts priority levels (preemption and sub-priority levels):

1.

Select a priority group

Several bits allow to define NVIC priority levels. These bits are divided in two priority

groups corresponding to two priority types: preemption priority and sub-priority. For

example, in the case of STM32F4 MCUs, the NVIC priority group 0 corresponds to

0-bit preemption and 4-bit sub-priority.

In the interrupt table, click one or more rows to select one or more interrupt vectors.

Use the widgets below the interrupt table to configure the vectors one by one or several

at a time:

— Enable checkbox: check/uncheck to enable/disable the interrupt.

— Preemption priority: select a priority level. The preemption priority defines the
ability of one interrupt to interrupt another.

— Sub-priority: select a priority level. The sub-priority defines the interrupt priority
level.

Code generation options for interrupt handling

The Code Generation view allows customizing the code generated for interrupt initialization
and interrupt handlers:

Selection/Deselection of all interrupts for sequence ordering and IRQ handler
code generation

Use the checkboxes in front of the column names to configure all interrupts at a time
(see Figure 70). Note that system interrupts are not eligible for init sequence reordering
as the software solution does not control it.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 70. NVIC Code generation — All interrupts enabled

& MVIC | & Code generation

L Iinermpt table Select for init sequence ordering Generate IRQ handler

Memaory management fault

Pre-fetch fault, memory access fault

Undefined instruction aor illegal state

System senvice call via SWI instructi...
Debug monitor

Pendable request for system semvice
Time base: System tick timer

RCC global interrupt

ADCAH, ADC2 and ADC3 global inter...
CAM1 TX interrupts

[2C1 event interrupt

ool

(|
(|
(|
O
O
O
m|
v
v
v
v

Interrupt unmasking ordering table {interrupt init code is moved after all the peripheral init code)

Interrupt name
ADCH, ADC2 and ADC3 glabal interrupts

CAMNT TX interrupts
[2C1 event interrupt
RCC global interrupt

#NMA%

ny
—
I
—

o Default initialization sequence of interrupts
By default, the interrupts are enabled as part of the peripheral MSP initialization
function, after the configuration of the GPIOs and the enabling of the peripheral clock.

This is shown in the CAN example below, where HAL NVIC_SetPriority and
HAL NVIC EnablelRQ functions are called within stm32xxx_hal_msp.c file inside the
peripheral msp_init function.

Interrupt enabling code is shown in bold:

void HAL_CAN_MspInit (CAN_HandleTypeDef* hcan)
{

GPIO_InitTypeDef GPIO_InitStruct;

if (hcan->Instance==CAN1)

{

/* Peripheral clock enable */
__CAN1_CLK_ENABLE() ;

/**CAN1l GPIO Configuration

PDO ——-——-— > CAN1_RX
PD1 —--——-— > CAN1_TX
*/

GPIO_InitStruct.Pin = GPIO_PIN_O0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;

3

UM1718 Rev 31 91/363

STM32CubeMX user interface UM1718

GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_ HIGH;
GPIO_InitStruct.Alternate = GPIO_AF9_ CAN1;
HAL_GPIO_Init (GPIOD, &GPIO_InitStruct);

/* Peripheral interrupt init */
HAL_NVIC_SetPriority(CAN1l_TX IRQn, 2, 2);
HAL_NVIC_EnableIRQ(CAN1_TX_IRQn);

}
}

For EXTI GPIOs only, interrupts are enabled within the MX_GPIO_Init function:
/*Configure GPIO pin : MEMS_INT2_Pin */

GPIO_InitStruct.Pin = MEMS_INT2_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_EVT RISING;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPTIO_Tnit (MEMS_INT2_GPIO_Port, &GPIO_InitStruct);

/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
HAL_ NVIC_EnableIRQ(EXTI15_10_IRQn);

For some peripherals, the application still needs to call another function to actually
activate the interruptions. Taking the timer peripheral as an example, the
HAL_TIM_IC_Start_IT function needs to be called to start the Timer input capture (IC)
measurement in interrupt mode.
e Configuration of interrupts initialization sequence

Checking Select for Init sequence ordering for a set of peripherals moves the
HAL_NVIC function calls for each peripheral to a same dedicated function, named
MX_NVIC_Init, defined in the main.c. Moreover, the HAL_NVIC functions for each
peripheral are called in the order specified in the Code generation view bottom part
(see Figure 71).
As an example, the configuration shown in Figure 71 generates the following code:

/** NVIC Configuration

*/

void MX_NVIC_Init (void)

{
/* CAN1_TX_ IRQn interrupt configuration */
HAL_NVIC_SetPriority(CAN1_TX_IRQn, 2, 2);
HAL_NVIC_EnableIRQ(CAN1_TX_TIRQn) ;
/* PVD_IRQn interrupt configuration */
HAL_NVIC_SetPriority (PVD_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (PVD_IRQn) ;
/* FLASH_TIRQn interrupt configuration */
HAL_NVIC_SetPriority (FLASH_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(CAN1_TIRQn) ;
/* RCC_IRQn interrupt configuration */

3

92/363 UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

HAL_NVIC_SetPriority (RCC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (CAN1_TIRQn) ;

/* ADC_IRQn interrupt configuration */
HAL_NVIC_SetPriority (ADC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ (ADC_IRQn) ;
}

Interrupts handler code generation

By default, STM32CubeMX generates interrupt handlers within the stm32xxx _it.c file.
As an example:

void NMI_Handler (void)

{

HAL_RCC_NMI_TIRQHandler () ;

}
void CAN1_TX IRQHandler (void)
{

HAL_CAN_IRQHandler (&hcanl);
}

The column Generate IRQ Handler allows the user to control whether the interrupt
handler function call can be generated or not. Deselecting CAN1_TX and NMI
interrupts from the Generate IRQ Handler column as shown in Figure 71 removes the
code mentioned earlier from the stm32xxx _it.c file.

Figure 71. NVIC Code generation — IRQ Handler generation

B L0 M3

Enabled interrupt table Select for init sequence ordering [/] Generate IR handler

Maon maskable interrupt

Hard fault interrupt

Memaory management fault
Pre-fetch fault, memaory access fault
Undefined instruction or illegal state
System sernvice call via SW instructi.
Debug maonitar

Pendable request for system senvice
Time base: System tick timer

RCC global interrupt

CAM1 TX interrupts

Interrupt unmasking ordering table (interrupt init code is moved after all the peripheral init code)

_____Rani | Interrupt name

@ Code generation

< < [miimimijmimjmjimjinin
@HHEEHHHEEE

ADCH, ADCZ and ADC3 global interrupts
CAN1 TX interrupts

12C1 event interrupt

RCC global interrupt

UM1718 Rev 31 93/363

STM32CubeMX user interface

UM1718

4.4.15

FreeRTOS configuration panel

Through STM32CubeMX FreeRTOS configuration window, the user can configure all the
resources required for a real-time OS application and reserve the corresponding heap.
FreeRTOS elements are defined and created in the generated code using CMSIS-RTOS
API functions. Follow the sequence below:

1.

In the Pinout & Configuration tab, click FreeRTOS to reveal the Mode and
configuration panels (see Figure 72).

Enable freeRTOS in the Mode panel.

Go to the configuration panel to proceed with configuring FreeRTOS native parameters
and objects, such as tasks, timers, queues, and semaphores. In the Config tab,
configure Kernel and Software settings. In the Include parameters tab, select the API
functions required by the application and this way, optimize the code size. Both Config
and Include parameters are part of the FreeRTOSConfig.h file.

Figure 72. FreeRTOS configuration view

[STM32CubeMX Untitled*: STM32F429VITx

[|))

~ Versions

Middleware

FATFS

~ Kernel settings

FREERTOS|
USE_PREEWPTION
LIBJPEG CPU_CLOCK_HZ
TICK_RATE_HZ
MBEDTLS MAX_PRIORITIES
MINIMAL_STACK_SIZE
MAX_TASK_NAME_LEN
A USE_16_BIT_TICKS
IDLE_SHOULD_YIELD
Application > USE_MUTEXES

USE_RECURSIVE_MUTEXES

a .
s @ File Window Hel 9 n »}q L
CubeMX g = oy 2/4
Untitled - Pinout & Configuration GENERATE CODE
Pinout & Configuration Clock Configuration Project Manager
Additional Softwares v Pinout
Q FREERTOS Mode and Configuration :
Mode
System Care > Enabled
Analog >
Timers b
Connectiity > Configuration
Reset Configuration
Multimedi >
Hlimecia @ Tasks and @ Timers and Semaphares
arameters @ User Constants
Security > -
[Configure the following parameters |
Computing > Q o

Enabled

1000

7

128 Words
16

Enabled
Enabled
Disabled

94/363

UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

3

Tasks and Queues Tab

As any RTOS, FreeRTOS allows structuring a real-time application into a set of independent
tasks, with only one task being executed at a given time. Queues are meant for inter-task
communications: they allow to exchange messages between tasks or between interrupts
and tasks.

In STM32CubeMX, the FreeRTOS Tasks and Queues tab enables the creation and
configuration of such tasks and queues (see Figure 73). The corresponding initialization
code is generated within main.c or freeRTOS.c if the option “generate code as pair of .c/.h
files per peripherals and middleware” is set in the Project Settings menu.

The corresponding initialization code is generated within main.c by default or within
freeRTOS.c if the option “generate code as pair of .c/.h files per peripherals and
middleware” is set in the Project Manager menu.

Figure 73. FreeRTOS: configuring tasks and queues

Reset Configuration
@ User Constants
Tasks
Entry Funciion | Code Generafi | Parameter | _ Allocation] _Buffer Name _[Control Block ..
defaultTask osPriorityMormal 128 StartDefaultTask Default MULL Dynamic MULL MULL
Task_A osPriorityHigh 128 StafTask_A Default MULL Dynamic MULL MULL
myTask_B osPriorityLow 256 StartTask_B Default MULL Dynamic MULL MULL
Queu
| __QueueName | QueweSize | femSze | Allocaon | _BufferName | Control BlockName
myQueue_1 16 uint16_t Diynamic NULL NULL
myQueue_2 3z uint16_t Dynamic MULL MULL
e Tasks

Under the Tasks section, click the Add button to open the New Task window where
task name, priority, stack size and entry function can be configured (see Figure 74).
These settings can be updated at any time: double-clicking a task row opens again the
new task window for editing.
The entry function can be generated as weak or external:
— When the task is generated as weak, the user can propose another definition than
the one generated by default.

— When the task is extern, it is up to the user to provide its function definition.
By default, the function definition is generated including user sections to allow
customization.

e Queues

Under the Queues section, click the Add button to open the New Queue window
where the queue name, size and item size can be configured (see Figure 74). The
queue size corresponds to the maximum number of items that the queue can hold at a

UM1718 Rev 31 95/363

STM32CubeMX user interface UM1718

96/363

time, while the item size is the size of each data item stored in the queue. The item size
can be expressed either in number of bytes or as a data type:

1 byte for uint8_t, int8_t, char and portCHAR types

2 bytes for uint16_t, int16_t, short and portSHORT types
4 bytes for uint32_t, int32_t, int, long and float

8 bytes for uint64_t, int64_t and double

By default, the FreeRTOS heap usage calculator uses four bytes when the item size
cannot be automatically derived from user input.

These settings can be updated at any time: double-clicking a queue row opens again
the new queue window for editing.

Figure 74. FreeRTOS: creating a new task

Reset Configuration

Tasks

Entry Function | Code Generatl | _Parameter | _ Allocation] _Buffer Name _[Control Block N..

defaultTask osPriorityMormal 128 StartDefauliTask Default MULL Dynamic MULL MULL
Task_A osPriorityHigh 128 StarfTask_A Default NULL Dynamic MULL MNULL
myTask_B osPriorityLow 256 StarTask_B Default NULL Dynamic MULL MNULL

Add Delete

@
Control Block Name
myQueue_1 16 NULL

myQueue_2 32 uint16_t Dynamic MULL MULL

uint16_t Dynamic

Add Delete

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

The following code snippet shows the generated code corresponding to Figure 73.
/* Create the thread(s) */

/* definition and creation of defaultTask */
osThreadDef (defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate (osThread(defaultTask), NULL) ;

/* definition and creation of Task_A */
osThreadDef (Task_A, StartTask_A, osPriorityHigh, 0, 128);
Task_AHandle = osThreadCreate(osThread(Task_A), NULL) ;

/* definition and creation of Task_B */
osThreadDef (Task_B, StartTask_B, osPriorityLow, 0, 256);
Task_BHandle = osThreadCreate(osThread(Task_B), NULL) ;

/* Create the queue(s) */
/* definition and creation of myQueue_1 */
osMessageQDef (myQueue_1, 16, 4);

myQueue_lHandle = osMessageCreate (osMessageQ (myQueue_1), NULL) ;

/* definition and creation of myQueue_2 */
osMessageQDef (myQueue_2, 32, 2);

myQueue_2Handle = osMessageCreate (osMessageQ (myQueue_2), NULL) ;

Timers, Mutexes and Semaphores

FreeRTOS timers, mutexes and semaphores can be created via the FreeRTOS Timers and
Semaphores tab. They first need to be enabled from the Config tab (see Figure 75).

Figure 75. FreeRTOS - Configuring timers, mutexes and semaphores

Reset Configuration

@ User Constants

rTimers
caliback | Type ___Jcode Generation Op..| _Parameter | ___Allocation | Contral Block Name
myTimerQ1 Callback01 osTimerPeriodic Default MULL Dynamic MULL
myTimer02 Callback02 osTimerOnce Default NULL Dynamic MNULL

Add Delete
r Binary Semaphores
Control Block Name
myBinarySem01 Dynamic MULL

Add Delete
rCounting Semaphores
Control Block Name
myCountingSem01 2 Dynamic MULL

Add Delete

UM1718 Rev 31 97/363

STM32CubeMX user interface UM1718

Note:

98/363

Under each object dedicated section, clicking the Add button to open the corresponding
New <object> window where the object specific parameters can be specified. Object
settings can be modified at any time: double- clicking the relevant row opens again the New
<object> window for edition.

Expand the window if the newly created objects are not visible.
e Timers
Prior to creating timers, their usage (USE_TIMERS definition) must be enabled in the

software timer definitions section of the Configuration parameters tab. In the
same section, timer task priority, queue length and stack depth can be also configured.

The timer can be created to be one-shot (run once) or auto-reload (periodic). The timer
name and the corresponding callback function name must be specified. It is up to the
user to fill the callback function code and to specify the timer period (time between the
timer being started and its callback function being executed) when calling the CMSIS-
RTOS osTimerStart function.

e Mutexes / Semaphores

Prior to creating mutexes, recursive mutexes and counting semaphores, their usage
(USE_ MUTEXES, USE_RECURSIVE_MUTEXES,
USE_COUNTING_SEMAPHORES definitions) must be enabled within the Kernel
settings section of the Configuration parameters tab.

The following code snippet shows the generated code corresponding to Figure 75).

/* Create the semaphores(s) */
/* definition and creation of myBinarySemO0l */
osSemaphoreDef (myBinarySem01) ;

myBinarySemOlHandle = osSemaphoreCreate (osSemaphore (myBinarySem01l), 1);

/* definition and creation of myCountingSemO1l */
osSemaphoreDef (myCountingSem01) ;

myCountingSemO0lHandle = osSemaphoreCreate (osSemaphore (myCountingSem01l),
7);

/* Create the timer(s) */
/* definition and creation of myTimer0l */
osTimerDef (myTimer01l, Callback01l);

myTimerOlHandle = osTimerCreate (osTimer (myTimer0l), osTimerPeriodic,
NULL) ;

/* definition and creation of myTimer02 */
osTimerDef (myTimer02, Callback02);

myTimer02Handle = osTimerCreate (osTimer (myTimer02), osTimerOnce, NULL) ;

/* Create the mutex(es) */
/* definition and creation of myMutex0l */
osMutexDef (myMutex01) ;

myMutex0lHandle = osMutexCreate (osMutex (myMutex01)) ;

3

UM1718 Rev 31

STM32CubeMX user interface

UM1718
/* Create the recursive mutex(es) */
/* definition and creation of myRecursiveMutex0l */
osMutexDef (myRecursiveMutex01) ;
myRecursiveMutex0lHandle =
osRecursiveMutexCreate (osMutex (myRecursiveMutex01)) ;
FreeRTOS heap usage
The FreeRTOS Heap usage tab displays the heap currently used and compares it to the
TOTAL_HEAP_SIZE parameter set in the Config Parameters tab. When the total heap
used crosses the TOTAL_HEAP_SIZE maximum threshold, it is shown in fuchsia and a
cross of the same color appears on the tab (see Figure 76).
Figure 76. FreeRTOS Heap usage
@ User Constants E e S @ Mutexes [EIFEERTOS
v Summary
HEAP STILL AVAILABLE 0 Bytes
Total amount for tasks 33328 Bytes
Total amount for queues 3396 Bytes
Total amount for timers 95 Bytes
Total amount for mutexes and semaphores 176 Bytes
~ FreeRTOS tasks
Idle task (FreeRTOS internal) 624 Bytes
Timer senvice task (FreeRTOS internal) 1136 Bytes
defauliTask 624 Bytes
Task_A 15472 Bytes
myTask_B 15472 Bytes
TOTAL HEAP USED
Total amount of the heap used by known objects (user objects, internal freertos objects)
WARNING
Current computed value is greater than the configTOTAL_HEAP_SIZE value setin Config parameters tab
To avoid runtime issues, you should increase config_TOTAL_HEAP_SIZE, remove/adjust some defined objects (tasks, queues, timers, mutexes, semaphores) or change
the Memory Management scheme to heap_3
More about FreeRTOS Heap:
FreeRTOS uses a region of memary called Heap (into the RAM) to allocate memaory for tasks, queues, timers, semaphores, mutexes and when dynamically creating
4.4.16 Setting HAL timebase source

3

By default, the STM32Cube HAL is built around a unique timebase source, the
Arm® Cortex® system timer (SysTick).

However, HAL-timebase related functions are defined as weak so that they can be
overloaded to use another hardware timebase source. This is strongly recommended when
the application uses an RTOS, since this middleware has full control on the SysTick
configuration (tick and priority) and most RTOSs force the SysTick priority to be the lowest.

Using the SysTick remains acceptable if the application respects the HAL programming
model, that is, does not perform any call to HAL timebase services within an Interrupt
Service Request context (no dead lock issue).

To change the HAL timebase source, go to the SYS peripheral in the Component list panel
and select a clock among the available sources: SysTick, TIM1, TIM2,... (see Figure 77).

UM1718 Rev 31 99/363

STM32CubeMX user interface UM1718

100/363

Figure 77. Selecting a HAL timebase source (STM32F407 example)

Pinout & Configuration Clock Configuration

Additional Softwares
SYS Mode and Configuration

Debug |Disable V]
gﬂﬂ [System Wake-Up
=DIo Timebase Source |SysTick v
= SysTick
TN
S W
TIM3
TIM1 T4
TiM2 TIN5
TIM3 —TIME r
TiM4 TIMT

When used as timebase source, a given peripheral is grayed and can no longer be selected
(see Figure 78).

Figure 78. TIM1 selected as HAL timebase source

SYS Mode and Configuration

Debug [Disable W

] System Wake-Up

Timebase Source [TIM1 w

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

As illustrated in the following examples, the selection of the HAL timebase source and the
use of FreeRTOS influence the generated code.

Example of configuration using SysTick without FreeRTOS

As illustrated in Figure 79, the SysTick priority is set to 0 (High) when using the SysTick
without FreeRTOS.

Figure 79. NVIC settings when using SysTick as HAL timebase, no FreeRTOS

& NVIC | @ Code generation

Priority Group |4 bits for pre-emption priority 0 bits for __. V| [Sort by Premption Priority and Sub Priority
Search | ' | @ & [Show only enabled interrupts
Mon maskable interrupt 0 0
Hard fault interrupt] 0
Memaory management fault 0 0
Pre-fetch fault, memaory access fault 0 0
Undefined instruction orillegal state 0 0
System service call via Wl instruction 0 0
Debug monitor] 0
Pendable request for system semnice 0 0
Time base: System tick timer 0 0
PYD interrupt through EXTI line 16 O 0 0
Flash global interrupt O o 0
RCC global interrupt O] 0
SPI2 global interrupt O o 0
TIME global interrupt, DACT and DACZ underrun error interrupts O 0 0
FPU global interrupt O o 0

Interrupt priorities (in main.c) and handler code (in stm32f4xx_it.c) are generated
accordingly:

e main.cfile

/* SysTick_IRQn interrupt configuration */

HAL_NVIC_SetPriority (SysTick_IRQn, 0, 0);

o stm32f4xx_it.c file

J*x

* @brief This function handles System tick timer.

*/

void SysTick_Handler (void)

{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick() ;
HAL_SYSTICK_IRQHandler() ;
/* USER CODE BEGIN SysTick_IRQn 1 */

/* USER CODE END SysTick IRQn 1 */

3

UM1718 Rev 31 101/363

STM32CubeMX user interface UM1718

102/363

Example of configuration using SysTick and FreeRTOS

As illustrated in Figure 80, the SysTick priority is set to 15 (Low) when using the SysTick
with FreeRTOS.

Figure 80. NVIC settings when using FreeRTOS and SysTick as HAL timebase

& MVIC | @ Code generation

Priority Group |4 bits for pre-emption priority 0 bits for . V| [Sort by Premption Priority and Sub Priority
Search | { | © © [Show only enabled interrupts
Mon maskable interrupt 0 0
Hard fault interrupt 0 0
Memory management fault 0 0
Pre-fetch fault, memory access fault 0 0
Undefined instruction or illegal state 0 0
System senvice call via SWI instruction 0 0
Debug monitor] 0
Pendable request for system semnvice 0 0
Time base: System tick timer [15 ~|0
PYD interrupt through EXTI line 16 | 0 0
Flash global interrupt O o 0
RCC global interrupt O o 0
SP12 global interrupt O o 0
TIMG global interrupt, DACT and DACZ underrun error interrupts O 0 0
FPU global interrupt O o 0

As shown in the code snippets below, the SysTick interrupt handler is updated to use
CMSIS-os osSystickHandler function.

e main.c file
/* SysTick IRQn interrupt configuration */

HAL_NVIC_SetPriority(SysTick_ IRQn, 15, 0);

o stm32f4xx_it.c file

/**

* @brief This function handles System tick timer.
*/

void SysTick_Handler (void)

{
/* USER CODE BEGIN SysTick_IRQn 0 */

/* USER CODE END SysTick_ IRQn 0 */
HAL_IncTick() ;

osSystickHandler () ;

/* USER CODE BEGIN SysTick_IRQn 1 */

/* USER CODE END SysTick IRQn 1 */

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

4.5

3

Example of configuration using TIM2 as HAL timebase source

When TIM2 is used as HAL timebase source, a new stm32f4xx_hal_timebase_TIM.c file is
generated to overload the HAL timebase related functions, including the HAL_InitTick
function that configures the TIM2 as the HAL time-base source.

The priority of TIM2 timebase interrupts is set to 0 (High). The SysTick priority is set to 15
(Low) if FreeRTOS is used, otherwise is set to 0 (High).

Figure 81. NVIC settings when using FreeRTOS and TIM2 as HAL timebase
& NVIC | @ Code generation

Priority Group |4 bits for pre-emption priority 0 bits for V| [Sort by Premption Priority and Sub Priority

Search | | © @ [Show only enabled interrupts
Mon maskable interrupt 0 0
Hard fault interrupt 0 0
Memary management fault 0 0
Pre-fetch fault, memory access fault 0 0
Undefined instruction orillegal state 0 0
System service call via SWI instruction 0 1]
Diebug monitor 0 0
Pendable request for svetem service | 0 0
l5ystem tick timer 15 | 0
FVD interrupt through EXTI ine 16 [M) u 0
Flash global interrupt O] 0
RCC global interrupt |] 0
lime base: TIMZ global interrupt 0 | 0
SHIZ global interrupt || [i] 0
TIMG global interrupt, DAC1 and DACZ underrun error interrupts O 0 0
FPU global interrupt O] 0

The stm32f4xx_it.c file is generated accordingly:

e SysTick_Handler calls osSystickHandler when FreeRTOS is used, otherwise it calls
HAL_SYSTICK_IRQHandler.

e TIM2_IRQHandler is generated to handle TIM2 global interrupt.

Pinout & Configuration view for STM32MP1 Series

For the STM32MP1 Series the Pinout & Configuration view allows the user to:
e assign components to one or several run time contexts

e configure peripherals as boot devices

e select the peripherals to be managed by boot loaders

e assign GPIOs to one runtime (see Figure 83).

These possibilities are offered in two different panels (see Figure 82)

1. from the component tree panel, that lists all supported peripherals and middleware (the
“Show contexts” option must be enabled)

2. from each component mode panel, opened by clicking the component name.

UM1718 Rev 31 103/363

STM32CubeMX user interface UM1718

4.5.1

104/363

Figure 82. STM32MP1 boot devices and runtime contexts

| [STM32CubeMX Untitled*: STM32MP151CADx == X

* =
szt @ File Window Help & oy x L

Project Manager

~ Pinout |

Options K@Y ~ TIM12 Mode and Configuration

Show contexts J| Mode

* \"*‘(Bont ROM ATBL m Boot time: Runtime contexts:
Boot ROM Boot loader
|| /] O

O O
O O
Slave Mode Disable
o d | Disabl :
O O isable
|
TIM12 O O Channel1 |D|sable V|
] O Channel2 [Disable ~]
O O Combined Channels [Disable | |
| | | E— '
n - Configuration |

Figure 83. STM32MP1 Series: assignment options for GPIOs

Enter User Label
Signal Unpinning

w Pin Stacking

& Pin Reservation ¥ @ Free
O Cortex-AT secure

O Cortex-A7 non secure
O Cortex-M4

Run time configuration

The STM32MP1 devices are multi-core (Arm® Cortex®-A7 dual-core and Cortex-®M4) and
multi-firmware, each firmware executing on one of the cores. The association between
firmware and core defines a runtime context where the firmware executes its code.

Three runtime contexts are available:

1. Cortex-A7 Non Secure running the Linux kernel

2. Cortex-A7 Secure running the SP_min

3. Cortex-M4 running the STM32Cube firmware.

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

4.5.2

3

Assigning a component to a runtime context means specifying which context(s) will control
the component at runtime. Assignments to a Cortex-A7 context are reflected in the device
tree code generation, while assignments to the Cortex-M4 context are reflected in
STM32Cube based C code generation (refer to code generation sections for more details).

The component assignment to a context is done in the context dedicated column.

Boot stages configuration

Boot ROM peripherals selection

Several execution stages are needed by the microprocessor to be up and running.

The binary code embedded in the ROM is the first to be executed. It uses a default
configuration to initialize the clock tree and all peripherals involved in the boot detection.

The peripherals managed by the boot ROM program can be selected as boot devices. This
choice is done in the Boot ROM column (see Figure 84).

Figure 84. Select peripherals as boot devices

File Window Help (8 n oYy ‘Yl
% Untitled - Pinout & Configuration GENERATE CODE I

Pinout & Configuration Clock Configuration Project Manager Tools
Additional Softwares ~ Pinout

’—v‘ FMC Mode and Configuration

Mode

va

y

Boot ROM ATBL ATS ATNS Ivi4 Bont time: Runtime contexts

[Boot ROM Boot loader ATS ATNS Cortex-M4
O O O
ETZPC e
0 Chip Select NCE2 <]

FREERTOS
GIC
GPIO O

Data/Address [5 bits ~]
NWAIT Ready/Busy

When a peripheral is set as boot device, it imposes a specific pinout: some signals have to
be mapped exclusively on pins visible by the boot ROM and only these signals/pins are
taken into account by the boot ROM program.

When a functional mode of a ROM-bootable peripheral is set, the pinout linked to this mode
is the same of that for a runtime context except for the signals imposed on specific pins by
the boot ROM code.

During the boot step (boot ROM code execution), the peripheral is running only with the
sub-set of bootable signals and pins. After boot, during runtime, the peripheral runs with all
signals necessary to the selected functional mode.

Boot loader (A7BL) peripherals selection

When the board starts, the launching of each of the Cortex-A7 runtime contexts (Secure and
Non Secure) on which a firmware executes (SP_min for Cortex-A7 Secure, Linux kernel for
Cortex-A7 Non Secure) preceded by an early boot execution stage, that is before U-Boot
relocation in DDR.

UM1718 Rev 31 105/363

STM32CubeMX user interface UM1718

The Boot loader (A7BL) column is used to define which devices can be managed during this
Boot loader Stage.

This assignment are reflected in the different Device-Trees generated (refer to code
generation sections for more details).

4.6 Pinout & Configuration view for STM32H7 dual-core product
lines

Some STM32H7 product lines come with an Arm Cortex-M7 core, an Arm Cortex-M4 core
and three power domains.
For such products, the Pinout & Configuration view allows the user to:

e For each peripheral and middleware: assign it to one core context or both, whenever
possible. in case both contexts are selected, assign an “initializer” core to indicate on
which core the peripheral or middleware initialization function shall be called.

e For each peripheral: view the power domain it belongs to.

e For GPIOs: assign it to a core or leave it free for other components that may require it.
In this last case the GPIO initialization are performed on the same core as the
component reserving it (code is generated accordingly).

For peripherals and middleware, these possibilities are offered in two different panels

1. from the component tree panel, which lists all supported peripherals and middleware
(clicking the gear icon enables the “Show contexts” option), see Figure 85

2. from each component mode panel, opened by clicking the component name.

Figure 85. STM32H7 dual-core: peripheral and middleware context assignment
m STM32CubeMX Shark_dual_core_GPIOContexts.ioc™: STM3ZHTAT7IGTx
‘.";]H'-“.‘ File Window Help
Home > STM32H747

IGTx \ Shark_dual_core_GPIOContexts.ioc - Pinout & Configuration 3
s Click the gear icon
Select to display context and/or power domains

out & Ci iguration Projeq

tional Software ~ Pinout
Contexts DAC1 Mode and Configuration 1

Hshow contexts I
M7 M4

Domain ¥ Show power domain §
U

b I Cotexh7 | Corexhd | PowerDomain
] O

Categories (A==

“ OUT1 mode Disable
DEBUG] M [Cortex-M7 OUT2 mede Disable
DMA [D2 |
FATFS_M4 /] Cortex-Md
FATFS_M7 [/ Cortex-M7
FREERTOS_M4 /] Cortex-Md
FREERTOS_M7 /] Cortex-M7
GFXSIMULATOR /] M [Cortex-M7
gRa
-

For GPIOs (see Figure 86), assignment is done through the Pinout view directly or later and
automatically through its selection in the platform settings panel of a middleware.

3

106/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface
Figure 86. STM32H7 dual-core: GPIOs context assignment
r
feo 1
Select a GPIO for a pin
Right-click the pin
Select Pin Reservation and
Either assign it immediately to a core
Or leave it free for later use by other resources
e Enter User Label
Signal Unpinning
= Pin Stacking
) & Pin Reservation*® Free
- : O Cortex-M7
GPIO_Cutput |38 ['COﬁex—M4
4.7 Enabling security in Pinout & Configuration view

3

(STM32L5 Series only)

The STM32L5 MCU series harnesses the security features of the Arm Cortex-M33

processor and its TrustZone for Armv8-M combined with ST security implementation.

STM32L5 MCUs support
e two levels of privilege
— unprivileged: software has limited access to system resources

— privileged: software has full access to system resources, subject to security

restrictions

o two security states, Secure and Non-secure: TrustZone security is activated when the
TZEN option bit is set in the FLASH_OPTR register. Security states are orthogonal to
mode and privilege, therefore, each security state supports execution in both modes

and both levels of privilege.

In STM32CubeMX the choice to activate TrustZone is made at project creation (see

Section 4.2: New Project window). When TrustZone is enabled, STM32CubeMX Pinout &

Configuration view is adjusted accordingly with a split between secure (M33S) and
non-secure context (M33NS), and more security-related configuration options (see

Figure 87).

UM1718 Rev 31

107/363

STM32CubeMX user interface UM1718

4.7.1

Note:

108/363

Figure 87. Pinout & Configuration view for Trustzone-enabled projects

] STM32CubeMX Untited: STMI2L552CCTx - o x

s ® File Window Help © oy x L&s
Pinout & Configuration @ Clock Configuration Project Manager
Additional Software v Pinout
Q]] ¥ Pinout view £ System view
lét”vl ENT TO SECURE CONTEXT ... by Category ... by Context Execution
System Core ’ USE FILTERS TO VIEW ASSIGNMENTS TO CONTEXT\A by Context Execution
- M33S JM33NS O Choose fiiters CortexM33S [] CortexM33NS
0 0 Middleware
O a
RCC PERIPHERALS ASSIGNED TO THE CONTEXT ARE HIGHLIGHTED IN BLUE

[<J<]

System Core Analog Timers Connectivity Multimedia Security Computing

oua L m m
GPIO TIM1 12c1

Analog M m

: roone LI m

Q f K~ e« i3 B @ B B W

ool
oo

=4

(R IEY
(i< imimlmyim]

@

av
MCUs Selection

e m B W o

Privilege access for peripherals, GPIO EXTIs and DMA requests

Independently of TrustZone, STM32CubeMX enables privilege access:

o for each peripheral: in the GTZC configuration panel (see Section 4.7.5), as shown in
Figure 88

e for each GPIO EXTI: in the GPIO configuration panel, , as shown in Figure 89

o foreach DMA channel: in the DMA configuration panel (see Section 4.7.4), as shown in
Figure 90.

When TrustZone is active, either all or none of the RCC registers can be put in privilege
mode. In STM32CubeMX, this is done by selecting “Privileged-only attribute” check box
from RCC mode panel (see Figure 91). In privilege mode, all RCC registers configuration
are reserved for the privilege application through the PWR_CR_PRIVEN bit, which is
secured when Trustzone is activated.

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

Figure 88. Setting privileges for peripherals

GTZC Mode and Configuration

Runtime contexts:
Cortex-M33 secure Cortex-M33 non secure

Reset Configuration

introller - able Periph

|Cunﬂgure the below parameters :

a =y =y
A, Wi w2

A
Configure Privilege IP by Individual Privileging from full Not Privileged
Privilegeable Periphera Privilege Attribute
ADC12 not privileged
COoMP1|2 not privileged
CRC not privileged
CRS privileged
DACA not privileged
DFSDM1 not privileged
FDCAN1 not privileged
FMC not privileged
HASH not privileged
12C1 privileged
12C2 privileged
12C3 not privileged
12C4 not privileged

ImArHE DER

UM1718 Rev 31 109/363

STM32CubeMX user interface

UM1718

110/363

Figure 89. Setting privileges for GPIO EXTIs

Configuration
|Gruup By Peripherals ~
Search (C [Show only Modified Pins

Pin Privlege access |GPIO o... GPIO mode |GP..|Ma...|Fa..|Us...|Mo...
PAS n'a Free nia nia Analog mode No...nfa n/a
PC13 nfa Free Privileged-only access |nfa External Interrupt Mode .. No ___nfa n/a
PC15-0... nfa Free n/a n/a Input mode No..nfa nfa
PH1-0S... nfa Cortex-... |n/a n/a Input mode No..nfa nfa
+PC13 Configuration :

Pin Context Assignement |Free ~ |
Pin Privilege access \UF'riviIeged-unly access] ~ |
GPIO mode |E>derna| Interrupt Mode with Rising edge trigger detection V|
GPIO Pull-up/Pull-down |No pull-up and no pull-down V|
User Label | |

UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

3

Figure 90. Configuring security

and privilege of DMA requests

DMA Mode and Configuration

Config

& DMATSDMAZSS @ MemToMem

uration

DA Request

MEMTOMEM DMAT Channel 1 Memory To Memory Low
UART4_RX DMA1 Channel 2 Peripheral To Memory Low
UARTA TX DMAA Channel 3 Memory To Peripheral Low
SPI3_RX DMA1 Channel 4 Peripheral To Memory Low
-DMA Request Settings
Peripheral Memory
Made ‘Nnrmal e Increment Address O
\:‘ Data Width Byte v| ‘ [Byte

-DMA Request Security/Privilege)

Enable Channel as Secured

Enable Source as Secured

Enable Channel as Privileged

Enable Destination as Secured

Figure 91. RCC privilege mode

RCC Mode and Configuration

Runtime contexts:
Cortex-M33 secure

Privileged-only attribute

Cortex-M33 non secure

High Speed Clock (HSE}|DisabIe

Low Speed Clock (LSE) [Disable v

[Master Clock Output

[LSCO Clock Qutput

[SAI1 Extern CLock

[0 SAI2 Extern CLock

CRS SYNC [Disable v
UM1718 Rev 31 111/363

STM32CubeMX user interface UM1718

4.7.2

Note:
Note:

4.7.3

4.7.4

112/363

Secure/non-secure context assignment for
GPIO/Peripherals/Middleware

STM32CubeMX allows the user

e To assign each peripheral and middleware to one of the contexts.

e To assign a GPIO input or output to one of the context or to leave it free for other
components that may require it. In this last case the GPIO assignment is in the same
context as the component reserving it. By default all I0s are secured.

The assignment is done in different panels:

e For peripherals and middleware only: from the component tree panel when “Show
contexts” option is enabled (clicking the gear icon) or from the mode panel.

e For peripherals only: from the GTZC configuration panel (peripherals only).

e For GPIOs only: from the configuration panel or from the Pinout view, through a
right-click on the GPIO pin and by selecting “Pin Reservation”.

e For DMA requests: from the DMA configuration panel.
RCC resources can be secured through the Clock configuration view (see Section 4.8.2).

For middleware requiring a peripheral the middleware can only be assigned to the context
the peripheral is already assigned to.

NVIC and context assignment for peripherals interrupts

When TrustZone is enabled, the interrupt controller is split into NVIC_NS for the non-secure
context and NVIC_S for the secure context. Two SysTick instances are available as well,
one for each context: they are visible respectively under SYS_NS and SYS_S.

By default, all interrupts are secured.

Peripherals interrupts are automatically assigned to the interrupt controller relevant to the
context:

e For peripherals assigned to the non-secure context, interrupts are enabled on
NVIC_NS.

e For peripherals assigned to the secure context, interrupts are enabled on NVIC_S.

DMA (context assignment and privilege access settings)

STM32CubeMX allows the user to set as privileged the DMA channel and in some cases, to
secure the DMA channel, source and destination see Figure 92.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 92. Configuring security and privilege of DMA requests

DMA Mode and Configuration

& DMAT DMAZS & MemToMem

DMA Request

MEMTOMEM DMA1 Channel 1 Memory To Memory Low
UART4 RX DMAT Channel 2 Peripheral To Memory Low
UART4 TX DMA1 Channel 3 Memary To Peripheral Low
SPI3_RX DMA1 Channel 4 Peripheral To Memaory Low

-DMA Request Settings

Peripheral Memary
Mode ‘Normal ~ Increment Address O
\51 Data Width Byte v| ‘ [Byte
-DMA Request Security/Privilege }
Enable Channel as Secured Enable Channel as Privileged
Enable Source as Secured Enable Destination as Secured

The DMA channel is set to non-privileged by default. The choice to set it as privileged is
always available.

The choice to secure the DMA channel, source, and destination depends on the request
characteristics.

There are four cases:

e The request is either a memory to memory transfer request or a DMA generator
request: the channel is not secure by default but can be secured. The source and
destination can be secured only when the channel is secure.

e The request is for a peripheral assigned to the non-secure context: channel, source
and destination cannot be secured (checkboxes are disabled) and so they are forced to
the non-secure context.

e The request is a peripheral to memory request for a peripheral assigned to the secure
context: channel and source are automatically secured (checkboxes enabled, cannot
be disabled), while there is a choice to secure or not the destination.

e The requestis a memory to peripheral request for a peripheral assigned to the secure
context: channel and destination are automatically secured (checkboxes enabled,
cannot be disabled), while there is a choice to secure or not the source.

3

UM1718 Rev 31 113/363

STM32CubeMX user interface UM1718

4.7.5

114/363

GTZC

To configure TrustZone system security, STM32L5 Series come with a Global TrustZone
security controller (GTZC). Refer to reference manual RM0438 for more details.

In STM32CubeMX, for projects with TrustZone activated, GTZC is enabled by default and
cannot be disabled. For projects without Trustzone active, GTZC can be enabled and gives
only the possibility to set privileges.

GTZC is made up of three blocks that can be configured through CubeMX using dedicated
tabs in GTZC configuration panel:

e TZSC (TrustZone security controller)

Defines which peripherals are secured and/or privileged, and controls the
non-secure area size for the watermark memory peripheral controller (MPCWM).
The TZSC block informs some peripherals (such as RCC or GPIOs) about the
secure status of each securable peripheral, by sharing with RCC and 1/O logic.

The privileges are set in the TrustZone Security Controller — Privilegeable
Peripherals tab.

The secure states are set in TrustZone Security Controller — Securable
Peripherals tab (they match the assignment to context (M33S or M33NS) done on
the Tree view or in the Mode panel).

The MPCWM configuration is done through the TrustZone Security Controller —
Memory Protection Controller Watermark tab.

e MPCBB (block-based memory protection controller)

Controls secure states of all blocks (256-byte pages) of the associated SRAM. It is
configured through the Block-based Memory Protection Controller tab.

e TZIC (TrustZone illegal access controller)

Gathers all illegal access events in the system and generates a secure interrupt
towards NVIC. It is configured through the TrustZone lllegal Access Controller tab.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 93. Securing peripherals from GTZC panel

8¢ GTZC Mode and Configuration

Runtime contexts
Cortex-M33 secure Cortex-M33 non secure

® Enable

O
| O
O O - .
Configure Secure IP by Individual Securing from full Not Secured
Securable Peripheral Secure Attribute
O O ADCH2 not secured
O o COMP1|2 not secured
o o (CRC secured)
O O CRS not secured
O O DACH secured
O O DFSDMA not secured
0 O FDCANA secured
O O FMC not secured
0 O EE?H no: securej
not secure
= C 12C2 not secured
- 1 uweawsl

4.7.6 OTFDEC

On-the-fly decryption engine (OTFDEC) allows the user to decrypt on-the-fly AHB traffic
based on the read request address information. When security is enabled in the product
OTFDEC can be programmed only by a secure host.

Figure 94. OTFDEC secured when TrustZone is active

OTFDECA Mode and Configuration

Runtime contexts:
Cortex-M33 secure Cortex-M33 non secure

Activated

3

UM1718 Rev 31 115/363

STM32CubeMX user interface

UM1718

4.8

116/363

Clock Configuration view

STM32CubeMX Clock Configuration window (see Figure 95) provides a schematic
overview of the clock paths, clock sources, dividers, and multipliers. Drop-down menus and
buttons can be used to modify the actual clock tree configuration, to meet the application

requirements.

Figure 95. STM32F469NIHx clock tree configuration view

[STM32CubeMX Untitled®: STM32F469NIHx

e])

o

CubeMX File

Pinout & Configuration

Untitled

Window Help

- Clock Configuration

Clock Configuration Project Manager
9 Resalve Clock Issues

O oy x L&;

GENERATE CODE

Tools

SDIO Clock Mu
RTC Clock Mu: _
Sysc o
l:lnsm-zm-n;.
— e
16 |Ethernet PTP clc
. N 15 HCLK to AHB bu
To IWDG (KHz) » memory and DM
2 Kz
System Clock Mux To Cartex Syste
HSI RC
HSI [~
L) o o FCLK Cortex clo-
e . SYSCLK (MHz) AHB Prescaler HOLK (MHz) Bt P
: (o] ‘ % 11~ |—>| I }« [APB1 periphera
18D MHz max =
PLL Source Mux Pk o, APEl Timer clox
HSE[™ +
[) PLLM
- — 6 |APB2 periphera
s v prege > Eableces . . ==]
Input frequency e 116 ~ PLL48CLK Mux =x -
e~ o [y [ooz umer i
LE0 M R R 1‘ 48 MHz Clocks
L PLLSALR SAI1-A Source Mux
P N g _ sau
—{ 2 O SAI-A Clocks M
N "
9 a
PULSAT 12~ 48 |LCD-TFT clacks
R SAI1-B Source Mu:
N
RN, RN a2 Clods (1
Q 125 Source Mu -
PLIZS R M- °

Actual clock speeds are displayed and active. The use clock signals are highlighted in blue.

UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

Out-of-range configured values are highlighted as shown in Figure 96 to flag potential
issues. A solver feature is proposed to automatically resolve such configuration issues.

Figure 96. Clock tree configuration view with errors

— ~
(1] STM32CubeMX Untitled*: STM32F469NIHx b‘&u
T Gy
3 i i A0
S Clbey Fle Window Helo o oy x Ly
[B Untitled - Clock Cenfiguration GENERATE CODE
Pinout & Configuration o Clock Configuration Project Manager Tools
fa] O Resolve Clock Issues
SDIO Clock Mux
RTC Clock Mux L S
) - |:ch SDIO (MHz)
russa| o
To RTC (KHz)
sl Eﬁheme{ PTP cle
To IWDG (KHz) 4>ﬂ§h§ﬁ3?ﬂan'ﬁ
KHz
HSI RC 5‘::"“ Clock Hux 4-—>--‘1 ™~ -.mm Cortex Syste
) I
o SYSCLK (MHz) AHE Prascaler HCLK (MHz) T FCLK Cormex dle
HSE
: (o] ‘ 150 /1 v|—>| }. -Apm periphera
PLL Source Mux \"”C"‘ ® S APEi Timer cloc
HST| ™ +
PUM
. - h
16 vk v , Enblecss PLLASCLK Mux s (APB2 periphera
= e PlLQ [. APE2 timer cloc
e | [= Jeommecens
T o/
R kg
X192 W —{ 2 SAI-A Clocks MI
N I
SRS W ‘o
]
PLSA T 75 |LCD-TFT dlocks
R SAI1-B S M :
‘1 152 o
*N
SAI-B Clocks (M
Mux
PUI2S

Reverse path is supported: just enter the required clock speed in the blue filed and
STM32CubeMX attempts to reconfigure multipliers and dividers to provide the requested
value. The resulting clock value can then be locked by right clicking the field to prevent
modifications.

STM32CubeMX generates the corresponding initialization code:

e main.c with relevant HAL_RCC structure initializations and function calls

e stm32xxxx_hal_conf.h for oscillator frequencies and Vpp values.

4.8.1 Clock tree configuration functions

External clock sources

When external clock sources are used, the user must previously enable them from the
Pinout view available under the RCC peripheral.

3

UM1718 Rev 31 117/363

STM32CubeMX user interface UM1718

118/363

Peripheral clock configuration options

Other paths, corresponding to clock peripherals, are grayed out. To become active, the
peripheral must be properly configured in the Pinout view (e.g. USB). This view allows the
user to:

Enter a frequency value for the CPU Clock (HCLK), buses or peripheral clocks

STM32CubeMX tries to propose a clock tree configuration that reaches the desired
frequency while adjusting prescalers and dividers and taking into account other
peripheral constraints (such as USB clock minimum value). If no solution can be found,
STM32CubeMX proposes to switch to a different clock source or can even conclude
that no solution matches the desired frequency.

Lock the frequency fields for which the current value should be preserved

Right click a frequency field and select Lock to preserve the value currently assigned
when STM32CubeMX searches for a new clock configuration solution.

The user can unlock the locked frequency fields when the preservation is no longer
necessary.

Select the clock source that will drive the system clock (SYSCLK)

— External oscillator clock (HSE) for a user defined frequency.

— Internal oscillator clock (HSI) for the defined fixed frequency.

— Main PLL clock

Select secondary sources (as available for the product)

— Low-speed internal (LSI) or external (LSE) clock

— 12S input clock

— Other sources

Select prescalers, dividers and multipliers values

Enable the Clock Security system (CSS) on HSE when it is supported by the MCU

This feature is available only when the HSE clock is used as the system clock source
directly or indirectly through the PLL. It allows detecting HSE failure and inform the
software about it, thus allowing the MCU to perform rescue operations.

Enable the CSS on LSE when it is supported by the MCU

This feature is available only when the LSE and LSI are enabled and after the RTC or
LCD clock sources have been selected to be either LSE or LSI.

Reset the Clock tree default settings by using the toolbar Reset button

This feature reloads STM32CubeMX default clock tree configuration.

Undo/Redo user configuration steps by using the toolbar Undo/Redo buttons
Detect and resolve configuration issues

Erroneous clock tree configurations are detected prior to code generation. Errors are
highlighted in fuchsia and the Clock Configuration view is marked with a fuchsia
cross (see Figure 96).

Issues can be resolved manually or automatically by clicking the Resolve Clock Issue
button that is enabled only if issues have been detected.

The underlying resolution process follows a specific sequence:
a) Setting HSE frequency to its maximum value (optional).

b) Setting HCLK frequency then peripheral frequencies to a maximum or minimum
value (optional).

c) Changing multiplexers inputs (optional).

UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX user interface
d) Finally, iterating through multiplier/dividers values to fix the issue. The clock tree is
cleared from fuchsia highlights if a solution is found, otherwise an error message
is displayed.
Note: To be available from the clock tree, external clocks, 12S input clock, and master clocks must

3

be enabled in RCC configuration in the Pinout view. This information is also available as

tooltips.

The tool automatically performs the following operations:

e Adjust bus frequencies, timers, peripherals and master output clocks according to user
selection of clock sources, clock frequencies and prescalers/multipliers/dividers values.

e Check the validity of user settings.

e Highlight invalid settings in fuchsia and provide tooltips to guide the user to achieve a
valid configuration.

The Clock Configuration view is adjusted according to the RCC settings (configured in

RCC Pinout & Configuration views) and vice versa:

e Ifin RCC Pinout view, the external and output clocks are enabled, they become
configurable in the Clock Configuration view.

e Ifin RCC Configuration view, the Timer prescaler is enabled, the choice of Timer clocks
multipliers is adjusted.

Conversely, the clock tree configuration may affect some RCC parameters in the
configuration view:

e Flash latency: number of wait states automatically derived from Vpp voltage, HCLK
frequency, and power over-drive state.

e Power regulator voltage scale: automatically derived from HCLK frequency.

e Power over-drive is enabled automatically according to HCLK frequency. When the
power drive is enabled, the maximum possible frequency values for AHB and APB
domains are increased. They are displayed in the Clock Configuration view.

The default optimal system settings that is used at startup are defined in the
system_stm32f4xx.c file. This file is copied by STM32CubeMX from the STM32CubeF4
MCU package. The switch to user defined clock settings is done afterwards in the main
function.

UM1718 Rev 31 119/363

STM32CubeMX user interface

UM1718

4.8.2

120/363

Figure 95 gives an example of Clock tree configuration for an STM32F429x MCU and
Table 9 describes the widgets that can be used to configure each clock.

Table 9. Clock configuration view widgets

Format Configuration status of the Peripheral Instance
HiIRC
B Active clock sources
Unavailable settings are blurred or grayed out (clock sources, dividers,...)
i =
AHE Prezcaler
W Gray drop down lists for prescalers, dividers, multipliers selection.
K1 —w Multiplier selection

User defined frequency values

Automatically derived frequency values

User-modifiable frequency field

Right click blue border rectangles to lock/unlock a frequency field. Lock to
preserve the frequency value during clock tree configuration updates.

Securing clock resources (STM32L5 Series only)

When the TrustZone security is activated, the RCC is able, through the security
configuration register, to prevent non-secure access to system clock resources.

Accordingly, STM32CubeMX allows the user to configure as secure:
e system clock sources with a fixed frequency: HSI, LSI, and RC48
e system clock sources with a configurable frequency: HSE (+CSS), MSI and

LSE (+CSS)

e two multiplexers: CLK48 clock multiplexer, System Clock (+MCO source) multiplexer

e other system configurations: PLLSYS, PLLSAI1, PLLSAI2 phase-locked loops and
AHB/APB1/APB2 bus pre-scalers

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

In the Clock Configuration view, these securable resources are highlighted with a key icon.
Security is enabled using the Secure checkbox accessed through a right-click on the
resource. Once the resource is secure, it is highlighted with a green square.

Configurable resources can be locked to prevent further configuration changes: this is done
by selecting the Lock checkbox accessed through a right-click on the resource.

There is also a shortcut button to lock/unlock in one click all resources that are both
securable and configurable.

When a peripheral is configured as secure, its related clock, reset, clock source and clock
enable are also secure. In STM32CubeMX the peripheral is configured as secure in the
Pinout & Configuration view and its clock source is automatically highlighted as secure
using a green square in the Clock configuration view.

Table 10. Clock Configuration security settings

View Description

PLL Source Mux
MSI .l . o
HSI RC - . .
£ |usi | Example of non-configurable system clock resource that is secured.

-
& n-z| B Secure

.

— HSE Example of the system clock HSE clock source that is secured and
. Secure remains open for editing: the frequency value can be changed.
Lock

Example of the system clock HSE clock source that is secured and has

— HSE
Secure been locked for editing: the frequency value cannot be modified.
| ™ Lock
\
System Clock Mux
oy =
SYSCLK (MHzZ
S| , | Example of the System clock multiplexer that is secured and unlocked:
>|® - the clock source can be changed.
ol H Secure
4 O Lock
B Enabic CSS |
J Example of the main PLL multiplexer that is secured and locked. The
Secure | G clock source is HSE and cannot be changed. PLLxxM, PLLxxN, PLLxxP,

> H Lock e PLLxxQ and PLLxxR are secured and locked for editing as well.

PLLSAN Source Mux

wst [o
-~ ‘j o

UM1718 Rev 31 121/363

STM32CubeMX user interface

122/363

UM1718
Table 10. Clock Configuration security settings (continued)
View Description
UART4 Clock Mux

FOLKT [Example of the UART4 clock source multiplexer: the clock source is
i secured because the UART4 peripheral is configured as secure in the
el Pinout & Configuration view. It is set to PCLK1 and can be changed as
= 1 the Lock checkbox is unchecked.

»([Lock

L~
UART4 Clock Mux

Peuct B, Example of the UART4 clock source multiplexer: the clock source is
svscik| | - secured because the UART4 peripheral is configured as secure in the
Sl | Pinout & Configuration view. It is set to PCLK1 and can no longer be
e | changed as Lock is on.

'-l' _ M Lock

I T Example of securing and locking the access to AHB prescaler. APB1 and
e, o | smeese | APB2 prescalers are locked as well.
.|:| - -
LSIRC

32 KHz

Example of LSI highlighted as a securable resource using the key icon.

Clock Configuration

Lock/Unlock All button (only active for securable resources).

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

4.8.3

3

Recommendations

The Clock Configuration view is not the only entry for clock configuration, RCC and RTC
peripherals can also be configured.

1. From the Pinout & Configuration view, go to the RCC mode panel to enable the
clocks as needed: external clocks, master output clocks and Audio 12S input clock
when available. Then go to the RCC configuration panel, and adjust the default settings
if needed. Changes are reflected in the Clock Configuration view. The defined
settings may change the settings in the RCC configuration as well (see Figure 97).

Figure 97. Clock tree configuration: enabling RTC, RCC clock source
and outputs from Pinout view

-
[I] STM32CubeMX Untitled*: STM32F469NIHx E‘Eﬂ
sz @ File Window Help i n oy 7\”. 1S7]
CubeMX =
/ 5an Untitled - Clock Cenfiguration GENERATE CODE
Pinout & Configuration Clock Configuration Project Manager Tools
) Resolve Clock Issues
SDIO Clock M
RTC Clock Mu: L
‘ o I:ln SDIO [MHz)
l:l To RTC (KHz)
16 Ethernet PTP clo
2 KHz
System Clock Mux To Cortex Syste
HSI RC
HSI [~
—— ¥ B o FCLK Cortex clo.
16 MHz wee SYSCLK (MHz) AHE Prescaler HOLK (MHz) APE1 Prescaler
: (o] % [1 I I h—bpuKl 15 |APB1 periphera
‘ |—.|:55 l-*l—:"z»l“._-“{ = 45 MHz max
PLL Source Hux PuoK D+ APEi Timer clox
HSI| ™S\
) PLM -
e ey s m, - Enable cS5 PLLABCLK M [Jowsaverpbers
‘ Da N » APE2 timer cloc
MH . |:" .1 . i
] PUR 8 MHz Clocks
Lz v] - PUSALR O‘ SAI1-A Source Mux
P ~ [
R . ps.aan N,
] 2)
2 — o SAI-A Clocks M
e e —|e
R ~
PLSAT [2 48 |LCD-TFT clacks
R SAI1-B Source Mu:
*N
REEE R 5AL5 Clocks
] 125 Source Mu o
PLLIZS .
1K | 2 — e
B

|

UM1718 Rev 31 123/363

STM32CubeMX user interface

UM1718

4.8.4

124/363

2. Go to the RCC configuration in the Pinout & Configuration view. The settings
defined there for advanced configurations are reflected in the Clock configuration
view. The defined settings may change the settings in the RCC configuration.

Figure 98. Clock tree configuration: RCC peripheral advanced parameters
[T STM32CubeMX Untitled*: STM32FA69NIHx o] 5 P |
¥ § . 7
SBP(EEGQM? File Window Help 19 li ([»] , »}q "I
Untitled - Clock Cenfiguration GENERATE CODE
Pinout & Configuration o Clock Configuration Project Manager
5 o
SDIO Clock Mux
RTC Clock Mux _— S
HEERTE TS i OJ—'D
LSE — [)
[e] l:l'r: RTC (KHz)
Let .}_; 150 |Ethernet PTP clc
o e e B o
FE - SYSCLK (MHz) AHE Prasczler HOLK (MHz) APB1 Prossaler FCLKCME*“
e E (o] ‘ 150 /1 v|—>| 150 }u—»{ T -Apm periphera
PLL Source Mux \"”C‘K o s [0 Jaeet timerda
HSI| +
o)
.'4 *N » PLQ S 150 [APB2 timer cloc
‘IQZ - .1 49 MHz Clocks
mn 7 - PUSALE C‘,‘ SAIL-A Source Mux
i —{ ,p; O‘ SAL-A Clocks MI
i e
e [Jcormaose
PUI2S b R,
0 o] N

STM32F43x/42x power-over drive feature

STM32F42x/43x MCUs implement a power over-drive feature that allows them to work at
the maximum AHB/APB bus frequencies (e.g., 180 MHz for HCLK) when a sufficient Vpp

supply voltage is applied (e.g Vpp > 2.1 V).

Table 11 lists the different parameters linked to the power over-drive feature and their

availability in STM32CubeMX user interface.

UM1718 Rev 31

3

UM1718 STM32CubeMX user interface
Table 11. Voltage scaling versus power over-drive and HCLK frequency
Parameter STM32CubeMX panel Value
User-defined within a predefined range.
Vpp voltage .
Impacts power over-drive.
Power regulator Automatically derived from HCLK frequency
voltage scaling and power over-drive (see Table 12).
) . This value is conditioned by HCLK and Vpp
Configuration (RCC) values (see Table 12). It can be enabled only
if Vpp=2.2 V.
Power over-drive When Vpp 2 2.2 V it is either automatically
derived from HCLK or it can be configured by
the user if multiple choices are possible (e.g.
HCLK = 130 MHz)
Displayed in blue to indicate the maximum
possible value. For example: maximum value
maxi:ﬁthggHEeﬂgcbalue is 168 MHz for HCLK when power over-drive
q 4 Clock Configuration | ¢@nnot be activated (when Vpp <2.1V),
otherwise it is 180 MHz.
APB1/APB2 clock Displayed in blue to indicate maximum
maximum frequency value possible value.
Table 12 gives the relations between power-over drive mode and HCLK frequency.
Table 12. Relations between power over-drive and HCLK frequency
HCLK frequency range: Corresponding voltage scaling
Vpp > 2.1V required to enable power over-drive (POD) and power over-drive (POD)
<120 MHz S.calc'a 3
POD is disabled
120 to 144 MHz Scale2
POD can be either disabled or enabled
Scale 1 when POD is disabled
144 to 168 MH
° z Scale 2 when POD is enabled
POD must be enabled
168 to 180 MHz Scale 1 (otherwise frequency range not
supported)
4.8.5 Clock tree glossary
Table 13. Glossary
Acronym Definition
HSI High speed Internal oscillator: enabled after reset, lower accuracy than HSE
HSE High speed external oscillator: requires an external clock circuit
PLL Phase locked loop: used to multiply above clock sources
LSI Low speed Internal clock: low power clocks usually used for watchdog timers

3

UM1718 Rev 31

125/363

STM32CubeMX user interface UM1718

Table 13. Glossary (continued)

Acronym Definition

LSE Low speed external clock: powered by an external clock
SYSCLK System clock

HCLK Internal AHB clock frequency

FCLK Cortex free running clock

AHB Advanced high performance bus

APB1 Low speed advanced peripheral bus

APB2 High speed advanced peripheral bus
4.9 Project Manager view

This view (see Figure 99) comes with three tabs:

o General project setting: to specify the project name, location, toolchain, and firmware
version.

e Code generation: to set code generation options such as the location of peripheral
initialization code, library copy/link options, and to select templates for customized
code.

e Advanced settings: dedicated to ordering STM32CubeMX initialization function calls.

Figure 99. Project Settings window

Pinout & Configuration Clock Configuration Project Manager

Project Settings
Project Name

Project Location

[c:\STM32CubeMX_Projects\ | Browse |

Application Structure

|Elasic ~ | [Do not generate the ma...

Toolchain Folder Location
|C:\STM 32CubeMX_Projects\

Code Generator

Toolchain / IDE Min Version

EWARM v][vaz] O
TEWARM
_{MDK-ARM

SW4_STM32 @

TrueSTUDIO :I

400
Advanced Settings [Nkt

| Makefile

Other Toolchains (GPD

+Mcu and Firmware Package
Mcu Reference
[5TM32G431K6Tx |

Firmware Package Name and Version
[5TM32Cube FW_G4 V1.1.0 |

Use Default Firmware Location

| | Browse

3

126/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface
The code is generated in the project folder tree shown in Figure 100.
Figure 100. Project folder
> Projec o Mame
Drivers
EWARM
Inc
SIC
.mxproject
Projectl.ioc
Note: Some project settings options become read-only once the project is saved. To modify these
options, the project must be saved as a new project using the File> Save Project as menu.
4.9.1 Project tab

3

The Project tab of the Project Settings window allows configuring the following options
(see Figure 99):

e Project settings:

Project name: name used to create the project folder and the .ioc file name at a
given project location

Project location: directory where the project folder is stored.
Application structure: select between Basic and Advanced options.

Basic structure: recommended for projects using one or no middleware. This
structure consists in placing the IDE configuration folder at the same level as the
sources, organized in sources and includes subfolders (see Figure 107)

Advanced structure: recommended when several middleware components are
used in the project. It makes the integration of middleware applications easier (see
Figure 102)

Toolchain folder location: by default, it is located in the project folder at the same
level as the .ioc file.

Toolchain/IDE: selected toolchain

For the STM32MP1 Series only, OpenSTLinux settings: location of generated
device tree and manifest version and contents for current project (see Figure 103).
These information enable the synchronization of the right SW components
versions with STM32CubeMP1 for Cortex® M and Linux, tf-a, u-boot for

Cortex® A. Itis important to take them into account especially to ensure one Cube
firmware version is aligned with SW components for Cortex® A around
OpenAMP / RPM link and resource management API.

UM1718 Rev 31 127/363

STM32CubeMX user interface UM1718

Selecting Makefile under Toolchain/IDE leads to the generation of a generic gcc-based
makefile.

Selecting Other Toolchains (GPDSC) generates a gpdsc file. The gpdsc file provides a
generic description of the project, including the list and paths of drivers and other files
(such as startup files) that are required for building the project. It is thus possible to
extend STM32CubeMX project generation to any toolchain supporting gpdsc, as the
toolchain is able to load a STM32CubeMX generated C project by processing the
gpdsc file information. To standardize the description of embedded projects, the gpdsc
solution is based on CMSIS-Pack.

e Additional project settings for SW4STM32 and Atollic® TrueSTUDIO® toolchain:

Select the optional Generate under root checkbox to generate the toolchain project
files in STM32CubeMX user project root folder or deselect it to generate them under a
dedicated toolchain folder.

STM32CubeMX project generation under the root folder allows to benefit from the
following Eclipse features when using Eclipse-based IDEs such as SW4STM32 and
TrueStudio®:

— Optional copy of the project into the Eclipse workspace when importing a project.
— Use of source control systems such as GIT or SVN from the Eclipse workspace.

Choosing to copy the project into workspace prevents any further synchronization
between changes done in Eclipse and changes done in STM32CubeMX, as there will
be two different copies of the project.

e Linker settings: value of minimum heap and stack sizes to be allocated for the
application. The default values proposed are 0x200 and 0x400 for heap and stack
sizes, respectively. These values may need to be increased when the application uses
middleware stacks.

e Firmware package selection when more than one version is available (this is the case
when successive versions implement the same API and support the same MCUs). By
default, the latest available version is used.

. Firmware location selection option
The default location is the location specified under the Help > updater settings menu.

Deselecting the Use Default Firmware Location checkbox allows the user to specify
a different path for the firmware that will be used for the project (see Figure 104).

3

128/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 101. Selecting a basic application structure

Projectl

Drivers

EWARM

Inc
4 mainh
4 stm32tdochal_confh
stm32fdoith
usb_hosth
usbh_conf.h

Middlewares

&

&

&

Src
main.c
stm32fd_hal_msp.c
stm32fdeit.c
system_stm32fdwc

usb_host.c

a4 & & &4 & &

usbh_conf.c
mxproject

mx.scratch

Projectlioc

3

UM1718 Rev 31 129/363

STM32CubeMX user interface

UM1718

Figure 102. Selecting an advanced application structure

|, Project3

I Core
b Inc
«1 main.h

« stm32fdx_hal_conf.h
« stm32fhocith

i Src
= main.c
« stm32fdw_hal_msp.c
4 stm32fhocitc
W system_stm32fdw.c
I Drivers

| EWARM
I Middlewares

. USB_HOST

I App

«4 usb_hostc
4 usb_hosth
. Target

« usbh_conf.c

« usbh_confh

mxproject
mx.scratch

%™ Project3.ioc

Figure 103. OpenSTLinux settings (STM32MP1 Series only)

OpenSTLinux Settings
DeviceTree Root Location

C:\STM32CubeMX_Projects\DiscoMP1_project\DeviceTreel

Manifest Version

jopenstlinux-4.18-thud-mpl-19-01-11

Manifest Content

Firmware Name Community Version

TEF=A 2.0
Linux 4.19
Cube STM32Cube FW MP1 v1.0.0

=B et 2018.11

130/363 UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

Figure 104. Selecting a different firmware location

Mecu and Firmware Package
Mecu Reference
STM32F401CDUx

Firmware Package Mame and Version

ibe FW _F4 W1.24.0 Use latest available version

Use Default Firmware Location
| | Browse

The new location must contain at least a Drivers directory containing the HAL and
CMSIS drivers from the relevant STM32Cube MCU package. An error message pops
up if the folders cannot be found (see Figure 105).

Figure 105. Firmware location selection error message

Choice Firmware Library Directory ﬁ

To reuse the same Drivers folder across all projects that use the same firmware
location, select the Add the library files as reference from the Code generator tab
allows (see Figure 106).

Figure 106. Recommended new firmware repository structure

- - — - N
== ﬁ
S 4s S - _
W & CUBEMX » MyProjectsRepository » v|41- |I| Search MyProjectsRepository |
File Edit View Tools Help
Organize ~ Include in library ~ Share with ~ New folder = - _|J e
| -
. I CUBEMX * Name Date modified I
MyProjectsRepository
' | Drivers 11/17/2016 12:16 ..
El L. Projectl 11/17/201612:19 ..
. Project? 11/17/2016 2,14 PM
[
|] 11 | p
i L
3 items i
|
|5 .
Kys UM1718 Rev 31 131/363

STM32CubeMX user interface UM1718

Caution:

4.9.2

132/363

STM32CubeMX manages firmware updates solely for this default location. Choosing
another location prevents the user from benefiting from automatic updates. The user must
manually copy new driver versions to its project folder.

Code Generator tab

The Code Generator tab allows specifying the following code generation options (see
Figure 107):

e STM32Cube Firmware Library Package option
e Generated files options

e HAL settings options

e Custom code template options

STM32Cube Firmware Library Package option

The following actions are possible:
e Copy all used libraries into the project folder

STM32CubeMX copies to the user project folder the drivers libraries (HAL, CMSIS)
and the middleware libraries relevant to the user configuration (e.g. FatFs, USB).

e Copy only the necessary library files:

STM32CubeMX copies to the user project folder only the library files relevant to the
user configuration (e.g., SDIO HAL driver from the HAL library).

e Add the required library as referenced in the toolchain project configuration file

By default, the required library files are copied to the user project. Select this option for
the configuration file to point to files in STM32CubeMX repository instead: the user
project folder will not hold a copy of the library files but only a reference to the files in
STM32CubeMX repository.

Generated files options

This area allows the user to define the following options:

e Generate peripheral initialization as a pair of .c/.h files or keep all peripheral
initializations in the main.c file.

e Backup previously generated files in a backup directory
The .bak extension is added to previously generated .c/.h files.
Keep user code when regenerating the C code.

This option applies only to user sections within STM32CubeMX generated files. It does
not apply to the user files that might have been added manually or generated via fil
templates.

e Delete previously generated files when these files are no longer needed by the current
configuration. For example, uart.c/.h file are deleted if the UART peripheral, that was
enabled in previous code generation, is now disabled in current configuration.

HAL settings options

This area allows selection one HAL settings options among the following:
e Set all free pins as analog to optimize power consumption

e Enable/disable Use the Full Assert function: the Define statement in the
stm32xx_hal_conf.h configuration file is commented or uncommented, respectively.

UM1718 Rev 31 ‘Yl

UM1718

STM32CubeMX user interface

3

Custom code template options

To generate custom code, click the Settings button under Template Settings, to open the
Template Settings window (see Figure 108).

The user is then prompted to choose a source directory to select the code templates from,
and a destination directory where the corresponding code will be generated.

The default source directory points to the extra_template directory, within STM32CubeMX
installation folder, which is meant for storing all user defined templates. The default
destination folder is located in the user project folder.

STM32CubeMX then uses the selected templates to generate user custom code (see
Section 6.3: Custom code generation).

Figure 109 shows the result of the template configuration shown on Figure 108: a sample.h
file is generated according to sample_h.ftl template definition.

Figure 107. Project Settings code generator

r N
Project Settings @
[Project| Code Generator | advanced Settings

STM32Cube Firmware Library Package

@ Copy all used libraries into the project folder:

(") Copy only the necessary library files

() Add necessary library files as reference in the toclchain project configuration file

Generated files
[7] Generate peripheral initialization as a pair of '.c/.h' files per IF
[] Backup previously generated files when re-generating
Keep User Code when re-generating

Delete previously generated files when not re-generated

HAL Settings

[7] Set all free pins as analog (to optimize the power consumption)

[] Enable Full Assert

Template Settings

Select a template to generate customized code Settings...

Ck] [Cancel

UM1718 Rev 31 133/363

STM32CubeMX user interface

UM1718

134/363

Figure 108. Template Settings window

-
% Template Settings

[p—— o

Template Settings
Source Folder

[T Use default location

Location:
Select your templates

Available Templates

C:\Program FiIEs‘-STMicroelectrnnics‘-STM32Cube‘-5TM32CubeM>{hdb‘»,ext'a_tem;

Selected Templates

‘common_h. - . |'sample_h.fd

<< Remowe

Add All »>

<< Remowe All

Destination Folder

Use default location

Location:

C:\Wsers\lohnDoe\STM32Cube projects'\Project1\Project1 Browse

OK] [Cancel

UM1718 Rev 31

3

UM1718 STM32CubeMX user interface
Figure 109. Generated project template
= | E [
QQ | . % Projectl » Projectl » - |+-;| Search Proj ,Dl
File Edit Wiew Tools Help
Organize = Include in library = » == » [l IIIE][I
4 || JohnDoe it Mame i
4 5TM32Cube projects _
] , Drivers
4 || Projectl
_ , EWARM

» 1 Projectl |

J Inc

, 5re
| || .mxproject |

Projectl.ioc
|| sample.h
- 4 1 I
| |
7 items [
49.3 Advanced Settings tab

3

Figure 110 shows the peripheral and/or middleware selected for the project.

Ordering initialization function calls

By default, the generated code calls the peripheral/middleware initialization functions in the
order in which peripherals and middleware have been enabled in STM32CubeMX. The user
can then choose to re-order them by modifying the Rank number using the up and down
arrow buttons.

The reset button allows switching back to alphabetical order.

Disabling calls to initialization functions

If the “Not to be generated” checkbox is checked, STM32CubeMX does not generate the
call to the corresponding peripheral initialization function. It is up to the user code to do it.

Choosing between HAL and LL based code generation for a given peripheral
instance

Starting from STM32CubeMX 4.17 and STM32L4 Series, STM32CubeMX offers the
possibility for some peripherals to generate initialization code based on Low Layer (LL)

UM1718 Rev 31 135/363

STM32CubeMX user interface UM1718

drivers instead of HAL drivers: the user can choose between LL and HAL driver in the
Driver Selector section. The code is generated accordingly (see Section 6.2: STM32Cube
code generation using Low Layer drivers).

Figure 110. Advanced Settings window

Generated Function Calls
P nstanoe Name | Yo Generate Furcton Gal | Vst (iaie)

1 MX_GPIO_Init GPIO] /]

2 SystemClock_Config RCC J] O

3 MX_I2C1_Init 12C1 O O

4 MX_I2C2_|nit 12c2 O /]

5 MX_LPTIM1_lnit LPTIM1 0 Vi

6 MX_LPTIM2_|nit LPTIM2] /]

7 MX_SPI1_|nit SPIH O [/

8 MX_SPI2_Init SPI2] ™

9 MX_USART1_UART Init USART1] ™

10 MX_USART2_Init USART2 n Scroll downrto see

Up and Down arrows

o U ste)

Unselecting the Visibility (Static) option, as shown for MX_I2C1_init function in Figure 110,
allows the generation of the function definition without the static keyword and hence extends
its visibility outside the current file (see Figure 111).

Figure 111. Generated init functions without C language “static” keyword

/* Private function prototypes —-————-—-
void SystemClock Config(void);

static void MX GPIO Init(void);

static void MX LPTIM1 Init(void);
static void MX LPTIM2 Init(void);
(foid MX I2C1 Init(void)))

static void MX I2C2Z2_ Init(void);

static void MX SPI1 Init(void);

static void MX SPI2 Init(void);

static void MX USART1 UART Init(void);
static void MX USARTZ Init(void);

3

136/363 UM1718 Rev 31

UM1718

STM32CubeMX user interface

Caution:

410

3

For the STM32MP1 Series only

By default the SystemClock_Config function is called in STM32Cube Cube firmware main()
function since the 'Not generate Function call' box in Project Manager/Advanced Settings
panel is not activated by default (see Figure 110).

This configuration is valid for running STM32Cube firmware in engineering mode
(Cortex-M4 stand-alone mode).

This configuration is not valid for running STM32Cube firmware in production mode: the 'Not
generate Function call' box must be checked under Project Manager/Advanced Settings
panel so that there is no call to SystemClock_Config() in the main() function.

Import Project window

The Import Project menu eases the porting of a previously-saved configuration to another
MCU. By default the following settings are imported:

e Pinout tab: MCU pins and corresponding peripheral modes.The import fails if the same
peripheral instances are not available in the target MCU.

e Clock configuration tab: clock tree parameters.
e Configuration tab: peripherals and middleware libraries initialization parameters.
e Project settings: choice of toolchain and code generation options.

To import a project, proceed as follows:
1. Select the Import project icon '_[3 that appears under the File menu after starting a
New Project and once an MCU has been selected.
The menu remains active as long as no user configuration settings are defined for the
new project, that is just after the MCU selection. It is disabled as soon as a user action
is performed on the project configuration.
2. Select File > Import Project for the dedicated Import project window to open. This
window allows to specify the following options:
— The STM32CubeMX configuration file (.ioc) pathname of the project to import on
top of current empty project.
— Whether to import the configuration defined in the Power Consumption
Calculator tab or not.
— Whether to import the project settings defined through the Project > Settings
menu: IDE selection, code generation options and advanced settings.
— Whether to import the project settings defined through the Project > Settings
menu: IDE selection and code generation options.

UM1718 Rev 31 137/363

STM32CubeMX user interface

UM1718

subset (manual import).
a) Automatic project import (see Figure 112)

Figure 112. Automatic project import

Whether to attempt to import the whole configuration (automatic import) or only a

Import Project

¢Imported Project

‘CZ\STM32CUbQMXﬁUM\\man I0CNOC to import'fd_demo.ioc

¢Import MX Settings

[Import Power Consumption Calculator Settings

[Import Project Settings

¢Import Pinout/Clock Configuration/Configuration Setting

(® Automatic Import
O Manual Import
¢ Peripheral List

ADC1 import to
lanc? ¥ imnnrt to [ADC?

From STM._| To STM32F722ICKx '
ETH MNone

Try Import Show View

¢Import Status

Initializing: STM32F427I(G-I)Hx

Import Analysis: C:\5TM32CubeMX UM\Import ICC\IOC to importh\f4 demo.ioc project
The Mcu (STM32F427IGHx) found in the Project being imported is not the same as the Mcu

(STM32FT722ICEx) currently edited
® Inport error: ETH peripheral doesn't exist in STM32F722ICEx

138/363 UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

b) Manual project import
In this case, checkboxes allow the user to manually select the set of peripherals
(see Figure 113).

Select the Try Import option to attempt importing.

Figure 113. Manual project import

m e procc . S

Imported Project

"C:\STMSECubeMX_UM\Import IDCNOC to importi4_demo.ioc ‘ -‘

¢lmport MX Settings
[Import Power Consumption Calculator Settings

[Import Project Settings

Import Pinout/Clock Configuration/Configuration Settings
O Automatic Import
® Manual Import

Import Pinning Status
Import Peripherals Configuration

Peripheral List

WfFons™ | ToSMaFTACkx

| ETH MNone

Il |ADC1 import to [ADC1 -

|| ADC2 import to |ADC2 ~
ADC3 import to |JADC3 ~

I' CANT CAN1

i NVIC NVIC

Ml |rcc RCC
SPI import to |SPI ~
SPI5 import to |[SPI5 v
SPIG import to |SPI2 v
SYS SYS

Try Impart Show View

Initializing: STM32F427I(G-I)Hx

Import Analysis: C:\STM32CubeMX UM\Import IOCM\IOC to import\f4 demo.ioc project

The Meu (STM32F427IGHx) found in the Project being imported is not the same as the Meu (57
@ Import error: ETH peripheral doesn't exist in STM32F722ICEx

Import Status

3

UM1718 Rev 31 139/363

STM32CubeMX user interface UM1718

The Peripheral List indicates:
— The peripheral instances configured in the project to be imported
— The peripheral instances, if any exists for the MCU currently selected, to which the

configuration has to be imported. If several peripheral instances are candidate for
the import, the user needs to choose one.

Conflicts can occur when importing a smaller package with less pins or a lower-end
MCU with less peripheral options.

Click the Try Import button to check for such conflicts: the Import Status window and
the Peripheral list get refreshed to indicate errors (see Figure 114), warnings and
whether the import has been successful or not:

— Warning icons indicate that the user has selected a peripheral instance more than
once and that one of the import requests will not be performed.

— A cross sign indicates that there is a pinout conflict and that the configuration can
not be imported as such.

The manual import can be used to refine import choices and resolve the issues raised
by the import trial. Figure 115 gives an example of successful import trial, that has been
obtained by deselecting the import request for some peripherals.

The Show View function allows switching between the different configuration tabs
(pinout, clock tree, peripheral configuration) for checking influence of the "Try Import"
action before actual deployment on current project (see Figure 115).

3

140/363 UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 114. Import Project menu - Try import with errors

® Manual Import
Import Pinning Status
Import Peripherals Configuration

¢ Peripheral List

F722ICKx
ETH MNone
ADC1 import to [ADC1 ~
ADC2 @ import to |JADC2 ~
ADC3 @ import to |ADC3 e
CANT1 CANA1
NVIC MNVIC
RCC RCC
SPI import to [SPI ~
SPI5 import to |SPI5 v
SPIG import to |SPI2 ~

| |svs sYS

¢Import Status

Import Analysis: C:\5TM32CubeM¥ UM\Import ICCAICC to import\f4 demn.ioc project
The Mcu (5THM32F427IGHx) found in the Project being imported is not the same as the Mcu |
® Import error: ETH peripheral doesn't exist in STM32F722ICE=

Import Try :
® import ADCZ2 partly failed

® error: External-Trigger-for-Injected-conver=sion:5et mode doesn't exist in STM32F72
® import ADC3 partly failed

® error: External-Trigger-for-Injected-conversion:S5et mode doesn't exist in STM32F72

Importing project completed

3

UM1718 Rev 31 141/363

STM32CubeMX user interface UM1718

142/363

Figure 115. Import Project menu - Successful import after adjustments

¢Import Pinout/Clock Configuration/Configuration Settings
O Automatic Import
® Manual Import
Import Pinning Status
| Import Peripherals Configuration

| ~Peripheral List

| From STM. | To STM32FT22ICKx
ETH MNone
| ADCA \ import to |ADCA ~
ADC2 \D @ import to |ADC2 I
[ADC3 [0 @ import to |ADC3
CAN1 CAN1
NVIC MNWIC
RCC \" O RCC
SPIH import to [SPI1 ~
SPIs import to [SPI5 ~
SPIG import to [SPI2 ~
SYS SYS

<lmport Status
Import Rnalysis: C:A\STW32CubeMX UM\Import ICOCAICC teo import\f4 demn.icc project

4 in the Project being imported is not the same as the Mcu |
Importing project completed

3. Choose OK to import with the current status or Cancel to go back to the empty project

without importing.
Upon import, the Import icon gets grayed since the MCU is now configured and it is no
more possible to import a non-empty configuration.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

411 Set unused / Reset used GPIOs windows

These windows are used to configure several pins at the same time in the same GPIO
mode.

To open them:
e Select Pinout > Set unused GPIOs from the STM32CubeMX menu bar.

Note: The user selects the number of GPIOs and lets STM32CubeMX choose the actual pins to
be configured or reset, among the available ones.

Figure 116. Set unused pins window

[@ set unused GPIOs ﬁ

MNumber of GPIOs
0

GPIO Type Input ~

. Select Pinout > Reset used GPIOs from the STM32CubeMX menu bar.

Depending whether the Keep Current Signals Placement option is checked or not on
the toolbar, STM32CubeMX conflict solver will be able to move or not the GPIO signals
to other unused GPIOs:

— When Keep Current Signals Placement is off (unchecked), STM32CubeMX
conflict solver can move the GPIO signals to unused pins in order to fit in another
peripheral mode.

— When Keep Current Signals Placement is on (checked), GPIO signals is not
moved and the number of possible peripheral modes is limited.

Refer to Figure 118 and Figure 119 and check the limitation(s) in available peripheral
modes.

Figure 117. Reset used pins window

[Reset used GPIOs Iﬁ

Number of GPIOs

3

UM1718 Rev 31 143/363

STM32CubeMX user interface

UM1718

Figure 118. Set unused GPIO pins with Keep Current Signals Placement checked

File Project Pinout Window Help

Bodl: &5

ep Current Signais Placement @] = @ 4 Find |

Show user Label 7 5

+

Pinout | Clock Configuration | Configuration | Power Consumption Caleulator |

Configuration

£ Middlewares
o FATFS
(@ FREERTOS
.
@e

0

EHPs
4\ ADC1
© Apc2
& € ADC3
© CAN1
@ CANZ

E- €3 DEMT
% DMA2D
HQEH

o MC
o 1201
Q1202
e 1203
Q1252
@ o 1253
© IWDE
B LTDC
A\ ReC
@ RNG
A RTC
€3 SAIL
© SDIo
@ SPI1
© sp12
@ sP13
€ sP14
B4 sYs
& TIML
B8 TIMZ
o TIM3
e TIMe
& Tivs
@ o TIM6
o TM?7
8 TIVE
A\ TIMo
¢ TIM10
® TIM11
B TIM12
@ TIM13
o TIM14
o UART4
% UARTS
€ UARTT
@ © UARTS
© USARTL
[@ USART2

n

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input:

GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input

GPIO_Input
GPIO_Input
GPIO_Input

Ndu~OL4s

STM32F429VITx
LQFP100

m
i

2d

P
S¥e
P

Indur oI
Indur”olds
Indur” oIds
NI 01D
InduUrOlds
Indur”olds
Indur oIds

INAUT OIdS
Indul"OIde

Indur oI
Indur oIds
AT 01D

13d

NI OIS
Indur oI

113d

T3d

AU~ OL4s
INAUT OIdD

13d

[GET]

N OIds

13d

ndur QI
AU~ Ol

T8d
T18d

ndui”olde

GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input
GPIO_Input

144/363

UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

|2 STM32CubeMX |

File Project Pinout Window Help

Figure 119. Set unused GPIO pins with Keep Current Signals Placement unchecked

wEi-, H & - & T [[Jreep current Signals Placement # & I = @ <+ Find

L o\ [¥]show user Label 17 >

¢

Piaut | clock Configuration | Configuration | Pawer Consumption Calculator |

Configuration

° FATFS
[© FREERTOS

° 1252
o 1253

o RCC

[RNG
o RTC
o SAIL
= SDIO
@ SPIL
° SPI2

[l @ sPI3
o SPH
B0 SVs
& TIML
Ao TIMZ
o TIM3
Ao TIM4
o TIM5
B0 TIME
o TIM7
Ao TIMB
o TIMO
% TIM10
o TIM11
B0 TIM12
° TIM13
Ao TIM14
© UART4
[® UARTS
o UART?
[© UARTS
© USARTL
G o USARTZ

GPIO_Input

GPIO_Inputt

GPIO_Input
GPIO_Input

n

GPIO_Input

GPIO_Input

GFIO_Inpuit

GPIO_Input
GPIO_Input
GPIO_Input

GPIO_Input |=e)

GPIO_Input [
GPIO_Inputt [

|3

PC13

PCl4..

GPIO_Input |Ze

GPIO_Input [abl]

GPIO_Input [ge8
GPIO_Input [

PA1

PA2

£Vd

ndui— oI

SSA
aan

STM32F429VITx

¥d

LQFP100

£5]
£5]
[dS
£
£
£5]
S
S
£
£5]
S
S

o I

GPIO_Irput
GPIO_Irput
GPIO_Input
GPIO_Irput
GPIO_Irput
GPIO_Input

412

Update Manager windows

Three windows can be accessed through the Help menu available from STM32CubeMX
menu bar:

Select Help > Check for updates to open the Check Update Manager window and

1.

find out about the latest software versions available for download.

Select Help > Manage embedded software packages to open the Embedded
Software Package Manager window and find out about the embedded software
packages available for download. It also allows checking for package updates and
removing previously installed software packages.

Select Help > Updater settings to open the Updater settings window and configure
update mechanism settings (proxy settings, manual versus automatic updates,

repository folder where embedded software packages are stored).

Refer to Section 3.4: Getting updates using STM32CubeMX for a detailed description of
these windows.

3

UM1718 Rev 31

145/363

STM32CubeMX user interface UM1718

413

146/363

Additional software component selection window

The Additional Software Component selection window can be opened by clicking
Additional Software from the Pinout & Configuration tab, at any time when working on
the project. It allows the user to select additional software components for the current
project. This feature is currently not supported for multi-core products.

It comes as four panels, as shown in Figure 120:

Filters panel

Can be hidden using the “Show/hide filters” button. It is located on the left side of the
window and provides a set of criteria to filter the pack component list.

Packs panel

It is the main panel, as it displays the list of software components per pack that can be
selected for the project.

Component dependencies panel

Can be hidden using the “Show/hide dependencies” button. It displays dependencies, if
any, for the component selected in the packs panel. It proposes solutions when any is
found.

Dependencies that are not solved are highlighted with fuchsia icons.

Once the dependency is solved (by selecting a component among the solution
candidates) it is highlighted with green icons.

Details and warnings panel

Can be hidden using the “Show/hide details” button. It is located on the right hand side.
It provide informations for the element selected in the Pack panel.

This element can be a pack, a bundle or a component. It offers the possibility to install
a version of the pack available but not yet installed, and allows the user to migrate the
current project to a newer version of the pack, raising incompatibilities that cannot be
automatically resolved.

3

UM1718 Rev 31

UM1718 STM32CubeMX user interface

Figure 120. Additional Software window

[T Additional Software Components selection X
Filters Packs Details and warnings
* @ o @ O m Compenent details
Search Pack / Bundhe / Component Pack STMicroelectronics X-CUBE-GNSS1.3.(
N . Name Application
Q STMicroelectronics. X-CUBE-Al 400 .
Versior 3.0.0
ok Vend STMicroelectronics. X-CUBE-BLE1 440 Class Device
ack Verdor STMicroelectronics. X-CUBE-GNSS1 300% Group Application

[] Alibaba Device_Application Variant GetPos

[] Oryx-Embedded Versior3.0.0

o Application GetPos ®

[RealThread * Remove from fa

- Board_Component_GNSS

[] STMicroelectronics Wamings (1)

Board_Extension_GNSS
= = This component has unresolved
GNSS1A1 dependencies.
Board_Support_STM32Cube_Custom_BSP_Drivers There are solutions within this pack
Description
Data_Exch: lib.

Software Component Class ela_Exehangefib_gnss GetPos sample application needs to add
AlOSThings Interface Not selected FreeRTOS from STM32_CubeMX
Artificial Intelligence LibGNSS [/ Documents
Board Component LibNMEA L4 License

Documentation
Board Extension STMicroelectronics. X-CUBE-MEMS1 6200
Board Support STMicroelectronics. X-CUBE-NFC4. 1400
CycloneCommon STMicroelectronics. trafficlight 0.0.3
CycloneCrypto
CycloneSSL
CycloneTCP
Data Exchange
Device
Network
RTOS Component dependencies
Utilities STMicroelectronics. X-CUBE-GNSS1.3.0.0 / Device_Application GetPos
Wireless Click on solutions below to highlight them in the pack tree above:

Requires: Class Data Exchange, Group LibNMEA

Solutions in pack STMicroelectronics.X-CUBE-GNSS51.3.0.0:

Component LibNMEA

Requires: Class Data Exchange, Group LibGNSS

Solutions in pack STMicroelectronics. X-CUBE-GNSS1.3.0.0:

Component LibGNSS

® Requires: Class Data Exchange, Group Interface

¥ Solutions in pack STMicroelectronics.X-CUBE-GNSS51.3.0.0:

Show/hide fiters | Show/hide details | Showlhide dependencies | ok | cancel |

See Section 10: Support of additional software components using CMSIS-Pack standard for
more details on how to handle additional software components through STM32CubeMX
CMSIS-Pack integration.

4131 Introduction on software components

Arm® Keil™ CMSIS-Pack standard defines the pack (*.pdsc) format for software
components to be distributed as Software Packs. A Software pack is a zip file containing a
*.pdsc description file.

STM32CubeMX parses the pack .pdsc file to extract the list of software components. This
list is presented in the Packs panel.

Arm® Keil™ CMSIS-Pack standard defines a software component as a list of files. The
component or each of the corresponding individual files can optionally refer to a condition
that must resolve to true, otherwise the component or file is not applicable in the given
context. These conditions are listed in the Component dependencies panel.

There are no component names. Instead, each component is uniquely identified for a given
vendor pack by the combination of class name, group name and a version. Additional
categories, such as sub-group and variant can be assigned. These details are listed in the
Details & Warnings panel.

3

UM1718 Rev 31 147/363

STM32CubeMX user interface UM1718

4.13.2

4.13.3

Note:

148/363

Filter panel

To filter the software component list, choose pack vendor names and software component
classes or enter a text string in the search field.

The resulting software component table is collapsed. Click the left arrow to expand it and
display all the components that match the filtering criteria.

Table 14. Additional software window - Filter icons

Icon Description

Show only favorite packs.
A pack is set as favorite in the Details and Warnings panel by clicking

Show only selected components.

@ Components are selected in the Packs panel through checkboxes or variant selection
when several implementation choices are available for the same component.

Show only installed packs.
Enables to show or hide not yet installed packs.
Not yet installed packs are distinguished with the icon U

Show only packs compatible with this version of STM32CubeMX.
Packs not compatible with this version are distinguished with the icon

Reset all filters

Packs panel

By default, the Packs panel shows a collapsed view: all known packs are displayed with
their name and for one given version (latest version is the default). Icons are used only to
highlight the status of a pack version or of a component (see Table Packs panel icons).
Details and warnings and Component dependencies panels are used to provide detailed
information.

The default view can be expanded by clicking the left arrows, revealing the next level, which
can be a Bundle or a top component. The lowest level is the component level.

Some packs may have conditions on Arm® cores or STM32 Series or STM32 MCUs and
they are visible only when the selected MCU meets the criteria. For example, a pack stating
the “<accept Dcore="Cortex-M4"/>" condition only shows for MCUs with an Arm®
Cortex®-M4 core.

3

UM1718 Rev 31

UM1718

STM32CubeMX user interface

3

Table 15. Additional Software window — Packs panel columns

Column name Description

Pack/Bundle/Component

At pack level, shows the <name of the Software pack>

At bundle level, shows the <Name of the Class>_<Bundle name, if any>
At component level, shows the <Group name>/<Subgroup name, if any>.
Class names are standardized by the Arm CMSIS standard(")

Shows the version that has been selected from a list of one or more
available versions of a pack.

Version Bundle and components can either inherit the version of the pack or have
their own specific version. The version is shown in the Details and
Warning panel.
. Selects a component through a checkbox when only one implementation
Selection

is available or from a list if variants exist.

1. The Arm® Keil™ CMIS-Pack website, http://www.keil.com, lists the following classes:
Data Exchange: Software components for data exchange
File System: File drive support and file system
Graphics: Graphic libraries for user interfaces
Network: Network stack using Internet protocols
RTOS: Real-time operating systems
Safety: Components for testing application software against safety standards
Security: Encryption for secure communication or storage
USB: Universal serial bus stack
Wireless: Communication stacks such as Bluetooth®, WiFi®, and ZigBee®.

Table 16. Additional Software window — Packs panel icons

Icon

Description

The pack has been added to the user favorite list of packs.
Use the Details and Warnings panel to add/remove packs from list of favorites.

The pack version is not compatible with this STM32CubeMX version.
Solution: select a compatible version.

The pack version is not yet installed.

Solution: go to the Details and Warnings panel to download the pack version to use it
for a project.

The component is not available for selection.
Solution: download the pack this component belongs to.

A component is selected and at least one condition remains to be solved.

Select the line of the component with such icon to refresh the Component
dependencies panel with the list of dependencies, status and solutions if any found.

At least one component is selected and all conditions, if any, are met.

1

Other pack versions are available to switch to.
Solution: use the Details and Warnings panel to proceed with a change.

UM1718 Rev 31 149/363

STM32CubeMX user interface

UM1718

4134 Component dependencies panel

The conditions are dependency rules applying to a given software component. The panel is
refreshed when selecting a component, providing details on the dependencies to solve and
the available solutions, if found (see Table 17).

Table 17. Component dependencies panel contextual help

Contextual help

Description

This component has no dependency

No dependency to solve.

& Requires: Class CMS|S.7G.FCV)U,D CORE
® No solution found

Dependency to solve but no solution found.

) Requires. Class Data Exchange, Group Interface
¥ Solutions in pack STMicroelectronics X-CUBE-GNSS51.3.0.0
? Component Interface / Variant Basic
7 Componen! Inlerface | Vanan! Template

Dependency to solve and at least one solution found.

Click a solution proposal to be automatically re-directed to
the component selection line in the packs panel.

Requires. Class Data Exchange, Group LibNMEA
Solutors n pack STMicroslecironcs X.CUBE-GNSST.3.00
Component LibNMEA

Dependency exists and has been solved (a component
solving the condition has been selected).

4.13.5 Details and Warnings panel

Click on | to unhide the panel (see Figure 121).

This panel is refreshed upon selecting a line from the Packs panel.

Actions are possible in this panel, namely adding/removing the pack to/from the list of
favorite packs, installing a pack, accessing pack documentation through links.

If any issue is detected, explanations are provided under the Warnings section.

150/363 UM1718 Rev 31

3

UM1718 STM32CubeMX user interface

Figure 121. Details and Warnings panel

Details and warnings

Fack details

Name #-CUBE-MEMS1
Vendor STMicroelectronics
Version 6.2.0

r Add to favorites

Warnings (1)
€3 This version of the pack is not compatible with the current version of

STM32CubelX.
It is compatible with STM32CubeMX from 5.2.0 upto 5.2.1.

Description
Drivers and sample applications for MEMS components

Documents

License
Documentation

UM1718 Rev 31 151/363

3

STM32CubeMX user interface UM1718

4.13.6 Updating the tree view for additional software components

Once the selection of the software components required for the application is complete (see
Figure 122), click OK to refresh STM32CubeMX window: the selected component appears
in the tree view under Additional Software (see Figure 123).

Figure 122. Selection of additional software components

Packs

Collapse all
Pack / Bundle / Component VN fﬁ

“) STMicroelectronics X-CUBE-AI /

~ [Artificial_Intelligence_Application

Application |SystemF'erfnrmanc; ~ |
~ 2 Artificial_Intelligence X-CUBE-AI
Core
> STMicroelectronics X-CUBE-BLET
» STMicroelectronics X-CUBE-GMSS1 300
> STMicroelectronics X-CUBE-MEMS1
>

STMicroelectronics X-CUBE-NFC4 1408 1

The current selection of additional software components appears in the tree view (see
Figure 123). The software components must be enabled in the Mode panel and may be
configured further if any parameter is proposed in the configuration panel. Hovering the
mouse over the component name reveals contextual help with links to documentation.

152/363 UM1718 Rev 31

3

UM1718

STM32CubeMX user interface

3

Figure 123. Additional software components - Updated tree view

m STM32CubeMX Al_to_migrate.ioc*: STM32F42971Yx

a
s @ i
CubeMX File

Window

te.ioc out & Configuration GENERATE CODE

Clock Configuration

ditional

e 00000

Help

Project Manager

“ Pinout

STMicroelectronics. X-CUBE-AI.4.0.0 Mode and Configuration

plication

- SThdic tronics Name - X-CUBE-A| Versi
mponent for Bundle : Applic
tion [vanant.SystemPerformance]

Related documentation:

Avtificial Intelligence
description : Al Application, S

, varian
- This component should operate correctly.

m Performance

— 0 X

oy x &/

ion and class : ArtificialOolntelligence using components(s)

, version:

System Core > Artificial Intelligence X-CUBE-AI
Artificial Intelligence Apj
Analog >
Timers > Vendor
Software
Connectivity > group - Appli
Multimedia > Summary:
Component cla:
Security >
Computing >
Middleware >
Application >
+Model manager
Addtiona Sotvare
N Total (0)

Valsion Sray

STMicroelectronics X-CUBE-AI 4 0.0

UM1718 Rev 31

153/363

STM32CubeMX user interface UM1718

414 About window

This window displays STM32CubeMX version information.
To open it, select Help > About from the STM32CubeMX menu bar.

Figure 124. About window

[[About u1

STM32Cube M

Version 5.1.0
STM32Cube V1.0
https:liwww.st.com/stm32cube

Copyright (c) 2010-2019 STMicroelectronics

‘ 'I augmented

154/363 UM1718 Rev 31

3

UM1718

STM32CubeMX tools

5

5.1

3

STM32CubeMX tools

Power Consumption Calculator view

For an ever-growing number of embedded systems applications, power consumption is a
major concern. To help minimizing it, STM32CubeMX offers the Power Consumption
Calculator tab (see Figure 125), which, given a microcontroller, a battery model and a
user-defined power sequence, provides the following results:

e Average current consumption

Power consumption values can either be taken from the datasheet or interpolated from
a user specified bus or core frequency.

e Battery life
e Average DMIPs

DMIPs values are directly taken from the MCU datasheet and are neither interpolated
nor extrapolated.

e Maximum ambient temperature (Tapax)
According to the chip internal power consumption, the package type and a maximum
junction temperature of 105 °C, the tool computes the maximum ambient temperature
to ensure good operating conditions.
Current Tapax implementation does not account for I/O consumption. For an accurate
Tamax estimate, 1/0 consumption must be specified using the Additional Consumption
field. The formula for I/O dynamic current consumption is specified in the
microcontroller datasheet.

The Power Consumption Calculator view allows developers to visualize an estimate of
the embedded application consumption and lower it further at each power sequence step:
e Make use of low power modes when any available

e Adjust clock sources and frequencies based on the step requirements.

e Enable the peripherals necessary for each phase.

For each step, the user can choose VBUS as possible power source instead of the battery.
This will impact the battery life estimation. If power consumption measurements are

available at different voltage levels, STM32CubeMX will also propose a choice of voltage
values (see Figure 128).

An additional option, the transition checker, is available for STM32L0, STM32L1, STM32L4,
STM32L4+, STM32G0, STM32G4, STM32H7 and STM32WB Series. When enabled, the
transition checker detects invalid transitions within the currently configured sequence. It
ensures that only possible transitions are proposed to the user when a new step is added.

UM1718 Rev 31 155/363

STM32CubeMX tools UM1718

511 Building a power consumption sequence

The default starting view is shown in Figure 125.

Figure 125. Power Consumption Calculator default view

[STM32CubeMX Untitleck STM32F469NIHx - O X ‘
"y) ' (e > L7
st @ File Window Help oy x G
Home > S N ; GENERATE CODE
Pinout & Configuratio Clock Configuration Project Manager
~ Power
STM32F469NIHx N Sequence:
T, 25°C/ Vg 33V > New Step = °
Battery Selection Sequence Table
I:l m_w [step | _Mode | _Vdd _[Range/Scale| Memory |CPU/Bus F._]Clock Config] Peripherals [Step Current| _Duration |
Information Notes
Help
Display
Plot: All Steps
MCUs Selection | Output
Series o Lnes] Mo] Package] Required Peripherals
STM32F4 STM32F469/479 STM32F469NIHx TFBGA216 None

Selecting a Vpp value

From this view and when multiple choices are available, the user must select a Vpp value.

156/363 UM1718 Rev 31

3

UM1718

STM32CubeMX tools

3

Selecting a battery model (optional)

Optionally, the user can select a battery model. This can also be done once the power
consumption sequence is configured.

The user can select a predefined battery or choose to specify a new battery that best
matches its application (see Figure 126).

Figure 126. Battery selection

B TM32CubeMX PCC: Battery Database Management

User Battery

Edit
\ Batteries Table
Capacity (mAh) Nominal Voltag...|Max Cont Curr...Max Pulse Curr.. |
AlkalingfAA LRG) 2850.0 0.3 1.5 1000.0 0.0 Default
AL.. 1250.0 0.3 1.5 400.0 0.0 Default

LR14) 8350.0 0.3 1.5 3000.0 0.0 Default
A_R20) 20500.0 0.3 1.5 7500.0 0.0 Default

Alkaline (g 625.0 0.3 2.0 200.0 0.0 Default
Li-MnO2(CH12... 48.0 0.12 3.0 1.0 5.0 Default
Li-MnO2(CR)&... 125.0 0.12 3.0 15 10.0 Default
Li-MnO2(CR 2250 012 a0 30 15.0 Default
Li-MnO2(CHAdd Battery %
L?-MnOE(CF User Battery
::":ggt;g MName Battery_29|

i .
Li-socL2(d Capacity (mAh) 0.0
Li-socL2(0 Self Discharge (%/month) 0.0
Li-SOCL2(Q Nominal Voltage (V) 0.0
Ni-Cd(AA11] Max Cont Current (mA) 0.0
N!—Cd(JMTO Max Pulse Current (mA) 0.0
:::g::gigg * Max Pulse Current is not currently used in calculation
v Cae o Cor | carer |
Ni-MH(AAABUY) ouu.w auu 1. ouu {TRY] UEEun
Ni-MH(AA1800) 1800.0 300 1.2 380.0 0.0 Default

" The Battery selection is optional oK m_

Power sequence default view

The user can now proceed and build a power sequence.

Managing sequence steps

Steps can be reorganized within a sequence (Add new, Delete a step, Duplicate a step,
move Up or Down in the sequence) using the set of Step buttons (see Figure 127).

The user can undo or redo the last configuration actions by clicking the Undo button in the
Power Consumption Calculator view or the Undo icon from the main toolbar

Figure 127. Step management functions

Step — Sequence

New Step = (i]

UM1718 Rev 31 157/363

STM32CubeMX tools

UM1718

Adding a step

There are two ways to add a new step:

e Click Add in the Power Consumption panel. The New Step window opens with empty
step settings.

e Or, select a step from the sequence table and click Duplicate. A New Step window
opens duplicating the step settings (see Figure 128).

Figure 128. Power consumption sequence: New Step default view

m New Step

Power/Memory

REEERSELWSTEHIGEY Enable All IPs PEELENANIZY Enable IPs from Pinout

Peripherals Selection

x|

Enabled Peripherals

Power Mode RUN Peripherals (aDc1)[aDc2] [aDc3) (BKPSRAM
ADC1 ey P
Power Scale Scalet High Bnocs (Bushatr (can(canz](cRe]
» Coen T S— oac)[ocmi| [omat)|omaz| pmazo
emory Fel ype i ADC3 —_——
psi|[eTH][Fuc)[Grioal (Grios
. S (osi)(EnH)[Fuc] [cproa) (crioe]
BusMatrix |._GF'IOC_] lGPIOD: (ePiog \GPID{:]
Voltage Source Battery CAN1 [0[’I0€3”€3|'|0H|ﬂol [fsl'li
Clocks ¥ caNz (GPiow] [HasH|[12¢1] 12c2] [12c3]
CPU Frequency 150 MHz CRC [wpg|[LToC| [PvDiBOR] [PWR]
v DAC auapsPI|[rua) [RTc] [san] [soio)
ou (spi1] [sPi2n2s2| [spianzsa) (sPi)
OUTI+OUT2 —— —
gom (sP1s|(spe s vs] (] (mm1q]
Clock Configuration . 21_2|l“"_ﬂ”‘_“_d|m"2
Clock Source Frequency + DMA1 (T3] [1inaa)] [Tamas| (inae) [Tama7]
Optional Settings 1_Stream |M] |ir15'] |w] w]
Step Duration ’ e []2_streams [.UF\RTFHILTARHHU.SARU USART?|
Aeddiional & son o " [[]3_streams (usarT3| [usarTe|[usB_oTG Fs|
ihon onsumption m -
: []4_streams [usB_oTe_s|[wwoa
Results []5_Streams [
Step Consumption 102 65 mA ["]6_streams
Without Peripherals 44 ma []7_streams
E| 8_Streams
Peripherals Part 59 65 mA (A 5.6 mA - D 54.05 mA) - DMA2
Ta Max (*C) 95 08 1_S8tream
Warnings

Add

Once a step is configured, resulting current consumption and Tayax Values are provided in

the window.

158/363

UM1718 Rev 31

3

UM1718

STM32CubeMX tools

3

Editing a step

To edit a step, double-click it in the sequence table, this will open the Edit Step window.

Moving a step

By default, a new step is added at the end of a sequence. Click the step in the sequence
table to select it and use the Up and Down buttons to move it elsewhere in the sequence.

Deleting a step
Select the step to be deleted and click the Delete button.

Using the transition checker

Not all transitions between power modes are possible. The Power Consumption Calculator
power menu proposes a transition checker to detect invalid transitions or restrict the
sequence configuration to only valid transitions.

Enabling the transition checker option prior to sequence configuration ensures that the user
will be able to select only valid transition steps.

Enabling the transition checker option on an already configured sequence will highlight the
sequence with a green frame if all transitions are valid (see Figure 129), or in fuchsia if at
least one transition is invalid (fuchsia frame with description of invalid step highlighted in
fuchsia, see Figure 130). In the latter case, the user can click the Show log button to find
out how to solve the transition issue (see Figure 131).

Figure 129. Enabling the transition checker option on an already
configured sequence - All transitions valid

Sequence Table
-E__ Range/Scale -m- CoUBus Fegl Clock Cona |_Peripherals | Step Cument | Duration |
1 Range3-Low FLA 1000000 Hz 166.9 pA 1ms
2 RUN 3.0 Range2-Medi... FLASH 8 MHz HSEEIYF‘ 13 mA 1ms
3 RUN 3.0 Range1-High FLASH 8 MHz HSEBYP COMP1 COM... 1.55 mA 1ms
4 SLEEP 30 Rangel-High ~ FLASH 8 MHz HSEBYP 380 pA 1ms
[RUN 30 Range3-Low FLASH 4.2 MHz MSI COMP1 COM__. 623.66 pA 1ms
3 RUN 3.0 Rangel-High ~ FLASH 8 MHz HSEBYP 1.55 mA 1ms
T STOP 30 NoRange n/a 0 Hz ALL CLOCKS . 410 nA 1ms
Figure 130. Enabling the transition checker option on an already
configured sequence - At least one transition invalid
q Table

-E__ Range/Scale m cPuBe Tegl CodeCorie | _Peripherals | Step Curent | __ Duration |

Range3-Low FLA 1000000 Hz 166.9 pA 1ms
2 RUN 3 O Range2-Medi... FLASH 8 MHz HSEEIYF' 1.3 mA 1ms
3 RUN 30 Range1-High ~ FLASH 8 MHz HSEBYP COMP1 COM.___ 1.55 mA 1ms
) RUN 30 Range3-Low FLASH 4.2 MHz MSI COMP1 COM... 623.66 pA 1ms
G RUN 3.0 Range1-High FLASH 8 MHz HSEBYP 1.55 mA 1ms
T STOP 3.0 NoRange n/a 0 Hz ALL CLOCKS... 410 nA 1ms
8 SLEEP 30 Rangei-High FLASH & MHz HSEBYP 380 pA 1ms

UM1718 Rev 31 159/363

STM32CubeMX tools

UM1718

160/363

Figure 131. Transition checker option - Show log

x| Log for current sequence —

==================== Transition allowed!

Check transition between step 6 (RUM, Range1-High) and step 7 (STOP, MoRange)
Possible next step(s): RUN [Range1-High, Range2-Medium, Range3-Low]
Fossible next step(s): LOWPOWER_RUN [Range3-Low]
Possible next step(s): SLEEP [Range1-High. Range2-Medium, Range3-Low]
Possible next step(s): LOWPOWER_SLEEF [Range3-Low]
Possible next step(s): STOFP [NoRange]

==================== Transition allowed!

Check transition between step 7 (STOP, MoRange) and step 8 (SLEEP. Range1-High)
Possible next step(s): WU_FROM_STOP [MNoRange]
==================== Transition not possiblel

UM1718 Rev 31

3

UM1718

STM32CubeMX tools

5.1.2

3

Configuring a step in the power sequence

The step configuration is performed from the Edit Step and New Step windows. The
graphical interface guides the user by forcing a predefined order for setting parameters.

Their naming may differ according to the selected MCU Series. For details on each
parameter, refer to glossary in Section 5.1.4 and to Appendix D: STM32 microcontrollers
power consumption parameters, or to the electrical characteristics section of the datasheet.

The parameters are set automatically by the tool when there is only one possible value (in
this case, the parameter cannot be modified and is grayed out). The tool proposes only the
configuration choices relevant to the selected MCU.

To configure a new step:

1. Click Add or Duplicate to open the New step window or double-click a step from the
sequence table to open the Edit step window.

2. Within the open step window, select in the following order:

The Power Mode
Changing the Power Mode resets the whole step configuration.
The Peripherals

Peripherals can be selected/deselected at any time after the Power Mode is
configured.

The Power scale

The power scale corresponds to the power consumption range (STM32L1) or the
power scale (STM32F4).

Changing the Power Mode or the Power Consumption Range discards all
subsequent configurations.

The Memory Fetch Type

The Vpp value if multiple choices available

The voltage source (battery or VBUS)

A Clock Configuration

Changing the Clock Configuration resets the frequency choices further down.

When multiple choices are available, the CPU Frequency (STM32F4) and the
AHB Bus Frequency/CPU Frequency(STM32L1) or, for active modes, a user
specified frequency. In this case, the consumption value will be interpolated (see
Using interpolation).

3. Optionally set

A step duration (1 ms is the default value)

An additional consumption value (expressed in mA) to reflect, for example,
external components used by the application (external regulator, external pull-up,
LEDs or other displays). This value added to the microcontroller power
consumption will impact the step overall power consumption.

4. Once the configuration is complete, the Add button becomes active. Click it to create
the step and add it to the sequence table.

UM1718 Rev 31 161/363

STM32CubeMX tools

UM1718

Using interpolation

For steps configured for active modes (Run, Sleep), frequency interpolation is supported by
selecting CPU frequency as User Defined and entering a frequency in Hz (see Figure 132).

Figure 132. Interpolated power consumption

[MNew Step

Reset Step Settings ESGHEMERSINIZEN Disable All IPs E

Power/Memory

Enable IPs from Pinout

—Peripherals Selection

Enabled Peripherﬁls

Power Scale |Scale1—High V| :i; Bu B
Memory Fetch Type [FLASHREGON v ADC3 (oac] (pew)
BusMatrix
Vottage Source [Battery ~] e [GPIOA] [GPIOB] [GPIOC] [GPlOD]
CPU Freguency |User—deﬂned V| CRC
Interpolation Ranges [150 MHz — 188 MH= 0T DAC.
1 OUTH
| user choice 1z) |=ph160000000 | [ouTts0uT2
Clock Configuration [HsE pLL ~] Ul out2
DCMI
Clock Source Freguency |-l MHz ~ | 4 pmat
Optional Settings 1_Stream
Step Duration [1 [[ms V| [2_streams
- . O 3_Streams
Additional Congumption |EI ||m-¢\ V| O] 4 st
_Streams
Results] 5_Streams
Step Consumption [103 65 m& | [] 6_Streams [UARW] [UF\F‘-TS] [USART1]
Without Peripherals [24 mé. | [7_streams (usartz) (usarTs) (usarTs)
Peripherals Part [59.65 mA (A 5.6 mA - D: 54.05 mA) | L DMAZD 8_Streams [usa o1G_Fs) (UsB_0TG_HS)
Ta Max (*C) lps.08 | 1_stream
Warnings

Available use cases: 1 Max: 60

Add

Cancel

162/363

UM1718 Rev 31

3

UM1718 STM32CubeMX tools

Importing pinout

Figure 133 illustrates the example of the ADC configuration in the Pinout view: clicking
Enable IPs from Pinout in the Power Consumption Calculator view selects the ADC
peripheral and GPIO A (Figure 134).

The Enable IPs from Pinout button allows the user to automatically select the peripherals
that have been configured in the Pinout view.

Figure 133. ADC selected in Pinout view

Pinout & Configuration Clock Configuration
Additional Softwares
I:'|:-ti-:-ns Cl ADC Mode and Cnnﬁguratlnn "
s INO
{3 COMPA IMA
COMP2
CRC N2
DAC O 3
DA,
FATFS (e
FREERTOS
GPIO O N5
12C1
1202 mE
1S7 UM1718 Rev 31 163/363

STM32CubeMX tools

UM1718

Selecting/deselecting all peripherals

Clicking Enable All IPs allows the user to select all peripherals at once.

Clicking Disable All IPs removes them as contributors to the consumption.

Figure 134. Power Consumption Calculator Step configuration window:

ADC enabled using import pinout

m Mew Step

Power/Memory
Power Mode RUN
Power Scale Scale2-Medium
Memory Feich Type FLASH/REGON

Voo
Voltage Source Battery

CPU Frequency

Clock Configuration

Clock Source Frequency

ResetSiep etinge Enaie Al o R

r'd

Selection

Enable IPs from Pinout
Peripherals
Peripherals
[Japct
[]aDc2
[JaDcs
[BKPSRAM
|:| BusMatrix

Enabled Peripherals

Ps from Pinout

Peripherals Selection——
Peripherals
™ ADC1
[]aDc2
[]aDcs
[| BKPSRAM
[] BusMatrix

Enabled Peripherals

Optional Settings
Step Duration 1
Additional Consumption 0

Results
Step Consumption
Without Peripherals 40 mA
0nA (A 0nA

Peripherals Part 0 0 nA)

Ta Max (*C) 101.17

] 2_Streams
3_Streams
4_Streams
5_Streams
6_Streams
7_Streams

8_Streams

sl

=}
=

1_Stream

Warnings

| Add Ji Cancel

51.3

Managing user-defined power sequence and reviewing results

The configuration of a power sequence leads to an update of the Power Consumption

Calculator view (see Figure 135):

e The sequence table shows all steps and step parameters values. A category column
indicates whether the consumption values are taken from the datasheet or are

interpolated.

e The sequence chart area shows different views of the power sequence according to a
display type (e.g. plot all steps, plot low power versus run modes)
e The results summary provides the total sequence time, the maximum ambient

temperature (Tapyax), Plus an estimate of the average power consumption, DMIPS, and
battery lifetime provided a valid battery configuration has been selected.

164/363

UM1718 Rev 31

S74

UM1718

STM32CubeMX tools

3

Figure 135. Power Consumption Calculator view after sequence building

(@ STM32CubeMX sna-2.ioc*: STM32L053C8Tx - o X
Window Help D oY x L
GENERATE CODE
guration anager Tools
~ Power
sTuszL0s3C8T > | viions Check
e - BB 5 o me &x
T, 25C 1 Vpp 30V . e
T, 2°C [steo] Wode] Ve | RengeiScale UiBus Freq Peiipherals | __StepCurrent | ___Duration ___]|
Ambiert o 1 RUN 30 Range3Low FLASH 1000000 Hz MSl 166.9 A Tms
Voo 3.0 v 2 RUN 30 Range2-Medium FLASH 8 MHz HSEBYP 13mA 1ms
3 RUN 30 RangeHigh FLASH oMz HsEBYP COMP1 COMPZFast 1.5 mA e
sty St Lo seep 30 Ranger Hoh FuasH sz HSEBYP 3504 me
s RUN 30 Renge3Low FLASH 2uHe vt COMP1 COMPZFast 623,664 e
c RUN 30 RangetHigh FuasH P HsesYP 155mA me
= 7 STOP. 30 NoRange nla 0Hz /ALL CLOCKS OFF 410nA 1ms
Information Notes > f—————Display Lhouea#
Flot Al Staps 0
Help. i [Plot: All Steps.
SR Consumption Profile by Step
150 Fie- Run / Low Power
Pie: Al Modes onum
s Jvea 5 Run/ Low Pover
z i Consumption: All Toon
g o 1P Consumption: Digtal
£ P Consumpion Anlog smon
& o7s t
5 wsreer
5 050 1
$ o |
025 | -
000
0.00 025 050 075 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 75
Time (ms
[it by Step — Average Curvers]
Sequence Time / TaMax 7ms/104.74°C Average Consumption 795.85 pA
Battery Life Estimation 1o batlery selected! Average DMIPS 5.89 DMIPS
[sees] e] Mo] _____ Pake____________] Reguired Peripherals
STM32L0 STM32L0x0 Value Line STM32L010CETx LQFP48 None. [
stazLo STMG2L00 Value Line STH2L010F4Px Tss0P20 Nore
sTazLo STUS2L0,0 Vel Line STH2L010K8Tx =y None
stszo STUE2L0,0 Valu Line STH2L010KaTx LarP2 None

Managing the whole sequence (load, save and compare)

From the power menu (see Figure 136), the current sequence can be saved, deleted or
compared to a previously saved sequence that will be displayed in a dedicated popup
window.

Figure 136. Sequence table management functions

X STM32CubeMX sna-2ioc* STM32L053C8Tx - o x
st @ File Window Hl ON £ > K
Cubehty P oy Y/
Pinout & Configuration Clock Configuration Project Manager
~ Pouer
r 5 Undo ~Transitions Che
STaaL0saceTx >
e i > il
. . > Load Sequence
T, 25C Vg 20V] a sequence T
T 2°¢] Delete Sequence CPUBus Freg | Clock Config | __Peipherals | __ Step Current | ___Duration ___}
irt I T Display Seauence 1000000 Hz vsi 1669 pA ms
o 50 Y |2 T Compare Semvence 8Nz HSEBYP 13mA tms
3 D Compare Sequerce shirz HSEBYP COMP1 COMPZFast 155 mA Tms
. : Transtions checker ohz HSEBYP 380 1ms
atery Selcion .
s Range o a2mkz wsi COMP1 COMPZFast 62366 A ms
I | Naronge o it oo e -
7 NoRange okz ALL CLOCKS OFF 400 Tms
Inormation Notes > play Choi
" | svstou Prnsavity o 2 sis Py
o
Consumption Profile by Step
150
Tenon
=125
z Tanum
5" sun
Sos T
£ wsteer
k= . ! [
025 i -
.00
0.00 025 050 075 100 135 150 175 200 225 250 275 300 335 350 375 400 425 450 475 500 535 550 575 600 635 650 675 700 725
Time (ms)
[—1dd by Step — Average G
Sequence Time TaMax 7 ms /10474 °C Average Consumption 795,65 A
Battery Life Estimation 110 batery sclec Average DMIPS 589 DMIPS
[l s T e e e] Required Peripherals
sTwazLo STM32L0x0 Valu Line STM3ZLO10CHTx LOFP4B Nane .
stwanLo STM32L0x0 Valu Line STMI2LO10F4Px TSS0P20 None
stwanLo STM32L0x0 Valo Line STMaRLO1OKATX LarP22 None
stuazto STM32L0x0 Vale Line STM32LOTOKETX LarP22 None

UM1718 Rev 31 165/363

STM32CubeMX tools UM1718

166/363

Managing the results charts and display options

In the Display area, select the type of chart to display (e.g. sequence steps, pie charts,
consumption per peripherals). You can also click External Display to open the charts in
dedicated windows (see Figure 137).

Right-click on the chart to access the contextual menus: Properties, Copy, Save as png
picture file, Print, Zoom menus, and Auto Range to reset to the original view before zoom
operations. Zooming can also be achieved by mouse selecting from left to right a zone in
the chart and Zoom reset by clicking the chart and dragging the mouse to the left.

Figure 137. Power Consumption: Peripherals consumption chart

[STM32CubeMX sna-2.oc* STM32L053C8Tx - o x

File Window Help © oy x L/
Pinout & Configuration Clock Configuration Project Manager Tools
~ Power
" a ~Tran cior-
STMI2L053C8Tx > X
] = c BB B o o0 a i
T, 25°C Vg 30V v N
o .
T, 2 | sto] Wode] vid | RangeiScae] o | CPUBusFrea | ClockConfig] Peripherals] __StepCurent] ___Duation __]|
Amblent 1 RUN FLASH 1000000 Hz wmsi 166.9 pA 1ms
Voo 3.0 v 2 RUN FLASH 8 MHz HSEBYP 13mA 1ms
3 RN FuasH 8Nz HseoYP COPT COMPZFast 155 mA Tms
Sattery Soecton N P SLEEP FLASH 6 hiHz HSEBYP 360pA tms
Y 5 RUN FLASH 42z) COMP1COMP2Fast 62366 pA 1ms
I | o - o Lo b -
7 stop wa ok ALLCLOCKS OFF 410mA Tms
Information Notes > E
Select your Prfened Dispay [Flo
Help >
Consumption Profile by Step
1.50
| Tonun Ten
s wer
=
z 2
= 100
5 Smun
S 075 T
L ey
0.50
§ ' [
0.2s i
0.00
000 0.35 050 075 100 125 150 175 200 2325 250 275 300 335 350 375 400 425 450 475 500 525 550 575 600 6.35 650 675 700 735

Time (ms)

Sequence Time / TaMax 7 ms /10474 °C Average Consumption 795,85 A

Battery Life Estimation 110 bate Average DMIPS 5.89 DMIPS
L Pacee Required Peipherals
STMA2L0 STM32L010C6Tx LaFP43 None 1

sTMaL0
STMEL0
sTMEL0

STM32L010F4Px. TSS0P20 None
STM32LO10KATx LaFP3
STM32L010KaTx LaFP3 None

Overview of the Results summary area

This area provides the following information (see Figure 138):
o Total sequence time, as the sum of the sequence steps durations.

e Average consumption, as the sum of each step consumption weighed by the step
duration.

e The average DMIPS (Dhrystone million instructions per second) based on Dhrystone
benchmark, highlighting the CPU performance for the defined sequence.

o Battery life estimation for the selected battery model, based on the average power
consumption and the battery self-discharge.

e Tamax: highest maximum ambient temperature value found during the sequence.

Figure 138. Description of the Results area

Results Summary

Sequence Time/ TaMax 7 ms/104.42°C Average Consumption 1.33 mA
Battery Life Estimation 8 months , 20 days & 9 hours Average DMIPS 6.52 DMIPS

3

UM1718 Rev 31

UM1718

STM32CubeMX tools

5.1.4 Power sequence step parameters glossary

The parameters that characterize power sequence steps are the following (refer to
Appendix D: STM32 microcontrollers power consumption parameters for more details):

3

Power modes

To save energy, it is recommended to switch the microcontroller operating mode from
running mode, where a maximum power is required, to a low-power mode requiring
limited resources.

Vcore range (STM32L1) or Power scale (STM32F4)

These parameters are set by software to control the power supply range for digital
peripherals.

Memory Fetch Type

This field proposes the possible memory locations for application C code execution. It
can be either RAM, FLASH or FLASH with ART ON or OFF (only for families that
feature a proprietary Adaptive real-time (ART) memory accelerator which increases the
program execution speed when executing from Flash memory).

The performance achieved thanks to the ART accelerator is equivalent to 0 wait state
program execution from Flash memory. In terms of power consumption, it is equivalent
to program execution from RAM. In addition, STM32CubeMX uses the same selection
choice to cover both settings, RAM and Flash memory with ART ON.

Clock Configuration

This operation sets the AHB bus frequency or the CPU frequency that will be used for
computing the microcontroller power consumption. When there is only one possible
choice, the frequencies are automatically configured.

The clock configuration drop-down list allows to configure the application clocks:

— the internal or external oscillator sources: MSI, HSI, LSI, HSE or LSE

— the oscillator frequency

— other determining parameters, among them PLL ON, LSE Bypass, AHB prescaler
value, LCD with duty

Peripherals

The peripheral list shows the peripherals available for the selected power mode. The
power consumption is given assuming that peripherals are only clocked (e.g. notin use
by a running program). Each peripheral can be enabled or disabled. Peripherals
individual power consumptions are displayed in a tooltip. An overall consumption due
to peripheral analog and digital parts is provided in the step Results area (see

Figure 139).

UM1718 Rev 31 167/363

STM32CubeMX tools

UM1718

Figure 139. Overall peripheral consumption

[0 Edit Step

PoweriMemory

REEE RS EIREEWGEEN Enable All IPs ENEEMERNEEE Enable IF's from Pinout

= Peripherals Selection =—

Enabled in pinout view X

—"—Enalq}ecl Perpherals
(5] o) &9 (8
(o) o) o)
o) ())) oo
() () () o9
()) o) oo

(700 (o) o) o)
(6701 ()) [
() () o) e o)
(0 (o008

() o) ())
(50) o) (=) (s
() 5 5) ()
(i) (o)) (o
() () () () ()
() () () (o)

(s) o)

(usarri) (usarTz) (usarT3)

USARTS| |USB_OTG_FS

(58-0r0.15) (o)

Power Mode [run ~| || Peripherals
ADC1
Power Scale |Scale1-High Vl ADC2
Memery Fetch Type [FLashrecoN ~| ADC3
Voo 23 v] BKPSRAM
BusMatrix
“oltage Source |Battery V| CAN1
Clocks CAN2
CPU Freguency |User—deﬂned V| CRC
> DAC
Interpolation Ranges 150 MHz — 168 MHz V| pem
User Choice (Hz) |160000000 | > DMA1
> DMA2
Clock Configuratien HSE PLL V| =
o DMAZD
Clock Source Freguency 4 MHz Vl DS
Optional Settings ETH
wd FMC
Step Duration |1 ||n'|s V| :
bl GPIOA
Additienal Consumption |D ||n'|A V| GPIOB
Results GPIOC
Y
Step Consumption |1 10.04 m& | : GFIOD
wd GPIOE
Without Peripherals [46.78 ma | GPIOF
Peripheralz Part |53.26 m& (A 5.6 mA - D: 57658 ma) | IH““”
Ta Max (-C) lp4.47 [GPIOH
L
Warnings

Available use cases: 0 Max: 60

The user can select the peripherals relevant for the application:

— None (Disable All),

— Some (using peripheral dedicated checkbox),

— Al (Activate All),

— Or all from the previously defined pinout configuration (Import Pinout).
Only the selected and enabled peripherals are taken into account when computing the

power consumption.
e Step duration

The user can change the default step duration value. When building a sequence, the
user can either create steps according to the application actual power sequence or
define them as a percentage spent in each mode. For example, if an application

UM1718 Rev 31

3

UM1718 STM32CubeMX tools
spends 30% in Run mode, 20% in Sleep and 50% in Stop, the user must configure a
3-step sequence consisting in 30 ms in Run, 20 ms in Sleep and 50 ms in Stop.

e Additional Consumption
This field allows entering an additional consumption resulting from specific user
configuration (e.g. MCU providing power supply to other connected devices).

5.1.5 Battery glossary

e Capacity (mAh)
Amount of energy that can be delivered in a single battery discharge.

e Self-discharge (% / month)
This percentage, over a specified period, represents the loss of battery capacity when
the battery is not used (open-circuit conditions), as a result of internal leakage.

e Nominal voltage (V)
Voltage supplied by a fully charged battery.

e Max. continuous current (mA)
This current corresponds to the maximum current that can be delivered during the
battery lifetime period without damaging the battery.

e Max. pulse current (mA)
This is the maximum pulse current that can be delivered exceptionally, for instance
when the application is switched on during the starting phase.

5.1.6 SMPS feature

3

Some microcontrollers (e.g. STM32L496xxxxP) allow the user to connect an external
switched mode power supply (SMPS) to further reduce power consumption.

For such microcontrollers, the Power Consumption Calculator tool offers the following
features:

Selection of SMPS for the current project

From the left panel, check the Use SMPS box to use SMPS (see Figure 140). By
default, ST SMPS model is used.

Selection of another SMPS model by clicking the Change button

This opens the SMPS database management window in which the user can add a new
SMPS model (see Figure 141). The user can then select a different SMPS model for
the current sequence (see Figure 142, Figure 143 and Figure 144)

Check for invalid SMPS transitions in the current sequence by enabling the SMPS
checker

To do this, select the checkbox to enable the checker and click the Help button to open
the reference state diagram (see Figure 145).

Configuration of SMPS mode for each step (see Figure 146)

If the SMPS checker is enabled, only the SMPS modes valid for the current step are
proposed.

UM1718 Rev 31 169/363

STM32CubeMX tools

UM1718

Figure 140. Selecting SMPS for the current project

STM32L496RGT=P >
T, 258°C /W, 3.0V ~
T ambient 235°C

Voo 3.0 v

Battery Selection il

SMPS1_ST ¢ v

| Use SMPS |

Change
Vinsues) v
VDUT(SMPS} v
OffCurrent 250 nA
QCurrent 200 nA
Efficiency 8%
Type External

170/363

UM1718 Rev 31

3

UM1718

STM32CubeMX tools

3

Figure 141. SMPS database - Adding new SMPS models

STM32CubeMX PCC: SMPS Database Management pd
User SMPS

SMPS Table
: QCurrent
SMPS1_5T 3. 2500 500.0 85 External Default
Edit SMPS *
User SMP5
Name SMPS2_Used]
Vin (V) 2.5
OffCurrent (nA) 10
Quiescent Current (n&) (10
VOUT(SMPS} 12
Efficiency (%) 85
Type .External

0K Cancel

Figure 142. SMPS database - Selecting a different SMPS model

STM32CubeMX PCC: SMPS Database Management X
User SMPS

Add User SMPs [T

SMPS Table
Name QCurrent
SMPS2_User 25 10.0 10.0 85 External User
SMPS1_ST 3.0 250.0 500.0 85 External Default
UM1718 Rev 31 171/363

STM32CubeMX tools UM1718

172/363

Figure 143. Current project configuration updated with new SMPS model

SMPS2 User b
Use SMPS Help

Viusups) 25V

Vourisues) 12V

OffCurrent 10 nA

QCurrent 10 nA

Efficiency 85 %

Type External

Figure 144. SMPS database management window with new model selected

STM32CubeMX PCC: SMPS Database Management K
User SMPS

Add User SMPS Edit
SMPS Table

10.0 10.0 1.2 85

SMPS52_User 25 External User
SMPS1_ST 3.0 250.0 500.0 11 85 External Default

3

UM1718 Rev 31

UM1718

STM32CubeMX tools

3

Figure 145. SMPS transition checker and state diagram helper window

STM32L412CBUxP : Step Sequence ~SMPS Checker ‘/
T, 25°C/ V30V New Step = 0 mon Loy Y
Tamblent 25°C [STM32CubeMX PCC: STM32CubeMX PCC: SMPS Checker State Diagram *
v, 30

(s]s]

Battery Selection

SMPS1_ST ‘

Use SMPS ™ [Hep |
[Change |

Vinsmps) oV
Voutswes) 11V
OffCurrent 250 nA
QCurrent 500 nA
Efficiency 85 %

Type External

SMPS Checker State Diagram

—————— >

SMPS DISCONNECTED

,
——

‘ {RUN Range2 on current and previcus step} %,,, ____,| {RUN on current and previous step} ﬁ

SMPS OFF

Information Notes

4 STM32L4x2
4 STM32L4x2

SMPS CONMECTED

{RUN, SLEEP, STOPD, WU_FROM_STOPO B | 1
on current and previous step} /’_E)

Legend

{Power Mode allowed with SMPS Mode} ﬁ

current and previous step}

{Condition on Power Mode(s) / Range for ﬁ

X |m

UM1718 Rev 31

173/363

STM32CubeMX tools

UM1718

Figure 146. Configuring the SMPS mode for each step

[@ New Step

Reset Step Settings

Disable All IPs Enahkle IPs from Pinout

PoweriMemory

= Peripherals Selection=——

Peripherals Part

[ona (A 0nA-D0n4)

Power Mode |RUN V| Peripherals
Power Range |Rﬁnge1-High vl - ADCAH
Memory Fetch Type [FLasH V] [fs_10_ksps
Voo |g_c | [fs_1_Msps
Voltage Source |Battery Vl [fs_5_msps
- ADC2
— O fs_10_ksps
SMPS Mode [connecTED | [fe_1_Msps
QCurrent 10 na [fs_5 Msps
Voursmrs 12V - ADC3
Efficiency 85 % [fs_10_ksps
Clocks O fs_1_Msps
CPU Freguency |—Chnnse— v| 0 fs_5_Msps
Interpolation Ranges | | L AH B_APB1_Br?dge
[] AHB_APB2_Bridge
User Choice (Hz) [cANt
Clock Configuration | | [canz
Clock Source Freguency | | [crc
Optional Settings - DAC1
Step Duration 1 [[ms ~| [J ouT1+0uT2-Buffe
Additional Censumption |l} ||.-.-ch v| g OUT1+0UT2-Buffel
Results OUT1+0UT2-Buffe
Step Congumption |1 0 né | O OUT1-Buffer_OFF-
Without Peripherals [10 n& | L] ouT1-Buffer_ON-

‘ WIT4-Ruffer ONV

Enabled Peripherals

Warnings

Available use cases: 18 Max: 856

Add

Cancel

174/363

UM1718 Rev 31

3

UM1718

STM32CubeMX tools

5.1.7

3

BLE support (STM32WB Series only)

The Power Consumption tool allows the user to take into account the consumption related
to the RF peripheral and corresponding BLE functional mode, combined with the usage of
the SMPS feature.

Figure 147. RF related consumption (STM32WB Series only)

STM32WBEEVCYx
T, 25°C 1V, 36V

Alkaline(C LR14) (1x1)

A

Capacity
Self Discharge
Nominal Voltage

Max Cont Current

BLE Configuration

Configurable Parameters
BLE Mode
Data Length (Byte)

>
>
Reset

In Parallel

8350 0 mah

0.3 %/month

15V

30000 mA

AtV 36V

: BLE Consumption with SMPS :J

Average Consumption
STOFZ

STOP1

STOPO

Peak Consumption

BLE Conditions

Vdd with/without SMPS
Power Range

PHY link Rate
Calculation Precision

Advertising Channels

Information Notes

b sPus
4 pA | 26.65 pA
26.05 pA | 36.64 pA
130.74 pA 1 141.27 pA
31mA/13.92 mA

33V, 24V, 18V

Range1 with/without SMPS
1 MBit/s

Around 20%

3 channels

v al

Project Manager

tef — Transitions Check
E B @ & Mm@ mo He
\ Sequence Tabl
| Mode] Vii | RangefScale CPUBus Freg | |
1 RUN 18 Range1-High/SMPS FLASH/ART/CACHE 16 MHz H:
2 STOPO 18 NoRange FLASH/ART/CACHE ~ 0 Hz Al
[X New Step X
[Res p sl \ S
Power range with SMPS
Poweer Mode RUN | | Peripheras BLE 3
Power Range [Rangﬂ HighiSWPS T Avet
Select your Preferred Dj = [fs_10_Ksps
Hemory Feteh Type FLASHIARTICACHE ~ [fs_1_Msps L
Voo 36 v [Aest L
3.00
[sToPo_mode
275 CPU Frequency [J sToP1_mode
. V- COMP1
= 2.25 o O comp_High_spee
Em coscontauaten [[comp_sion_spee
5 8 CosksourceFrequency |] [comp_medium_n
g_ Optional o [comP_Medium_N
5 1.50 O comp_uitra_Low,
e Step Duration ! [comp_uttra_Low.
[rtttinnal Cnsimetine [0 - compz
BLE Consumption with SMPS - [] comP_tigh_Spee
ur2 Step Consump 15.04 uas £ comP_tigh_spee
[comp_medium_n
0.50 P
[comp_medium_n =
Ta Max (C) [ros ea Low C
0.00 o) L] LOME, Utten 1 C
0.0 9
Warning SMPS/BLE. BLE with SMPS requires Vad grester than or equal to 2.0V.
Sequence Time / T: R
. R Available use cases: 4 Max: 449 Add
Battery Life Estimat

UM1718

Rev 31

175/363

STM32CubeMX tools UM1718

5.1.8

176/363

The BLE mode can be selected from the left panel and configured to reflect the user’s
application relevant settings.

Figure 148. RF BLE mode configuration (STM32WB Series only)

Pinout & Configuration Clock Configuration

v Power

STM32WBSEVCYx

T, 26°C / Vi 3.6V >

[step | Mode | vdd |
Alkaline(C LR14) (1x1) ~ = =
T T

In Series Q In Parallel E

Capacity 8350.0 mAh

. o)
Self Discharge 0.3 %/month Display Choices
Nominal Voltage 15V Select your Preferred Display |Plot All Steps
Max Cont Current 3000.0 mA
BLE Configuration hd

Select a BLE mode

Configurable Parameters ALV, 3.6V
v

BLE Mode Advertising e —b;.\dveniging v
Data Length (Byte} [—-Choose--
Connection Interval (ms) 1,000 5 (Advertising
Power Level 0 dBm " |Advertising Non Connectable
- Connected Master
Average Consumption SMPS / Mo SPMS Connected Slave
STOP2 16.04 pA [26.65 pA
STOP1 26.05 pA 1 36.64 pA Configure the parameters
STOR0 R for the selected mode
Peak Consumption 8.1 mA/13.92 mA

BLE Conditions

Example feature (STM32MP1 and STM32H7 dual-core only)

Under the section “Sequence Examples”, the PCC tool allows to access examples: each
example come with an explanatory slide-set and a ready-made sequence to be loaded in
PCC (see Figure 149).

UM1718 Rev 31

3

UM1718 STM32CubeMX tools

Figure 149. Power Consumption Calculator — Example set

AX Untitled: STM32H

3 stms
SET;.;P File Window Help © Aoy x G7

516K - o x

> Untitled - Tools P4

Pinout & Configuration Clock Configuration

Project Manager

~ Power
STM32H7451GKx : Sequence Examples Step ————Sequence—————
T,25°C 1V 30V H7 Dual Core Examples o JIEWEIEN B L]
T junction ¢ C) 25 mm [STM32CubehX PCC: H7 Dual Core Examples X E
Voo 30 - HT7 Dual Core Examples
Load Example 1 12C transmission + data acquisition ...
Battery Selection Load Example 2 e n 12C transmission + data acquisition
“ Load Example 3 n 12C transmission
3 Benefits of H7 C Short Presentation F
I 1
Information Notes ’ Plot Eramele
Help

Low-power application example 3 wm

« This example completes the example 2 by adding a new data
display phase.

« The purpose is to highlight the smart power management of
STM32H7 Series (STM32H7x5 or STM32H7x7 Lines) using three

power domains.
&1 ——
lides Show
Previous Side 1 of § [Nt]

Clicking “Load Example N” loads the sequence corresponding to the example N (see
Figure 150).

Figure 150. Power Consumption Calculator — Example sequence loading

4 Sequence Examples Step Sequence Transitions Checker-

| HT Dual Core Examples B2 B 3 T @ [Jon Log | Help |

Sequence Table

m-mmmm

1 STOP DSTAN... DSTAN... DSTOP SVOS3... CM7: N. OHz LSE Fla... 349 pA 500 ms
2 BAM DSTAN... DSTAN... DRUN 3.0 VOS3: ... CMT: I... 8 MHz BMHz HSI Bridge_... 1.05 mA 100 ms LPTIM2
3 BAM DSTAN... DSTAN... DRUN 3.0 VOS3: ... CM7:l... EMHz 8MHz HSI BDMA .. 1.1 mA 400 ms BOMA ...
4 STOP DSTAN... DSTAN... DSTOP 3.0 SVOS3... CM7:N... 0 Hz OHz LSE Fla... 349 pA 500 ms
5 BAM DSTAN... DSTAN... DRUN 3.0 VOS3: ... CM7:l... BEMHz B8MHz HSI Bridge_... 1.05mA 100 ms LPTIM2
6 BAM DSTAN... DSTAN... DRUN 3.0 VOS3: ... CMT: 8MHz HSI BOMA .. 1.1 mA 400 ms BDMA ...
7 STOP DSTAN... DSTAN... DSTOP 3.0 SVOS3... CMT7: N... 0Hz LSE Fla... 349 pA 500 ms
8 BAM DSTAN... DSTAN... DRUN 3.0 VOS3: ... CMT7: I... 8MHz HSI Bridge_... 1.05 mA 100 ms LPTIM2
Display
Plot: All Steps (i]
Consumption Profile by Step
130
i Tss:rUN
110
. 100
§ S0
= 80
4 70
60
0
2 18:RUN H2:RUN
30 1
.l 1S : 5 : STHSHRRE 7 =
RN RN E TR L 1l 4+ LK 4 LE]
: IRIBE I 1 3 5 |
o 1,000 2,000 3,000 4,000 5,000 6,000 7.000 8,000 9,000 10,000 11,000
Time (ms)
1 [==1dd by Step — Average current]
Sequence Time 1Ms Average Consumption 13 mA
Battery Life Estimation [No Average DMIPS 173.34 DMIPS

Clicking “Example N Presentation” displays the explanations for that example.

3

UM1718 Rev 31 1771363

STM32CubeMX tools

UM1718

Note:

5.2

178/363

The example can be changed anytime: the new sequence can be either added to the
current sequence, or replace it (see Figure 157).

Figure 151. Power Consumption Calculator — Example sequence new selection

f—S squence Examples —— Step —Sequence——— - Transitions
I H7 Dual Core plea New Step : i m @ [Jon Lo
RN '
1 STOP DST H7 Dua
2 BAM Ds]Load Example 1 I Pre 12C transmission + data acquisition ... ims
3 BAM psaLoad Example 2 Example 2 Presentation 12C transmission + data acquisition e
- 4 STOP gjLoad Example 3 Example 3 Presejtatior 12C transmission ms
5 BAI ps1 Benefits of H7 DuX Core Short Presentation ms
m Warning: load Example 2 with existing steps! X Examiple 2 ms
ms
Before loading Example 2, keep or remove existing steps.
= e
| Keep Steps |
Plot: All Steps
* This example completes the example 1 by adding a new data
acquisition phase
130 4
1204 * The purpose is to highlight the smart power management of
110 | STM32H7 Series (STM32H7x5 or STM32H7x7 Lines) using three
_ oo power domains
E 90 |
= eo{
E
g 60 |
g sof [S7]
3 a0l
5 | Slides Show
20 4 1:SPcRRE
“o 1,000 2000 3,000 4.000 5,000 5,000 7,000 8,000 9,000 10,000
Time (ms)
— Idd by Step — Average Current |

The examples are provided for a given part number and may require adjustments when
used for a different part number. Also, after loading, it is recommended to edit each step and
check settings.

DDR Suite (for STM32MP1 Series only)

DDR SDRAMs are complex high speed devices that need careful PCB design.
The STM32MP15 devices support the following DDR types:

e LPDDR2

e LPDDR3

e DDR3/DDR3L

They are specified by the JEDEC standard (standardization of interfaces, commands,
timings, packages and ballout).

STM32CubeMX has been extended to provide an exhaustive tool suite for the STM32MP1
DDR subsystem. It proposes the following key features.

e Configuration of DDR controller and PHY registers is managed automatically based
on reduced set of editable parameters.

o DDR testing is offered based on a rich tests list. Tests go from basic to stress tests.
User can also develop its own tests.

o DDR tuning of byte lanes delays is proposed to compensate board design

imperfections.

3

UM1718 Rev 31

UM1718

STM32CubeMX tools

5.2.1

Note:

3

DDR configuration is accessible like the other peripherals in the Pinout & Configuration
view: clicking the DDR from the component panel, opens the mode and configuration
panels.

DDR Test suite testing and tuning features are available from the Tools view.

The DDR suite relies on two important concepts:
o the DDR timings as key inputs for the configuration of the DDR Controller and PHY
o the tuning of DDR signals to compensate board design imperfections.

DDR configuration

STM32CubeMX allows to set DDR system parameters and JEDEC core timings. The timing
parameters are available in the DDR datasheet.

DDR type, width and density

The DDR type, width and density parameter settings are required to proceed with the DDR
configuration step. This can be done in the mode panel after selecting the DDR in the
Pinout & Configuration view.

See Figure 152 for an example of LPDDR2 settings.

Figure 152. DDR pinout and configuration settings

Pinout & Configuration Clock Configuration
Additional Softwa
‘

DDR Mode,and Configuration N
I T

Boot time: Runtime contexts:

BoolROM Bootloader o
DDR Type [LPDDR2 V]

Width [16bits V]
D DOR3(L) 16 |
|

Lo | Density for LPDDR2/LPDDR3 [2Gb ~|
- [Comiguaton) |
Reset Configuration
ETZPC ® Parameter Settings| @ DDR tuning | @ GPIO Settings
\Canﬁgure the below p \
Q I:l [Show Advanced Parameters | @
rrEerios || SYSTEMPARAMETERS o
el Address Mapping configuration
GFRIO Relaxed Timing mode O
Impedance During Read Ron 48 ohm (Default)
Impedance During Write Ron 48 ohm (Default)
Burst Length (BL) 8 bits

~ JEDEC CORE TIMINGS

HSEM

(53 ns

Address Mapping configuration

ADDRESS_MAPPING

Parameter Description:

|DDR Address mapping can be configured in RBC (Row-Bank-Column) or BRC (Bank Row-Column)

Another example: for a configuration with two “DDR3 16 bits 2 Gb” chips, settings are
“DDR3/DDR3L”, “32 bits” and 4 Gb”.

Contexts for DDR IP cannot be changed, DDR is tied to “Cortex-A7 Non-Secure” identified
as “Cortex-A7 NS” in the tool.

UM1718 Rev 31 179/363

STM32CubeMX tools UM1718

DDR configuration

Clicking on a parameter will show additional details in the DDR configuration footer.

e The DDR frequency is taken from the ‘Clock configuration’ tab, it cannot be changed in
the DDR configuration.

e The ‘Relaxed Timing’ mode is used during bring-up phase for trying relaxed key DDR
timings value (one tck added to tre, trep and tgp timings)

e Other parameters must be retrieved from the user DDR datasheet.
e Some parameters are read-only: they are for information only and depend on the DDR
type.

Clicking “generate code” automatically computes the DDR node of the device tree (DDR
Controller and DDR PHY registers values) based on these parameters.

DDR3 configuration

For DDRS, the configuration is made easier with the selection of a Speed Bin / Grade
combination, instead of manually editing timing parameters.

3

180/363 UM1718 Rev 31

UM1718 STM32CubeMX tools

Figure 153. DDR3 configuration

DDR Mode and Configuration

Boot time: Runtime contexts:

Boot ROM Boot loader

DDR Type |[DDR3 / DDR3L |
Width [16bits v |
Density for DDR3(L) [16bits [1Gb |

| Cofguaton |

Reset Configuration I
& Parameter Settings ® OOR tuning | @ GFPIO Settings | @ GIC Settings

|C|:|r|ﬁgure the below parameters :

Q| : || ® O [Show Advanced Parameters | @
~ SYSTEM PARAMETERS
DDR subsystgm frequency 400.0 MHz
Speed Bin Grade
Impedance During Read Ron 40 ohm / ODT = 80 ohm (Default)
Impedance During Write Ron 53 ohm / ODT = 60 ohm (Default)
Address Mapping configuration Row - Bank - Column
Relaxed Timing mode [
Temperature case over 85°C s [
Burst Length (BL) 8

Speed Bin Grade

SPEED BIN_GRADE

Parameter Description:

JEDEC Standard for DDR3 SDRAM.

Set value of each timings from JEDEC standard for this "Speed Bin Grade’ selection.
Tick "Show Advanced Parameters’ to see the involved timings.

The Speed Bin / Grade combination has to match the selected DDR. If the exact
combination is not in the pick-list, “1066E / 6-6-6" must be selected for faster DDR Speed
bin / Grade, whereas “1066G / 8-8-8" can be used as a relaxed configuration.

3

UM1718 Rev 31 181/363

STM32CubeMX tools UM1718

Timing edition is then optional and reserved for advanced users: select Show Advanced
parameters to display the list.

DDR tuning tab (read-only)

Users can check modifications to tuning parameters via the tuning tab. These parameters
are read-only in the DDR configuration panel (see Figure 154), are modified after tuning
operations, and are related to DQS position and DQ line delay:

— ‘Slave DDL Phase’, ‘DQS delay fine tuning’ and ‘DQS# delay fine tuning’ defines
the position of the DQS strobe signal for a particular byte. This position is the best
one regarding DQ line eye diagram.

— ‘DQbit x lane delay fine tuning’ defines the delay to apply on bit x of particular byte
to compensate potential line length variation for this particular bit

Figure 154. DDR tuning parameter

Configuration

Reset Configuration
@ Parameter Settings | ESDERMURINGS | @ GFIO Settings | @ GIC Settings

|C0nﬂgure the below parameters : |

S LT % R

~ BYTE1

S LT % R

3

182/363 UM1718 Rev 31

UM1718 STM32CubeMX tools

5.2.2 Connection to the target and DDR register loading

To manage DDR tests and tuning, STM32CubeMX must establish a connection with the
target and more specifically with U-Boot SPL using the DDR interactive protocol:

o the DDR interactive protocol is only available in the Basic boot scheme U-Boot SPL
binary and supported over the UART4 peripheral instance

e when U-Boot SPL detects a connection to STM32CubeMX on UART4, it stops its
initialization process and accepts commands from STM32CubeMX.

There are two connection options:

1. the U-Boot SPL binary is available in Flash memory

2. the U-Boot SPL needs to be loaded in SYSRAM because the DDR has not yet been
tested nor tuned (and, consequently, is not fully functional yet).

Prerequisites

e Installation of ST-Link USB driver to perform firmware upgrades: for Windows, latest
version of STSW-LINKO09 must be used. For Linux, the STSW-LINKOO7 driver must
be used. Both can be downloaded from www.st.com.

e Installation of STM32CubeProgrammer (for SYSRAM loading only): installer can be
downloaded from www.st.com.

Connection to the target

The COM port must be selected to connect to the target, as indicated in Figure 155.

Figure 155. DDR Suite - Connection to target

[STM32CubeMX Untitled*: STM32MP157CACx - u] X
»
sz @ i s n k L
Ly File Window Help (e u , Y’

STM32MP157CACX) Untitled - Tools GENERATE CODE
Pinout & Configuration Clock Configuration Project M anagel

SYSRAM Loading @ ¢ Target Information @

use (CJ) UART [Select COM
St U Boot SPL file N
‘ L CRRCMN 1-boot-spl stm32-stm32mp157c-evi-basic

[Connection Settings - m] x
STM32CubeProgrammer:

The STM32CubeProgrammer has been manually selected

DDR Interactive @
Connection

Status
® Not Connected

rPort sel

(Executable File Path

‘ C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgrammertbin\STM32_Programmer_CLI.exe

(Version N
STM32CubeProgrammer version 2.0.0 ‘

Coc | come

awv

If U-Boot SPL loading in SysRAM is required, it can be performed through UART or USB
using the STM32CubeProgrammer tool. If not automatically detected by STM32CubeMX,
the STM32CubeProgrammer tool location must be specified in the Connection settings

3

UM1718 Rev 31 183/363

STM32CubeMX tools UM1718

window: click ﬁ:-} to open it. U-Boot SPL file must be manually selected in the build image
folder.

Once up, the connection gives the various services and target information (see Figure 156).

Figure 156. DDR Suite - Target connected

m STM32CubeMX Untitled*: STM32MP157CACx - [m] X
] 5o
STM32 ﬁ File Window Hel oy li > -}(‘. ‘
CubeX P oy
STM32MP157CACx Untitled - Tools GENERATE CODE
Pinout & Conﬁgulatlon Clock Configuration Project Manag

Target Information @

DDR Interactive @ H SYSRAM Loading @ &
(Port i ‘

Ci N
‘ UsB UART [Select COM_~ |

Status—_ | (U-Boot SPLfile

| Connected |‘ Selectfile v-boot-spl.stm32-stm32mp157c-evi-basic

Config name: DDR3-1066/888 bin G 2x4Gb 533MHz
DDR Size: 8 GBits
DDR Frequency: 533.0MHz

Target DDR Tuning DDR Tests

Use the ‘Load Registers’ command to load the current configuration to the SYSRAM U-Boot SPL will then be re-started and DDR CTRL and PHY
initialized with new registers value You can then conduct test and tuning operations directly on the configuration you have edited in the STM 32CubeMx
configuration panel.

Load Registers

Output/Log messages

STM32CubeMX outputs DDR suite related activity logs (see Figure 157) and interactive
protocol communication logs (see Figure 158). They are displayed by enabling outputs from
the Window menu.

Figure 157. DDR activity logs

Creating: STM32MP1S1CACK
Initializing: STM32MP151CACX

Creating: STM32MP157CACx

Initializing: STM32MP157CACXK

SYSREM succesfuly loaded with: C:\Data\stm32\ddr\eval_board\Revc\same_porti\02_07_2019\u-boot-spl.stm32-stm32mplsic-evl-basic
DDR Test Suite connected to target board

Target board configuration name: DDR3-1066/838 bin G 2x4Gb 533MHz v1.45

Target board DDR size: & GBits

Target board DDR frequency: 533.0MHz

3

184/363 UM1718 Rev 31

UM1718

STM32CubeMX tools

3

Figure 158. DDR interactive logs

Output

DDR Interactive logs

Host > Target info

Targst > Host step = 0 : DDR_RESET

Targst > Host name = DDR3-1066/888 bin G 2x4Gb 533MHz v1.45
Target > Host size = 0x40000000

Target > Host speed = 533000 kHz

Host > Target step 3

Targst > Host step to 3:DDR_READY

Target > Host 1:DDR_CTRL_INIT DONE

Target > Host 2:DDR PHY_INIT_DONE

Targst > Host 3:DDR_READY

HoST > Target print mstr

Target > Host mstr= 0x00040401

Host > Target tuning help

Target > Host tuning:5

Targst > Host 0:Read DQS gating:softwars read DQS Gating:
Target > Host 1:Bit de-skew::

Target > Host 2:Eye Training:or DQS training:

Targst > Host 3:Display registers::

DDR register loading (optional)

Once connected in DDR interactive mode, user can load the current DDR configuration in
SYSRAM.

Figure 159. DDR register loading

m STM32CubeMX Untitled*: STM32ZMP157CACx - [m] X

smz> @

CubeMX

File

Window

Help

filoy x

X Untitled - Tools GENERATE CODE

Pinout & Conﬁgulatlon

Clock Configuration

DDR Interactive @

M SYSRAM Loading @ 5

Target Information @

Port

use

UART we\e t COM

~‘ Config name: DDR3-1066/888 bin G 2x4Gb 400.0.0,
v1.45

DDR Size: 8 GBits

Status

Ci N
e |

(U-Boot SPL file

DDR Frequency: 400.0MHz

| Connected |‘ Selectfile v-boot-spl.stm32-stm32mp157c-evi-basic

DDR Tests

Target

DDR Tuning

Use the ‘Load Registers’ command to load the current configuration to the SY SRAM U-Boot SPL will then be re-started and DDR CTRL and PHY
initialized with new registers value You can then conduct test and tuning operations directly on the configuration you have edited in the STM 32Cubel x
configuration panel.

Load Registers

[progress... x

Loading DDR Registers to target
27 out of 96 registers

This step is optional if the used U-Boot SPL already contains the required DDR
configuration. It trigs the DDR Controller and PHY initialization with those registers, and
allows the user to quickly test a configuration without generating the device tree and
dedicated U-Boot SPL binary file.

UM1718 Rev 31 185/363

STM32CubeMX tools UM1718

5.2.3

186/363

DDR testing

Prerequisites

To proceed with DDR testing:
. The DDR suite must be in connected state

e The DDR configuration must be available in memory, either with the U-Boot SPL (with
DDR register file in Device Tree) or in the DDR registers (see Section 5.2.2).

DDR test list
DDR tests are part of the U-Boot SPL (see Figure 160).

Figure 160. DDR test list from U-Boot SPL

[STM32CubeMX Untitled®: STM32MP157CACK - o X
»
sz @ File Window Hel L n oy —}C_ K
CubeNX p S7]
STM32MP157CACx > Untitled - Tools GENERATE CODE
Pinout & Gonfiguration Clook Gonfigaration Project Manager —
n 1 S
Target DDR Tuning DDR Tests
[1d(s)] Test type(s) Test name(s) Execution
1 Basic Simple DataBus
2 Basic DataBusWalkingd
3 Basic DataBusWalking1 Pammeterts) | Vauetsy) |
4 Basic AddressBus Address 0xC0000000
5 Intensive MemDevice Loop 1
6 Intensive SimultaneousSwitchingOutput
7 Intensive Noise Verdict
8 Intensive NoiseBurst
9 Intensive Random
10 Intensive with Stress FrequencySelectivePattern I
Condttions Address Run the Test
11 Intensive BlockSequential Loop(s) Run the Test
12 Intensive Checkerboard Result Run the test to have a verdict
13 Intensive BitSpread Result details None
Details
Name DataBusWalkingd
Purpose Verifies each data bus signal can be driven low.
Test Sequence Writes patterns with ‘moving’ 0 on a 32 data bus width. Example: write ‘11111111111111111111111111111110’ at given address, read back given address and check the pattern is OK. Write then
“11111111111111111111111111111101' at given address, read back given address and check the patter is OK, and so on.
Param1 [Address] The memory address where the test is executed. All writes and reads are performed on this address. The given address should be located in the DDR memory region [DDR base address,
DDR base address + DDR size]
Param2 [Loop] Number of test teration before verdict. Same test is repeated [Loop] times. Verdict OK f al tests are OK, KO otherwise.
Restriction Limitations If the data bus spits as it makes its way to more than one memory chip, you will need to perform the data bus test at muliple addresses, one within each chip.
Interest Very basic test to be executed first to make sure the data bus is clean from connection issues
Failure Type Catastrophic failure
=

New tests can be added by modifying the U-boot SPL.

Most of the tests come with parameters to be set prior to execution, such as:

e Address: the memory address where the test is executed. All writes and reads are
performed on this address. The given address has to be located in the DDR memory
region [DDR base address, DDR base address + DDR size].

e On STM32MP15, DDR base address is 0xC0000000 (as an example, DDR size for
4 Gbits is 0x20000000).

e Loop: number of test iterations before verdict. Same test is repeated [Loop] times.
Verdict OK if all tests are OK, KO otherwise.

e Size: the byte size of the region to test. Size must be a multiple of 4 (read/writes are
performed on 32-bit unsigned integers) with minimal value equal to 4. Size can be up to
DDR size.

e Pattern: the 32-bit pattern to be used for read / write operations.

The DDR Suite embeds an auto-correction feature preventing users to specify wrong
values.

All tests are performed with Data cache disabled and Instruction cache enabled.

UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX tools

DDR test results

The test verdict is reported by the U-Boot SPL: the parameters used for the tests are
recalled, along with Pass/Fail status and results details (see Figure 161). The test history is
available in the output and Logs panels (see Figure 162).

Figure 161. DDR test suite results

Execution

Value(s)
Address 0xC0000000

Loop 1

Verdict

Address 0xC0000000
Loop(s) 1

Result

Result details no error for 1 loops

Figure 162. DDR tests history

DDR Interactive logs

Target > step to 3:DDR_READY

Target > 1:DDR_CTRL_INIT DONE

Target = 2:DDR PHY INIT DONE

Target > 3:DDE_RERDY

Host > Target test 2 1 0xCO000000

Target > Host execute 2:DataBusWalkingO

Target = Host running 1 loops at O0xc0000000
Target > Host Result: Pass [no error for 1 loops]
Host = Target test 3 1 OxCO000O000

Target > Host execute 3J:DataBusWalkingl

Target = Host running 1 loops at O0xc0000000
Target > Host Result: Pass [no error for 1 loops]
Host > Target test 4 4 OxCO000000

Target > Host execute 4:AddressBus

Target > Host Eesult: Pass [address 0xc0000000, size 0x4]

DOR Inte

Target board configuration name: DDR3-1066/888 bin G 2x4Gb 400.0.0.0.0MHz wl.45
Target board DDR size: & GBits

Target board DDR frequency: 400.0MH=z

Current configuration DDRE registers loaded to the target board

DDR test #2 (DataBusWalkingl) triggered with parameters: [loop] 1 [addr] 0xCO0Q0000
DDE test #3 (DataBusWalkingl) triggered with parameters: [loop] 1 [addr] 0xCO0000C0
DDR test #4 (AddressBus) triggered with parameters: [size] 4 [addr] 0xCO000000

3

UM1718 Rev 31 187/363

STM32CubeMX tools UM1718

5.24

Note:

188/363

DDR tuning

Prerequisites

The prerequisites to proceed with DDR tuning are:
e The DDR suite is in connected state

e A valid DDR configuration is available in memory, either with the U-Boot SPL (with
DDR register file in Device Tree) or in the DDR registers (see DDR register loading
(optional)).

Thanks to DDR tuning it is possible to compensate hardware design slight imperfections for
best operations (see AN5122, available on www.st.com, for DDR design routing guidelines).

Figure 163. DDR tuning pre-requisites

Target DDR Tuning DDR Tests

DDR Tuning allows to fine tune delays for each data bits and ta center the DQS signal in the middle of the eye. After tuning operation, you can choose to incorporate or not the tuned parameters to your DDR '
configuration

Tunable signals

The tunable signals are
e DQS signals: position for each data byte
e the 8 DQ bits: delay for each data byte.

Some DDR registers are dedicated to store the corresponding tuned settings:

e ‘Slave DDL Phase’, ‘DQS delay fine tuning’ and ‘DQS# delay fine tuning’ define the
position of the DQS strobe signal for a particular byte: this position is the best one
regarding DQ line eye diagram

e ‘DQ bit x lane delay fine tuning’ defines the delay to apply on bit x of particular byte to
compensate potential line length variation for this particular bit.

It is recommended to perform tuning on several boards to make sure that the tuned
parameter variation is limited.

Tuning process

Tuning is done in three consecutive steps (see Figure 164):
1. DQS gating

2. Bit deskew

3. Eye training

3

UM1718 Rev 31

UM1718

STM32CubeMX tools

3

Figure 164. DDR tuning process

1)
. Target Information @
DDR Interactive @ SYSRAM Loading @ » 9
c i .| (Port selection ~
Config name: DDR3-1066/888 bin G 2x4Gb 400.0.0.0.0MHz v1.45
co usB DDR Size: 8 GBits
S——— » ~ | DDR Frequency: 400.0MHz
status " | (U-Boot SPL ~
| Connected ‘ Selectfile u-boot-spl.stm32-stm32mp157¢-ev1-basic
Target DDR Tuning DDR Tests

DDR Tuning allows to fine tune delays for each data bits and to center the DQS signal in the middle of the eye. After tuning operation, you can choose to incorporate or not the tuned parameters to your DDR

configuration
Abort Tuning Save Tuning to configuration

DQS Gating >
Bit Deskew ™
Target DDR Tuning DDR Tests
DDR Tuning allows to fine tune delays for each data bits and to center the DQS signal in the middle of the eye. After tuning operation, you can choose to incorporate or not the tuned parameters to your DDR
configuration
Start Tuning]l Save Tuning to configuration
DQS Gating >
Bit Deskew >
Eye Centering >

Bit deskew

The Bit deskew panel (see Figure 165) gives a graphical representation of
o the best DQS signal position for the given byte in order to adjust DQ line delay

o the delay to apply for each DQ line of the considered byte. The unit delay value is
20.56 ps. There are four steps. Bit lane delay is thus tunable from 0 to 61.68 ps.

Figure 165. Bit deskew

Bit Deskew v
@ Byte0 (ps)
| o] 1082 1103 1123

bitd I R N —

bitt 1 1

bi2 I N R —

bit3 1 15

bitd | A

bits -

bt | A

bit? [N A —
@ Bytel (ps)

1103 1123 1144 1164

bitd | I S S —

bitt | A

bit2 -

i3 | A

bitd -

it | A

bit6 -

7 [N I

Eye training (centering)

The Eye training (centering) panel (Figure 166) gives the final optimum position of the DQS
signal in the half-period for each byte:

e DAQS position varies coarsely from 36 to 144 degrees (quarter period is 90 degrees)

o DQS position then varies finely around the coarse position with 8 steps, from -61.68 to
+82.24 ps

UM1718 Rev 31 189/363

STM32CubeMX tools UM1718

190/363

Figure 166. Eye training (centering) panel

Eye Centering
Byte0 (ps)

0 [T2
0 89 179 268 357 446 535 [NG0ANN 714 804 893 982 1071 1161 1250
Byte1 (ps)

0 [] T2
0 89 179 268 387 446 53 [GEN 714 804 893 982 1071 1161 1250

Propagating tuning results

Once tuning is complete, the DDR suite allows the user to propagate the tuned parameters
to the current DDR configuration (see Figure 167). The DDR Tuning tab is refreshed
accordingly (see Figure 168).

Figure 167. DDR Tuning - saving to configuration

Target DDR Tuning DDR Tests
DDR Tuning allows to fine tune delays for each data bits and to center the DQS signal in the middle of the eye. After tuning operation, you can choose to incorporate or not the tuned parameters to your DDR
configuration.

Start Tuning] Save Tuning to configuration
DQS Gating >
Bit Deskew >

Eye Centering

[0 DOR Test Suite Info x

Tuning parameters successfully saved to current DDR configuration
You can check changes in the STM 32CubelM x 'Configuration' tab, ‘DDR Configuration' block.
and the ‘DDR tuning' tab.

3

UM1718 Rev 31

UM1718

STM32CubeMX tools

3

Figure 168. DDR configuration update after tuning

DDR Mode and Configuration |

Boot time: Runtime contexts:
Boot ROM Boot loader Cortex-AT 3
DDR Type [DDR3 / DORAL v
Width [16bits ~|
Density for DDR3(L) 16bits [1Gb v
s|D|sacIe |

R3 |Disazle |

Reset Configuration
@ DDR tuning

‘Conﬁgure the below parameters :

® ® _ al: o ® After Tuning

P Before Tuning avieo —
Byte Lane 0 - Slave DLL phase 0 Byte Lane 0 - Slave DLL phase 0
- DAS delay fins tuning 3 Byte Lane 0 - DQS delay fine tuning 3
- DQS# delay fine tuning 3 Byte Lane 0 - DQS# delay fine tuning 3
- DQ bit 0 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 0 lane delay fine tuning 1
- DQ bit 1 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 1 lane delay fine tuning 1
- DQ bit 2 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 2 lane delay fine tuning 2
- DQ bit 3 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 3 lane delay fine tuning 1
- DQ bit 4 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 4 lane delay fine tuning 0
yte Lane 0 - DQ bit 5 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 5 lane delay fine tuning 2
yte Lane 0-DQ bit 6 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 6 lane delay fine tuning 1
Byte Lane 0 - DQ bit 7 lane delay fine tuning 0x0F Byte Lane 0 - DQ bit 7 lane delay fine tuning 0

~ BYTEA ~ BYTE 1

Byte Lane 1 - Slave DLL phase 0 Byte Lane 1 - Slave DLL phase 0
Byte Lane 1- DQS delay fine tuning 3 B;,te Lane 1 - DQS delay fine tuning 3
- DQS# delay fine tuning 3 Byte Lane 1- DQS# delay fine tuning 3
y -DQ bit 0 lane delay fine tuning 0x0F Byte Lane 1 - DQ bit 0 lane delay fine tuning 1

Byte Lane 1 - DQ bit 1 lane delay fine tuning 0x0F Byte Lane 1 - DQ bit 1 lane delay fine tuning ~—a—’

UM1718 Rev 31

191/363

STM32CubeMX C Code generation overview UM1718

6

6.1

192/363

STM32CubeMX C Code generation overview

STM32Cube code generation using only HAL drivers
(default mode)

During the C code generation process, STM32CubeMX performs the following actions:

1. Ifitis missing, it downloads the relevant STM32Cube MCU package from the user
repository. STM32CubeMX repository folder is specified in the Help > Updater
settings menu.

2. It copies from the firmware package, the relevant files in Drivers/CMSIS and
Drivers/STM32F4_HAL_Driver folders and in the Middleware folder if a middleware
was selected.

3. It generates the initialization C code (.c/.h files) corresponding to the user MCU

configuration and stores it in the Inc and Src folders. By default, the following files are
included:

stm32f4xx_hal_conf.h file: this file defines the enabled HAL modules and sets
some parameters (e.g. External High Speed oscillator frequency) to predefined
default values or according to user configuration (clock tree).

stm32f4xx_hal_msp.c (MSP = MCU Support package): this file defines all
initialization functions to configure the peripheral instances according to the user
configuration (pin allocation, enabling of clock, use of DMA and Interrupts).

main.c is in charge of:

Resetting the MCU to a known state by calling the HAL_init() function that resets
all peripherals, initializes the Flash memory interface and the SysTick.

Configuring and initializing the system clock.
Configuring and initializing the GPIOs that are not used by peripherals.

Defining and calling, for each configured peripheral, a peripheral initialization
function that defines a handle structure that will be passed to the corresponding
peripheral HAL init function which in turn will call the peripheral HAL MSP
initialization function. Note that when LwlIP (respectively USB) middleware is used,
the initialization C code for the underlying Ethernet (respectively USB peripheral)
is moved from main.c to LwIP (respectively USB) initialization C code itself.

main.h file:

This file contains the define statements corresponding to the pin labels set from
the Pinout tab, as well as the user project constants added from the
Configuration tab (refer to Figure 169 and Figure 170 for examples):

#define MyTimeOut 10

#define LD4_Pin GPIO_PIN_12
#define LD4_GPIO_Port GPIOD
#define LD3_Pin GPIO_PIN_13
#define LD3_GPIO_Port GPIOD
#define LD5_Pin GPIO_PIN_ 14
#define LD5_GPIO_Port GPIOD
#define LD6_Pin GPIO_PIN_15

#define LD6_GPIO_Port GPIOD

3

UM1718 Rev 31

UM1718

STM32CubeMX C Code generation overview

Figure 169. Labels for pins generating define statements

Figure 170. User constant generating define statements

Reset Configuration

Search Constants

@ GPIO Settings
& User Constants

| m remove

TimeOut

Constant Mame Constant Value

10

In case of duplicate labels, a unique suffix, consisting of the pin port letter and the
pin index number, is added and used for the generation of the associated define
statements.

In the example of a duplicate 12C1 labels shown in Figure 171, the code
generation produces the following code, keeping the 12C1 label on the original port
B pin 6 define statements and adding B7 suffix on pin 7 define statements:

#define I2C1_Pin GPIO_PIN_6
#define I2C1_GPIO_Port GPIOB
#define I2C1B7_Pin GPIO_PIN_7

#define I2C1B7_GPIO_Port GPIOB

3

UM1718 Rev 31 193/363

STM32CubeMX C Code generation overview UM1718

6.2

194/363

Figure 171. Duplicate labels

—
| &)
(o]
-
7
I~
o
o

In order for the generated project to compile, define statements shall follow strict

naming conventions. They shall start with a letter or an underscore as well as the
corresponding label. In addition, they shall not include any special character such
as minus sign, parenthesis or brackets. Any special character within the label will
be automatically replaced by an underscore in the define name.

If the label contains character strings between “[]” or “()”, only the first string listed
is used for the define name. As an example, the label “LD6 [Blue Led]”
corresponds the following define statements:

#define LD6_Pin GPIO_PIN_15
#define LD6_GPIO_Port GPIOD

The define statements are used to configure the GPIOs in the generated
initialization code. In the following example, the initialization of the pins labeled
Audio_RST_Pin and LD4 _Pin is done using the corresponding define statements:

/*Configure GPIO pins : LD4_Pin Audio_RST_Pin */
GPIO_InitStruct.Pin = LD4_Pin | Audio_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
HAL_GPIO_Init (GPIOD, &GPIO_InitStruct);

4. Finally it generates a Projects folder that contains the toolchain specific files that match
the user project settings. Double-clicking the IDE specific project file launches the IDE
and loads the project ready to be edited, built and debugged.

STM32Cube code generation using Low Layer drivers

For all STM32 Series except STM32H7 and STM32P1 Series, STM32CubeMX allows the
user to generate peripheral initialization code based either on the peripheral HAL driver or
on the peripheral Low Layer (LL) driver.

The choice is made through the Project Manager view (see Section 4.9.3: Advanced
Settings tab).

The LL drivers are available only for the peripherals which require an optimized access and
do not have a complex software configuration. The LL services allow performing atomic
operations by changing the relevant peripheral registers content:

e Examples of supported peripherals: RCC, ADC, GPIO, I12C, SPI, TIM, USART,...
e Examples of peripherals not supported by LL drivers: USB, SDMMC, FSMC.

UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX C Code generation overview

The LL drivers are available within the STM32CubelL4 package:

e They are located next to the HAL drivers (stm3214_hal_<peripheral_name>) within
the Inc and Src directory of the
STM32Cube FW L4 V1.6\Drivers\STM32L4xx_HAL_Driver folder.

e They can be easily recognizable by their naming convention:
stm3214_lI_<peripheral_name>

For more details on HAL and LL drivers refer to the STM32L4 HAL and Low-layer drivers
user manual (UM1884).

As the decision to use LL or HAL drivers is made on a peripheral basis, the user can mix
both HAL and LL drivers within the same project.

The following tables shows the main differences between the three possible
STM32CubeMX project generation options: HAL-only, LL-only, and mix of HAL and LL code.

Table 18. LL versus HAL code generation: drivers included in STM32CubeMX projects

Project configuration and Mix of HAL
drivers to be included HAL only LL only and LL Comments

CMSIS Yes Yes Yes -

Only the driver files required for a
given configuration (selection of
peripherals) are copied when the
Only HAL Only LL Mix of HAL and | project settings option is set to
driver files driver files LL driver files | “Copy only the necessary files”.
Otherwise (“all used libraries”
option) the complete set of driver
files is copied.

STM32xxx_HAL_Driver

Table 19. LL versus HAL code generation: STM32CubeMX generated header files

Generated Mix of HAL
header files HAL only LL only and LL Comments

This file contains the include statements and
main.h Yes Yes Yes the generated define statements for user
constants (GPIO labels and user constants).

stm32xxx_hal_conf.h Yes No Yes This file enables the HAL modules necessary to

the project.
stm32xxx_it.h Yes Yes Yes Header file for interrupt handlers
This file contains the assert macros and the
stm32xx_assert.h No Yes Yes functions used for checking function
parameters.
Kys UM1718 Rev 31 195/363

STM32CubeMX C Code generation overview

UM1718

Table 20. LL versus HAL: STM32CubeMX generated source files

Generated Mix of HAL
source files HAL only | LL only and LL Comments
main.c Yes Yes Yes This file contains the main functions and
' optionally STM32CubeMX generated functions.
This file contains the following functions:
— HAL_Msplnit
— for peripherals using HAL drivers:
stm32xxx_hal_msp.c Yes No Yes HAL_<Peripheral>_Msplnit,
HAL_<Peripheral>_MspDelnit,
These functions are available only for the
peripherals that use HAL drivers.
stm32xxx_it.c Yes Yes Yes Source file for interrupt handlers

Table 21. LL versus HAL: STM32CubeMX generated functions and function calls

Generated source
files

HAL only

LL only

Mix of HAL and LL

Comments

Hal_init()

Called in main.c

Not used

Called in main.c

This file performs the

following functions:

— Configuration of Flash
memory prefetch and
instruction and data
caches

— Selection of the SysTick
timer as timebase source

— Setting of NVIC group
priority

— MCU low-level
initialization.

Hal_msp_init()

Generated in
stm32xxx_hal_msp.c
and called by HAL _init()

Not used

Generated in
stm32xxx_hal_msp.c
And called by HAL_init()

This function performs the
peripheral resources
configuration(").

MX_<Peripheral>_lInit()

[1]: Peripheral
configuration and call to
HAL_<Peripheral>_|Init()

[2]: Peripheral and
peripheral resource
configuration(")
using LL functions

Call to
LL_Peripheral_lInit()

— When HAL driver is
selected for the
<Peripheral>, function
generation and calls
are done following [1]:
Peripheral
configuration and call
to
HAL_<Peripheral>_In
it()

When LL driver
selected for the
<Peripheral>, function
generation and calls
are done following [2]:
Peripheral and
peripheral resource
configuration using LL
functions

This file takes care of the
peripherals configuration.

When the LL driver is
selected for the
<Peripheral>, it also
performs the peripheral
resources configuration“).

196/363

UM1718 Rev 31

3

UM1718 STM32CubeMX C Code generation overview

Table 21. LL versus HAL: STM32CubeMX generated functions and function calls (continued)

Generated source

files HAL only LL only Mix of HAL and LL Comments

Only HAL driver can be
selected for the
<Peripheral>: function
generation and calls are
done following [3]: Peripheral resources
Generated in configuration(”
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

[3]: Generated in
stm32xxx_hal_msp.c
when HAL driver Not used
selected for the
<Peripheral>

HAL_<Peripheral>
_Msplnit()

Only HAL driver can be
selected for the
<Peripheral>: function
generation and calls are
done following [4]: This function can be used to
Generated in free peripheral resources.
stm32xxx_hal_msp.c
when HAL driver
selected for the
<Peripheral>

[4]: Generated in
stm32xxx_hal_msp.c
when HAL driver Not used
selected for the
<Peripheral>

HAL_<Peripheral>
_MspDelnit()

1. Peripheral resources include:
- peripheral clock
- pinout configuration (GPIOs)
- peripheral DMA requests
- peripheral Interrupt requests and priorities.

3

UM1718 Rev 31 197/363

STM32CubeMX C Code generation overview

UM1718

198/363

Figure 172. HAL-based peripheral initialization: usart.c code snippet

USART Peripheral initialization - HAL-based
void MX_USART1 UART Init(void)
{ Peripheral Configuration
huartl.Instance = USARTI;
huartl.Init.BaudRate = 115200;
huartl.Init.WordLength = UART_WORDLENGTH_7B;
huartl.Init.StopBits = UART_STOPBITS_1;

if (HAL _UART Init(shuartl) != HAL OK)
{
Errer Handler():
}
}
void HAL UART MsplInit (UART HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if (uartHandle->Instance==USART1)
{
/* Peripheral clock enable */
__HAL RCC_USART1 CLK ENABLE():
/* USART1 GPIO Configuration */
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO InitStruct.Mcde = GPIO MODE AF PF;
GPIO_InitStruct.Pull = GPIO_PULLUF;

sea

HAL_GPIO_Init(GPIOB, &«GPIC_InitStruct):

Peripheral Resources Configuration

}
void HAL UART MspDelnit (UART_HandleIypeDef* uartHandle)
{
if (uartHandle->Instance==USART1)
{

Peripheral Resources Release

/* Peripheral clock disable */
__HAL RCC_USART1_CLK DISABLE():
/* USART1 GPIO Configuration */
HAL._GPIO DeInit (GPICA, GPIO_PIN_ 10);
HAL GPIO_Delnit (GPIOB, GPIC_PIN_6):
}

UM1718 Rev 31

3

UM1718

STM32CubeMX C Code generation overview

3

Figure 173. LL-based peripheral initialization: usart.c code snippet

USART Peripheral Initialization using LL drivers
void MX_USART1_UART_Init (void)
{
LL USART InitTypeDef USART InitStruct:
LL_GPIO_InitTypeDef GPIO_InitStruct;
/* Peripheral clock enable */
LL APB2 GRP1 EnableClock(LL APB2 GRP1 PERIPH USART1):

/*+USARTI GPIO Configuration Peripheral Resources Configuration
PA10 ------ > USART1 RX

PBE ------ > USART1 TX

*/

GPIO_InitStruct.Pin = LL GPIO_PIN 10;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED FREQ VERY HIGH:
GPIO_InitStruct.Pull = LL GPIO PULL UE;
GPIO_InitStruct.Alternate = LL GPIO_AF 7;

LL GPIO_Init(GPICA, &GPIO_InitStruct):

GPIO_InitStruct.Pin = LI GPIC PIN 6;
GPIO_InitStruct.Mode = LL _GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED FREQ VERY HIGH;
GPIO_InitStruct.Pull = LL GPIO_PULL UP;
GPIC_InitStruct.Alternate = LL GPIO _AF 7:
LL_GPIO_Init(GPIOB, &GPIO_InitStruct);

Peripheral Configuration
USART_InitStruct.BaudRate = 115200;
USART_InitStruct.DataWidth = LL USART_ DATAWIDIH 7B;
USART_InitStruct.StopBits = LL_USART STCOPBITS 1;
USART_InitStruct.Parity = LL_USART_PARITY NONE:
USART_ InitStruct.TransferDirection = LL USART DIRECTION TX RX;
USART_InitStruct.HardwareFlowControl = LL USART_HWCCNTROL_NCNE;
USART_InitStruct.OverSampling = LL_USART QVERSAMPLING_l6:

LL_USART_Init (USART1, &USART_InitStruct):;
LL_USART_ConfigAsyncMode (USART1):

Figure 174. HAL versus LL: main.c code snippet

main.c HAL-based . main.c LL-based

il & R

#include "m i #include "main.h"
#include “stm3214xx_hal.h" IR
#include "usart.h’ #include "usart.h"
#include "g i #include "gpio.h”
void SystemClock_Config(void); void SystemClock_Config(wvoid);
void Error_Handler(void); void Error_Handler(void);
int main(void) int main(void)
{ {
' t of all peripherals,
I ace and the Systick. Initial s the Flash interface and the Systick.
HAL_Init(); @« LL_Init();
/* Configure the system clock °* /* Configure the system clock *
SystemClock_Config(); SystemClock_Config();
Initialize all configured peripheral /* Initialize all configured peripherals */
MX_GPIO_Init(); MX_GPIO_Init();
MX_USART1_UART_TInit(); MX_USART1_UART_Init();
UM1718 Rev 31 199/363

STM32CubeMX C Code generation overview UM1718

6.3

6.3.1

200/363

Custom code generation

STM32CubeMX supports custom code generation by means of a FreeMarker template
engine (see http://www.freemarker.org).

STM32CubeMX data model for FreeMarker user templates

STM32CubeMX can generate a custom code based on a FreeMarker template file (.fil
extension) for any of the following MCU configuration information:

e List of MCU peripherals used by the user configuration
e List of parameters values for those peripherals
e List of resources used by these peripherals: GPIO, DMA requests and interrupts.
The user template file must be compatible with STM32CubeMX data model. This means
that the template must start with the following lines:

[#ftl]

#1list configs as dt]

#assign data = dt]

[

[

[#assign peripheralParams =dt.peripheralParams]
[#assign peripheralGPIOParams =dt.peripheralGPIOParams]
[

#assign usedIPs =dt.usedIPs]

and end with
[/#1list]

A sample template file is provided for guidance (see Figure 175).
STM32CubeMX will also generate user-specific code if any is available within the template.

As shown in the below example, when the sample template is used, the ftl commands are
provided as comments next to the data they have generated:
FreeMarker command in template:
S{peripheralParams.get ("RCC") .get ("LSI_VALUE") }
Resulting generated code:
LSI_VALUE : 32000 [peripheralParams.get ("RCC") .get ("LSI_VALUE")]

Figure 175. extra_templates folder - Default content

[o] o
I.@Clvl « db » extra_templates - | +¢| | Search extr... 0 |

Organize = Include in library - Share with « Bum » &= = [T 't:]_l.-

2

P STMicroelectronics * Mame
4 STM32Cube :
|| RTE_Device _h_fil
4 5TM32CubebAX 4.6 sample_h_ftl

4 db
extra_templates

* U

s mlimine

3

UM1718 Rev 31

UM1718

STM32CubeMX C Code generation overview

6.3.2

6.3.3

3

Saving and selecting user templates

The user can either place the FreeMarker template files under STM32CubeMX installation
path within the db/extra_templates folder or in any other folder.

Then for a given project, the user will select the template files relevant for its project via the
Template Settings window accessible from the Code Generator Tab in the Project
Manager view menu (see Section 4.9)

Custom code generation

To generate custom code, the user must place the FreeMarker template file under
STM32CubeMX installation path within the db/extra_templates folder (see Figure 176).

The template filename must follow the naming convention <user filename>_<file
extension>.ftl in order to generate the corresponding custom file as <user filename>.<file
extension>.

By default, the custom file is generated in the user project root folder, next to the .ioc file
(see Figure 177).

To generate the custom code in a different folder, the user shall match the destination folder
tree structure in the extra_template folder (see Figure 178).

Figure 176. extra_templates folder with user templates

= e |
@-uvl « STM32CubeMX 4 6_A8 » db » exra templates » - | 43 || Search et P
Organize = = Open Includein library = Share with = = §= = [.@.
STM32CubeMX_4_6 < Name :
db
extra_templates ;
|| MiyFile_h.ftl
rmecu
. RTE Device_h_ftl
plugins
|| sample_h.ftl
templates
|| sample_h_ftl
. help
- 4 m I P
UM1718 Rev 31 201/363

STM32CubeMX C Code generation overview UM1718

Figure 177. Project root folder with corresponding custom generated files

o] = E |
@Uv| . € Custom Code project » CustomCodeGen » v|+'7 H Search Cus... P'
Organize = Include in library « Share with + Burn New folder ==« [@
4 CustomCodeGen - Mame “ i
. Drivers .
J Drivers 1
) Inc
J Inc 1
J Mylnc
)) Mylnc 1]
. Projects .
. Projects 1
) Src
B) Src 1
B || .mxproject 1
@' CustomCodeGen.ioc 1
L | MyFile.h 1
1
1
- | 1 o r

Figure 178. User custom folder for templates

' e |
- -

@UQ' .« db » extra_templates » Mylnc - "7 | | Search Mylnc 0 |
Organize » Include in library = Share with « Burn » == « i r@
4 |, STM32CubeMX_4.6 “ Name i

4 | db
| Mylnc_h.ftl
4 || extra_templates

(. Mylnc)

| mcu (N
. plugins
| templates
. help v 4 1 | |
202/363 UM1718 Rev 31 Kys

UM1718 STM32CubeMX C Code generation overview

Figure 179. Custom folder with corresponding custom generated files

=NRCE X

vi} « CustomCodeGen » Mylnc v |4'1 } | Search Myinc 0 |
Organize * Include in library « Share with - Burn > 3= = ED '9'
4 CustomCodeGen = Name #

Drivers
| Mylnc.h
Inc
(Mylnc)

. Projects
y Src

e |

6.4 Additional settings for C project generation

STM32CubeMX allows specifying additional project settings through the .extSettings file.
This file must be placed in the same project folder and at the same level as the .ioc file.

As an example, additional settings can be used when external tools call STM32CubeMX to
generate the project and require specific project settings.

Possible entries and syntax

All entries are optional. They are organized under the followings three categories:
ProjectFiles, Groups or Others.

e [ProjectFiles]: section where to specify additional include directories
Syntax
HeaderPath = <include directory 1 path>;< include directory 2 path >
Example
HeaderPath=../../IIR_Filter_int32/Inc ;
e [Groups]: section where to create new groups of files and/or add files to a group
Syntax
<Group name> = <file pathnamel>;< file pathname2>
Example
Doc=$ PROJ_DIRS\..\readme.txt
Lib=C:\libraries\mylibl.lib; C:\libraries\mylib2.1lib;

Drivers/BSP/MyRefBoard = C:\MyRefBoard\BSP\board_ init.c;
C:\MyRefBoard\BSP\board_init.h;

e [Others] section where to enable HAL modules and/or specify preprocessor define
statements

— Enabling pre-processor define statements

Preprocessor define statements can be specified using the following syntax after
the [Others] line:

Syntax
Define = <definel_name>;<define2_name>

Example

3

UM1718 Rev 31 203/363

STM32CubeMX C Code generation overview UM1718

Define= USE_STM32F429I_DISCO
— Enabling HAL modules in generated stm32f4xx_hal_conf.h

HAL modules can be enabled using the following syntax after the [Others] line:

Syntax

HALModule = <ModuleNamel>; <ModuleNamel>;

Example

HALModule=I2S;I2C

.extSettings file example and generated outcomes

For the purpose of the example, a new project is created by selecting the
STM32F429I-DISCO board from STM32CubeMX board selector. The EWARM toolchain is
selected in the Project tab of the Project Manager view. The project is saved as
MyF429IDiscoProject. In the project folder, next to the generated .ioc file, a .extSettings text
file is placed with the following contents:

[Groups]

Drivers/BSP/STM32F429IDISCO=C:\Users\frqg09031\STM32Cube\Repository\STM3
2Cube_FW_F4_V1.14.0\Drivers\BSP\STM32F4291-
Discovery\stm32f429i_discovery.c;
C:\Users\frg09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\Drivers\
BSP\STM32F429I-Discovery\stm32f429i_discovery.h

Lib=C:\Users\frg09031\STM32Cube\Repository\STM32Cube_FW_F4_V1.14.0\
Middlewares\Third_Party\FreeRTOS\Source\portable\IAR\ARM CM4F\portasm.s

Doc=$PROJ_DIRS\. . \readme. txt

[Others]

Define = USE_ STM32F429I_DISCO
HALModule = UART;SPI

Upon project generation, the presence of this .extSettings file triggers the update of:

e the project MyF429IDiscoProject.ewp file in EWARM folder (see Figure 180)

e the stm32f4xx_hal_conf.h file in the project Inc folder (see Figure 181)

e the project view within EWARM user interface as shown in Figure 182 and Figure 183.

3

204/363 UM1718 Rev 31

UM1718

STM32CubeMX C Code generation overview

3

Figure 180. Update of the project .ewp file (EWARM IDE)
for preprocessor define statements

<ssttings>
<name>ICCARM< /nams>

<archiveVersion>2</archiveVer=sion>

<data>

<version>28</version>
<wantNonLocal>1</wantNonLocal>
<debug>l</debug>
<option>
<name>CCDefines</name>
<state>USE HAL DRIVER</state>
{=+;+=3cvﬁ;9wiguvv{fa+;+=3
<state>USE STM32F4291 DISCO</=state>
</option> = =

Figure 181. Update of stm32f4xx_hal_conf.h file to enable selected modules

stm32f4ux_hal_conf.h |

#*% #define HAL HCD MODU

/* #define HAL RTC MODULE ENABLED */
/* #define HAL SAT MODULE ENABLED +/
/* #define HAL SD MODULE ENABLED */

/* #define HAL MMC MODULE ENABL
$define HAL SPI_MODULE ENABLED
/* $define HAL TIM MODULE ENABLED +/
$define HAL UART_MODULE_ENABLED

/* $define HAL USART MODULE ENABLED +#/

/* #define HAL TRDAZ MODULE ENABLED #/
/* #define HAL SMARTCARD MODULE ENABLED #/
/* #define HAL WADG MODULE ENABLED +/
/* #define HAL BCD MODULE ENABLED #/
LE ENABLED %/

Figure 182. New groups and new files added to groups in EWARM IDE

MyF423IDiscoProject

Files &
B F MyF429IDiscoProject - MyF429ID... v
—E (1 Application
= C1Doc

LB readme td
& [Orrvers

FeaBsP

| LarasTMIzF4291DISCo

| H@E) stm3Ria28i_discovery.c

| L— [stm3zf429i_discovensh

[i =

C1SThI2Fdoc_HAL_Driver
= lb

L3 b portasm.s

L& (] Output

UM1718 Rev 31 205/363

STM32CubeMX C Code generation overview

UM1718

Figure 183. Preprocessor define statements in EWARM IDE

Options for node "test” - p— i
Categony. B Factary Satings
: [Mutti<ile Compilation l
General Opbons: -
I Static Analysi r Discard Unused Publics
Runtime Checking | Language 1| Language 2 | Code | Optimizations | Output | List | Preproce: « [»
. S SR B . a1 e e s e e . e B i e el - -
Assembiler
Output Converter [lignare standard include directories
::dm Buid Additional include dwectories: (one per ling)
" e $PROJ_DIRS/. fInc ™
SPROJ_DIRS/. Drvers/STM32F4xx_HAL_Driver/lnc =
Debugger $PROJ_DIRS/ [Drivers/STM32F4ix_HAL_Driver/lncjLegacy =
Sirmudator = SPROJ_DIRS/ Dnvers/CMSIS/Device/S TS TM32F dofInclude
Angel $PROJ_DIRS/ [Drivers/CMSIS Include -
CADE Preinclude file:
CMSIS DAP
GDB Server m
LAR ROM-monitor Defined symbols: (ane per line) o
| I-jet/TTAGIet USE_HAL_DRIVER - || Preprocessor output to file
: STMIZF42%x Presernve comments
JLink[1-Trace £
TI Stellacis [:. USE_STM32F4291_DISCO) Generate #line duectives
Maraigor
PE micro [
RO
STLINE
!L_ Third-Party Driver = [oK] [Cancel I H

206/363

UM1718 Rev 31

3

UM1718

Code generation for dual-core MCUs (STM32H7 dual-core product lines only)

7

3

Code generation for dual-core MCUs
(STM32H7 dual-core product lines only)

For working with Arm Cortex-M dual-core products, STM32CubeMX generates code for
both cores automatically according to the context assignment and initializer choices made in
the user interface (see Section 4.6: Pinout & Configuration view for STM32H7 dual-core
product lines for details).

Figure 184. Code generation for STM32H7 dual-core devices

Context and Initializer assignment Generated project
Pinout & Configuration M4
: M7
Categories | A=S2 — Common
: Initializer Drivers
]]
/] O EWARM
| /] -
™] |] .mxproject
H H m STM32H747_dualcore_project1.ioc
O O

° Project - IAR Embedded Workbench IDE - Arm 8.32.3¥ Project opened in IDE.
File Edit View Project ST-lLink Tools Window Help
NN ED = XKDO OC ME¥e!

Workspace v o X

Select the context to
STM32H747_dualcore_project! _Ch4 = work with
STM32H747 dualcore projectl Chd

STM32H747_dualcore_project]_CM7
£ @ STM32H747 _dualcore_project] - STM32H7... v
1 M Application
=1 Bl EVWARM
| [startup_stm32h747x_Ch4.s °
| L— 1 startup_stm32h747x<_CM7.5
o User []
] W Drivers
B CMSIS °
B STM32H70_HAL_Driver °
 Output

Generated initialization code

The code is generated in CM4, CM7 and Common folders. The Common folder holds the
system_stm32h7xx.c, that contains the clock tree settings.

When a peripheral or middleware is assigned to both contexts, the function
MX_<name>_init will be generated for both contexts but will be called only from the
initializer side.

UM1718 Rev 31 207/363

Code generation for dual-core MCUs (STM32H7 dual-core product lines only) UM1718

Generated startup and linker files

Each configuration (_M4 or _M7) of the project shall come with a startup file and a linker file,
each suffixed with _M4 or _M7 respectively.

Figure 185. Startup and linker files for STM32H7 dual-core devices

EWARM C Mame B
settings
STM32H7AT_dualcore_project]_CM4
9 Project.eww
startup_stm32h 7470 Ch4.s
startup_strm32h 747 CMT.s
STM32H7AT_dualcore_project].ewd
STM32H7AT_dualcore_projectl.ewp
strm32h 74 o dtcmram_CM7Ticf
stm32h 7470 flash_Chd.icf
stm32h 7470 flash_CMT.icf
strm32h 7470 flash_rw_sram1_CM7.icf
strm32h 7470 flash_rw_sram2_Ch4.icf
stm32h 7470 sram1_CM7T.icf
stm32h 74T sramd_CMWA4Licf

Generated boot mode code

STM32CubeMX supports only one mode of boot for now, where both ARM Cortex-M cores
boot at once.

The other boot modes will be introduced later as a project option in the project manager

view:

e Arm Cortex-M7 core booting, Arm Cortex-M4 gated

e Arm Cortex-M4 core booting, Arm Cortex-M7 gated

e Afirst core booting executing from flash, loads the second core code to the SRAM then
enables the second core to boot.

STM32CubeMX uses template files delivered with STM32CubeH7 MCU packages as
reference.

3

208/363 UM1718 Rev 31

UM1718

Code generation with Trustzone enabled (STM32L5 Series only)

8

3

Code generation with Trustzone enabled (STM32L5
Series only)

In STM32CubeMX project manager view, all project generation options remain available.
However, the choice of toolchains is limited to the IDEs/compilers supporting the
Cortex®-M33 core:

e EWARM v8.32 or higher

e MDK-ARM v5.27 or higher (ARM compiler 6)

e STM32CubelDE (GCC v4.2 or higher)

Upon product selection, STM32CubeMX requires to choose between enabling TrustZone or
not.

e When TrustZone is enabled, STM32CubeMX generates two C projects: one secured
and one non-secured. After compilation, two images are available for download, one
for each context.

e When TrustZone is disabled, STM32CubeMX generates a non-secured C project as it
is done for other products not supporting TrustZone.

Specificities

When Trustzone is enabled, the project generation must be adjusted to ensure that secure
and non-secure images can be built.

Figure 186. ARMv8-M Trustzone overview of building secure and non-secure images

Secure region that is non-secure callable
Mon-secura Region HSC Region Secure Region
| Wector of secure gateway |
R « entry1 function
o Eniry? I
i G antry2 function
pCBACRIS code BW _ acle_se_entryl | o | Secure Internal
code functions
Bl eniryl | v .HPGZ & @0ty function
BW __acle_se_entry2 |
bl eniry2 | ! 4 entry4 function
entry3
bl entry3 "1 33 | l
- BW __acle_se_entry3 |
B eniryd
l]
enirys Secure data
5G
BW __acle_se_enfryd |
Stack Heap Global data
NSC library file shared to
non-secure application for link
| ("gateway o secure world™)
f |
Non-secure application Secure application
NSC region and secure region must be declared
in secure application scatter file

UM1718 Rev 31 209/363

Code generation with Trustzone enabled (STM32L5 Series only)

UM1718

210/363

NonSecure for non-secure code
Secure for secure code
Secure_nsclib for non-secure callable region

When TrustZone is enabled for the project, STM32CubeMX generates three folders:

See Figure 187 (use TZ_BasicStructure_project_inCubelDE.png) and Figure 188 (use
STM32L5 STM32CubeMX_Project_settings _inCubelDE.png).

Figure 187. Project explorer view for STM32L5 TrustZone enabled projects

75 Project Explorer 33 ==
~w LI stm32I5_TZ_BasicStructure_project1
w E stm3215_TZ_BasicStructure project] NonSecure (in MonSecure)

[ap! Includes Secure_nsclib
(2R Drivers 4 secure_nsc.h
w 3 Src
[€ main.c

[€] stm3215:¢_hal_msp.c
[] stm3215m it.c
[€] syscalls.c
] sysmem.c
[€] system_stm32I50_ns.c <
w 2 Startup
[8] startup_stm321562cetx.s
v [= Inc
main.h
st 3215 _hal_conf.h
l5| stm32150it.h
w STM32L362CETX_FLASH.Id &
= STM32L562CETK RAMLID &
w E st 3215_TZ_BasicStructure_project]_Secure (in Secure)
[ap! Includes
(28 Drivers
w 2 Src
[main.c
[€] secure_nsc.c &
] stm3215m_hal_msp.c
[€] stm325ecit.c
[g] syscalls.c
[€] sysmem.c
[€] system_stm3215mc_s.c &
w 2 Startup
(8] startup_strm321562cets
v [= Inc
main.h
partition_stm3215620ch &
st 3215 _hal_conf.h
l5| stm32150it.h
w STM32L362CETX_FLASH.Id &
= STM32L562CETX_RAM.Id &~

= 0

UM1718 Rev 31

3

UM1718

Code generation with Trustzone enabled (STM32L5 Series only)

3

Figure 188. Project settings for STM32CubelDE toolchain

Froject Settings
Project Name

|stm32|5_TZ_EEE|sicStrLlctLlre_prnject 1

Project Location

|C \WSTM32CubeMX_Projects

Application Structure

Toolchain Folder Location

[Do not generate the main()

~ Toolchain / 1DE

STM32CubeMX also generates specific files, detailed in Table 22.

Table 22. Files generated when TrustZone is enabled

Example: partition_stm321552xx.h

File Folder Details
Initial setup for secure / non-secure zones for
ARMCM33 based on CMSIS CORE V5.3.1
The product core secure/non-secure partition_ ARMCM33.h Template.
partitioning .h “template” file Secure It initializes Security attribution unit (SAU)

CTRL register, setup behavior of Sleep and
Exception Handling, Floating Point Unit and
Interrupt Target.

secure_nsc.h file

Secure_nsclib

Must be filled by the user with the list of
non-secure callable APls.

Templates are available as reference in
STM32L5Cube embedded software package
in Templates\TrustZone\Secure_nsclib
folders.

System_stm32I5xx_s.c

Secure

CMSIS Cortex-M33 device peripheral access
layer system source file to be used in secure
application when the system implements
security.

UM1718 Rev 31

211/363

Code generation with Trustzone enabled (STM32L5 Series only) UM1718

212/363

Table 22. Files generated when TrustZone is enabled (continued)

File Folder Details

CMSIS Cortex-M33 device peripheral access

System_stm32I5xx_ns.c NonSecure layer system source file to be used in
non-secure application when the system
implements security.

STM32L562CETX_FLASH Linker files for the secure and non-secure
memory layouts.

STM32L562CETX_RAM . : . .

Secure, File extensions and naming conventions:
;rTMSZLSSZCETX FLASH NonSecure ~ -icf (EWARM)
STM32L552CETX_RAM ~ 86t (MDR-ARM), or
- — .Id (GCC compiler toolchains)

UM1718 Rev 31

3

UM1718

Device tree generation (STM32MP1 Series only)

9

9.1

3

Device tree generation (STM32MP1 Series only)

The Device tree in Linux is used to provide a way to describe non-discoverable hardware.
STMicroelectronics is widely using the device tree for all the platform configuration data,
including DDR configuration.

Linux developers can manually edit device tree source files (dts), but as an alternative
STM32CubeMX offers a partial device-tree generation service to reduce effort and to ease
new comers. STM32CubeMX intends to generate partially device trees corresponding to
board level configuration. Partial means that the entire (board level) device-trees are not
generated, but only main sections that usually imply huge efforts and can cause compilation
errors and dysfunction:

e folders structure and files to folders distribution
e dtsi and headers inclusions

e pinCtrl and clocks generation

e System-On-Chip device nodes positioning

e multi-core related configurations (Etzpc binding, resources manager binding,
peripherals assignment)

Device tree overview

To run properly, any piece of software needs to get the hardware description of the platform
on which it is executed, including the kind of CPU, the memory size and the pin
configuration. Current Linux kernels and U-boot have put such non-discoverable hardware
description in a separate binary, the device tree blob (dtb). The device tree blob is compiled
from the device tree source files (dts) using the dtc compiler provided with the OpenSTLinux
distribution.

The device tree structure consist of a board level file (.dts) that includes two device tree
source include files (.dtsi): a soc level file and a —pinctrl file, that lists the pin muxing
configurations.

The device tree structure is very close to C language multiple level structures with the
“root” (/) being the highest level then “peripherals” being sub-nodes described further in the
hierarchy (see figures 189, 190 and 7197).

STM32CubeMX generation uses widely overloading mechanisms to complete or change
some SOC devices definitions when user configurations require it.

UM1718 Rev 31 213/363

Device tree generation (STM32MP1 Series only) UM1718

214/363

Figure 189. STM32CubeMX generated DTS — Extract 1

System and Board information

\h model = "STMicroelectronics custom STM32CubeMX board™;
compatible = "=t,=2tm32mplSTc-projectZ-pmx", "=t,stm32mplST";
memory@c0000000 |

/* USER CODE BEGIN rpot */)) —_—
/% USER CODE END root %/ 4— User customization

clocks { <4— Full clock configuration
clk_lsi: glk-lsi {

fclock-cells = <0>;

compatible = "fixed-clock";

clock-frequency = <32000>;
u-boot, dn-pre-relog;

}i /¥root¥/

spingtrl [<— Pin control configuration, including GPIO configuration
u-boot, dn-pre-relos;
timl _pins mx: timl mx-0 {
pins |
pipmus = <STM32 PINMUX('A', 8, AF1)>, /% TIM1 CHL */
<STM32 PINMUX ('ZR', 9, AF1l)>; /* TIML CH2 */

bias-disable;
driwve-push-pull;
slew—rate = <0>;

Figure 190. STM32CubeMX generated DTS — Extract 2

&mé4_rproc{ 4— Multi-core management
recovery;

mé4_system resources{

status = "okay";

/% USER CODE BEGIN m4_ system resources */
/* USER CODE END mé4_system resources */

status = "okay";

/* USER CODE BEGIN m4_rproc */
/* USER CODE END mé4_rproc */

gm4 timersl{ <4—— Peripheral assignment to Cortex-M4 run time context
pingtrl-names = "rproc_default", "rproc_sleep";
pABGErL-0 = <&timl pins mx>;
pingtrl-1 = <&timl sleep pins mx>;

status = "okay";

/* USER CODE BEGIN m4 timersl */
/* USER CODE END m4_timersl */

3

UM1718 Rev 31

UM1718

Device tree generation (STM32MP1 Series only)

9.2

3

Figure 191. STM32CubeMX generated DTS — Extract 3

stimers2 | Peripheral node structure with PinCtrl configuration

status = "okay";

/* USER CODE BEGIN timers2 */
/* USER CODE END timers2 */

Rl
pingtrl-—names = "default", "sleep";
pingtrl-0 = <&tim2 pwm pins mx>;
pinctrl-1 = <&tim2 pwm sleep pins_mx>;

status = "okay";

/* USER CODE BEGIN timers2 pwm */
/* USER CODE END timers2 pwm */

bi

/* USER CODE BEGIN dts_addons */
/* USER CODE END dts_addons */

For more details refer to “Device Tree for Dummies” from Thomas Petazzoni, available on
https://elinux.org.

For more information about STM32MP1 Series device tree specificities, refer to ST Wiki
https://wiki.st.com/stm32mpu.

STM32CubeMX Device tree generation

For STM32MP1 Series, STM32CubeMX code generation feature has been extended to
generate Device trees (DT) targeting the supported firmware:

e asingle DT for configuring both TF-A and SP_min
e a DT for configuring U-Boot
e a DT for configuring Linux kernel

DTS generation is accessible through the same | ei=ilSzLqF=islslsl=i8 button.

UM1718 Rev 31 215/363

Device tree generation (STM32MP1 Series only) UM1718

The DT generation path can be configured from the Project Manager view, in the Advanced
Settings tab, under OpenSTLinux Settings (see Figure 192). For each Device tree
STM32CubeMX generates Device tree source (DTS) files.

Figure 192. Project settings for conflgurlng Device tree path

m STM32CubeMX STM32MP1, Testl ioc*: STM32MP151CAAx

STM32 r’ File Window Help
Cuheh‘

OpenSTLinux Settings
[DE‘J\EETFEE Root Lacation

[C:\STM32CubeMX_Projects\STMIZMP15_ProjectiDeviceTree e EEE

Advanced Settings

Manifest Version

p -
lopenstiinux-4.19-thud-mp1-19-01-11 g/ STM32MP15 Project * Name
Manifest Content b DevicsTing I kernel
Firmware Name Community Version). Drivers i
Linux 419 | Inc ’ &
Cube STM32Cube FW_MP1 V1.0.C ! u-boot
U-Boot 2018 11 & Sre

TF-A 20 || SWASTM32

The Device tree structure consists of:

e acomplete clock-tree

e acomplete pin control

e acomplete multi-cores references definition

e aset of device nodes and sub-nodes

e user sections that can be filled to have complete and bootable Device trees (contents
will not be lost at next generation).

The generated DTS files reflect the user configuration, such as the assignment of
peripherals to runtime contexts and boot loaders, or clock tree settings.

STM32CubeMX DT generation ensures the coherency between the different DTs.
Additionally, it generates the DDR configuration file as a part of the TF-A and U-Boot Device
trees.

These files along with the files they include will be compiled to create the device tree blob
for the targeted firmware.

9.21 Device tree generation for Linux kernel

STM32CubeMX only generates the “board” file for Linux. This file includes the “soc” file and
the “pinctrl” file corresponding to the selected package.

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in the Linux kernel source code
Documentation/devicetree/bindings/ folder.

3

216/363 UM1718 Rev 31

UM1718 Device tree generation (STM32MP1 Series only)

Figure 193. Device tree generation for the Linux kernel

@ STM32CubeMX generation

Linux
S0 device tree sources (dts]: device tree blobs (dtb)
included by I
stm32mp157c.dtsi 2
board Lde‘nce tree compiler (dic)
pinctrl | L. board dtb
stm32mp157caa-pinctrl.disi | stm32mp157c-mx dtb

stm32mp157c <MyProject-mxdis _

stm32mp157cab-pinctrl.disi

stm32mp157cac-pinctrl.dtsi

stm32mp157cad-pinctrl.disi

stm32mp157-pinctrl.dtsi

9.2.2 Device tree generation for U-boot

STM32CubeMX makes a copy of Linux dts file for U-Boot and completes it with two new
files: one for the “ddr” configuration and one for U-Boot add-ons, mainly consisting in using
the “u-boot,dm-pre-reloc” property whenever needed.

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in U-Boot source code
Documentation/devicetree/bindings/ folder.

Figure 194. STM32CubeMX Device tree generation for U-boot

- - ti . . - .
& RIMs20ubeMX gansration , overloading copies of Linux files

soC device tree sources (dts) ! device tree blobs (dtb)
included by
stm32mp157c disi

+ device tree compiler (dtc)

board —
L, board dtb

pinctrl

stm32mp157caa-pinctri.dtsi

— stm32mp157c-<MyProject=-mx dts _ V]

stm32mp157cab-pinctrl dtsi

stm32mp157cac-pinctrl dtsi

stm32mp157cad-pinctrl dtsi

stm32mp157-pinctrl dtsi '. 4M32mp157c.< ofect>-mx. 1t boat disi ,g spl board dtb

ddr

3

UM1718 Rev 31 217/363

Device tree generation (STM32MP1 Series only) UM1718

9.2.3

218/363

Device tree generation for TF-A

To save space, STM32CubeMX generates a “board” dts file for TF-A that is a lighter version
of the Linux “board” dts file. This file includes the already lighter dtsi files versions on “soc”
and “pinctrl” sides, that comes with TF-A. Th same “ddr” configuration file generated for
U-Boot is reused for TF-A.

Figure 195. STM32CubeMX Device tree generation for TF-A

@ STM32CubeMX generation

TF-A, overloading subsets of Linux files copies and using DDR configuration from

|
it 7 | included by device tree sources (dts]i device tree blobs (dtb)
stm32mp157cdsi 4 !
2 board _I_!jewze tree compiler (dtc)
pinctrl > | board dtb
L
stm32mp157 vinctrl dtsi 7 ff-a dtb (for mx praoject)
stm32mp157c-<MyProject--muats O
stm32mp157cab-pinctrl disi :
—
stm32mp157cac-pinctrl disi
stm32mp157cad-pincirl.dts
stm32mp157-pinctrl disi 3

stm32mp157c-security disi

The device tree nodes generated by STM32CubeMX can be completed by filling the user
sections, following the device tree bindings available in TF-A source code
docs/devicetree/bindings/ folder.

3

UM1718 Rev 31

UM1718

Support of additional software components using CMSIS-Pack standard

10

3

Support of additional software components using
CMSIS-Pack standard

The CMSIS-Pack standard describes a delivery mechanism for software components,
device parameters, and evaluation board support.

The XML-based package description (pdsc) file describes the content of a software pack
(file collection). It includes source code, header files, software libraries, documentation and
source code templates. A software pack consists of the complete file collection along with
the pdsc file, shipped in ZIP-format. After installing a software pack, all the included software
components are available to the development tools.

A software component is a collection of source modules, header and configuration files as
well as libraries. Packs containing software components can also include example projects
and user code templates.

Refer to http://www.keil.com website for more details.

STM32CubeMX supports third-party and other STMicroelectronics embedded software
solutions, delivered as software packs. STM32CubeMX enables to:

1. Install Software Packs and check for updates (see Section 3.4.4).

2. Select software components for the current project (see Section 4.13). Once this is
done, the selected components appear in the tree view (see Figure 196).

3. Enable the software component from the tree view (see Figure 197). Use contextual
help to get more details on the selection.

4. Configure software components (see Figure 197). This function is possible only for
components coming with files in STM32CubeMX proprietary format.

5. Generate the C project for selected toolchains (see Figure 198).
a) Software components files are automatically copied to the project.

b) Software component configuration and initialization code are automatically
generated. This function is possible only for components coming with files in
STM32CubeMX proprietary format.

Figure 196. Selecting a CMSIS-Pack software component

Packs
fﬁ
W STMicroelectronics X-CUBE-BLEA1 440
~) Wireless_Application ‘
Application SensorDemo ol
w2 Wireless_BlueNRG-MS ‘
Controller
HCI_TL Basic ~
HCI_TL_INTERFACE UserBoard ~
Utils
UM1718 Rev 31 219/363

Support of additional software components using CMSIS-Pack standard U

M1718

220/363

Figure 197. Enabling and configuring a CMSIS-Pack software component

Pinout & Configuration

Q w
ot =

System Core >
Analog >
Timers >
Connectivity >
Multimedia >
Security >

Computing Click to display ~
Mode & Configuration
Middleware b

Additional Software e

-

T STMicroelectronics. X-CUBE-BLE1
.]

Clock Configuration

Additional Softwar

STMicroelectronics X-CUBE-BLE1.4.2.0 Mode and Configuration

Wireless BlueNRG-MS

Wireless Application

Click to enable the component in this project

Reset Configuration

adjust t
& Parareter Settings C

As needed,
he com
stants

v Pinout

L]
»

ponent parameters here

[Configure the below parameters -

~ Log & Debug
DEBUG
Panels PRINT_CSV_FORMAT
~ HCI Basic Parameters
HCI_READ_PACKET_SIZE
HCI_MAX_PAYLOAD_SIZE

~ (Connection Parameters (for expertus...

Scan Interval (SCAN_P)
Scan Window (SCAM_L)

Supernvision Timeout (SUPERV_...

Min Connection Period (COMNMN_..

Mo debug message (0)
CSV format message print dizabled (0)

128 Bytes reserved for HCI Read Packet
128 Bytes reserved for HCI Max Payload

16384
16384
60
40

UM1718 Rev 31

3

UM1718

Support of additional software components using CMSIS-Pack standard

3

Figure 198. Project generated with CMSIS-Pack software component

' Project - IAR Embedded Workbench IDE - Arm aﬂ‘-

File Edit WView Project 5T-Link Tools Window Help

MO RS = A0 2C RN
Files g =
El @ section? - section? o
=1 W Application

I—E B EVYARM
L@ [@ startup_stm32I0530c s .
M User
k] app_bluenrg-me.c .
[£] main.c .
[l sensor_serdce.c .
@ [stm321he_hal_msp.c .
L@) stm32ibo_itc .
—=1 W Drivars
H ChMSIS ™
M STM32L00c_HAL_Diriver .
M Middlewares
AE?_; SThicroelectronics_BlueNRG-MS
8 Documentation
=E W Wireless /Controller .
@ i Wirelass /HCTL/Basic .
Lm il Wirelass/Utils *
—?_: Outpt
[sechony.out L]
UM1718 Rev 31 221/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

1 Tutorial 1: From pinout to project C code generation
using an MCU of the STM32F4 Series

This section describes the configuration and C code generation process. It takes as an
example a simple LED toggling application running on the STM32F4DISCOVERY board.

11.1 Creating a new STM32CubeMX Project

1. Select File > New project from the main menu bar or New project from the Home
page.

2. Select the MCU Selector tab and filter down the STM32 portfolio by selecting
STM32F4 as 'Series', STM32F407 as 'Lines’, and LQFP100 as 'Package’ (see
Figure 199).

3. Select the STM32F407VGTx from the MCU list and click OK.

Figure 199. MCU selection

[New Project from a MCU ﬁ

MWCU Selector

Features Block Diagram Docs & Resources m Datasheet [Buy [+ Start Project

Core >
I STM32F407TVG

Series) w
TreciUmehesh Al High-performance foundation line, ARM Cortex-M4 core with DSP and FPU, 1 Mbyte
— - Flash, 168 MHz CPU, ART Accelerator, Ethernet, FSMC
STM32F4

Unit Price for 10kU (US$): 6.57
Active Q

Line v Productis in mass production Board: STM32FADISCOVERY LQFP100
Check/Uncheck All
o The STM32F405xx and STM32F407xx family is based on the high-performance ARM® Coriex®-M4 32-bit RISC core operating at

STM32F401 a frequency of up to 168 MHz The Cortex-M4 core features a Floating point unit (FPU) single precision which supporis all ARM

[STM32F405/415 single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory
protection unit (MPU) which enhances application security.

¥ STM32F4071417
= The STM32F405x and STM32F407xx family incorporates high-speed embedded memories (Flash memory up fo 1 Mbyte, up to

O sTm32F411 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAN., and an extensive range of enhanced I/Os and peripherals connected to
1 STM32F412 two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACS, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers
[0 sTm32F4131423 for motor control, two general-purpose 32-bit timers. a true random number generator (RNG). They also feature standard and
[STM32F4271437 advanced communication interfaces.
[STM32F429/439 Features
[STM32F448

[0 STM32F469/479

MCUs List: 4 items <} Display similar items Eﬂ

v
Package || Partlo | Reference [Marketi JUnitPricef.] Packsge | Fash | __Raw] 10| Ancicbi Juceo]
P STM32F407VE STM3ZF407VETx Adtive 5644 LQFP100 512kBytes 192kBytes 82 0 0
STM32F407VG STM3ZF407VGTX Active 657 LQFP100 1024 kBytes 192 kBytes 82 0 0 I
LaFp100 %7 STM32F417VE STM32F417VETX Active 5.991 LQFP100 512 kBytes 192kBytes 82 0 0
O] LaFP144 7 STM32F417VG STM3ZF417VGTx Adive 6917 LQFP100 1024 kBytes 192 kBytes 82 0 0
[LarP176
[UFBGA176
Other e
Price From 5.644 to 6.917
. . |
5.644 6.917
10 =82
®
[

STM32CubeMX views are then populated with the selected MCU database (Figure 200).
Optionally, remove the MCUs Selection bottom window by deselecting Window> Outputs
submenu (see Figure 201).

222/363 UM1718 Rev 31 ‘Yl

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

3

Figure 200. Pinout view with MCUs selection

-
[T STM32CubeMX Untitled: STM32F407VGTx
i
STM32 ﬁ File Window Hel
CubeMx P
Home / /' Untitled - Pinout & Configuration
Pinout & Configuration Clock Configuration
Additional Softwares
System Core >
Analog >
Timers >
il
Connectivity > i
|
Multimedia >
Hl
Security > "
/|
Computing ’ : STM32F407VGTX
= LOFP100
Middleware >
Hl
o) I
I
L[senes f Lnes | M| _ Package | __RequiredPeripherals
STM32F4 STM32F407i417 STM32F407VETX LQFP100 None
STM32F4 STM32F4071417 STM32F407VGTX LQFP100 None
STM32F4 STM32F407/417 STM32F417VETx LOFP100 None

Figure 201. Pinout view without MCUs selection window

-
[I] STM32CubeMX Untitled: STM32F407VGTx
¥
STM32 ﬁ File Window Hel
CubeMX P
Untitted - Pinout & Configuration
Clock Configuration
Additional Softwares
System Core >
Analog >
Timers >
Connectivity > :
I
Multimedia >
N
Security > I
|
Computing > = STM32F407VGTx
LQFP100
Middleware >
|
i
I
@ 0 a W 4 Ll]
UM1718 Rev 31 223/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.2

224/363

Configuring the MCU pinout

For a detailed description of menus, advanced actions and conflict resolutions, refer to
Section 4 and Appendix A.

1.
2.

By default, STM32CubeMX shows the Pinout view.

By default, ["|keep Current Signals Flacement is unchecked allowing STM32CubeMX to
move the peripheral functions around and to find the optimal pin allocation, that is the
one that accommodates the maximum number of peripheral modes.

Since the MCU pin configurations must match the STM32F4DISCOVERY board,
enable ' [V]keep current signals Placement for STM32CubeMX to maintain the peripheral function
allocation (mapping) to a given pin.

This setting is saved as a user preference in order to be restored when reopening the
tool or when loading another project.

Select the required peripherals and peripheral modes:

a) Configure the GPIO to output the signal on the STM32F4DISCOVERY green LED
by right-clicking PD12 from the Pinout view, then select GPIO_output:

Figure 202. GPIO pin configuration

GPIC_Cutput

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

3

b) Enable a timer to be used as timebase for toggling the LED. This is done by
selecting Internal Clock as TIM3 clock source from the peripheral tree (see
Figure 203).

Figure 203. Timer configuration

Pinout & Configuration Clock Configuration
Additional Softwar

ource [Disable

Timers v ck Source dInternal Clock V|
- Channewﬁfsable ~|
TIVA Channel2|D|sabIe V|
TIM2 Channel2 Disable |

Channel4 Disable ~|
Combined Channels [Disable ~|

Use ETR as Clearing Source
O x0OR activation

[One Pulse Mode

Reset Configuration

Connectivity > @ User Constants
o [Configure the below parameters : |
Multimedia »
Security > —
~ Counter Settings
Computing >
Middleware >

UM1718 Rev 31 225/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Note:

226/363

c)

You can also configure the RCC to use an external oscillator as potential clock
source (see Figure 204).

Figure 204. Simple pinout configuration

~
[T STM32CubeMX Untitled*: 5TM32F40m ‘ ‘ i 0 e S
s> @ File Window Help © oy x L&y
CubeMX -
STM32F407VG Tx Untitled - Pinout & Configuration
Pinout & Configuration Clock Configuration Project Manager
Additional Softwares ~ Pinout
RCC Mode and Configuration : £ Pinout view == System view
C ‘
»
High Speed Clock (HSE) [BYPASS Clock Source ~
System Core
Low Speed Clock (LSE)
DA [mMaster Clock Output 1
GPIO [Master Clock Output 2
IWDG
NVIC [Audio Clock Input (128_CKIN)
WWDG
L] =
Analog - Reset Configuration R
fee_osc_ow
ADC1
ADC2 IConfigure the belaw parameters -]
ADC3
DAC Q [Search (CAFA] @ ON i] STM32F407VGTx
L] LaFP100
~ System Parameters
VDD voltage (v) 33V
Timers - Instruction Cache Enabled
- Prefetch Buffer Enabled
RTC Data Cache Enabled
M1 Flagh Latency(Ws) 0'WS (1 CPU cycle)
M2 RCC Parameters
TMa HSI Calibration Valug 16
TIME HSE Startup TimoutV... 100
TIME LSE Startup Timout Va... 5000 @
TIMT

This completes the pinout configuration for this example.

Starting with STM32CubeMX 4.2, the user can skip the pinout configuration by directly
loading ST Discovery board configuration from the Board selector tab.

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.3 Saving the project

1. Click & to save the project.

When saving for the first time, select a destination folder and filename for the project.
The .ioc extension is added automatically to indicate this is an STM32CubeMX
configuration file.

Figure 205. Save Project As window
[I1 Save Project As lﬂ

Save In |, STM32Cube_simpleLedToggle V| = @ B H_

| Folder name: [STM32Cube_simpleLedToggle
Files of Types |STf'v'1320L|bef'v'1,‘f{ project Files

2. Click & to save the project under a different name or location.

3

UM1718 Rev 31 227/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.4 Generating the report

Reports can be generated at any time during the configuration:

1.

Click S to generate .pdf and .txt reports.

If a project file has not been created yet, a warning prompts the user to save the project
first and requests a project name and a destination folder (see Figure 206). An .ioc file
is then generated for the project along with a .pdf and .txt reports with the same name.

Figure 206. Generate Project Report - New project creation

F
[STM32CubeMX Untitled: STM32F031E6Yx

i —
sTM3? i i © K
CubsMx File Window Help

Untitled - Project Manager

Pinout & Configuration Clock Configuration Project Manager

Generate Report

Project Settings
| / <
Generate Project Report ﬁ

The project name is generally used as report name, but no project is currently saved.
If the project is not created now. you will be asked for a report file name

Would you like to create a project first ?

[Yes J No [Cancal

| PO PR 1

Answering No will require to provide a name and location for the report only.

As shown in Figure 207, a confirmation message is displayed when the operation is
successful.

Figure 207. Generate Project Report - Project successfully created

F |
[0 Generate Project Reports M

o Reports (Pdf and Text) are successfully generated under C:/STM32CubeMX_Projects/5_0_UM_Tuto?

Open the .pdf report using Adobe Reader or the .txt report using your favorite text
editor. The reports summarize all the settings and MCU configuration performed for the
project.

11.5 Configuring the MCU clock tree

The following sequence describes how to configure the clocks required by the application
based on an STM32F4 MCU.

STM32CubeMX automatically generates the system, CPU and AHB/APB bus frequencies
from the clock sources and prescalers selected by the user. Wrong settings are detected

228/363

UM1718 Rev 31 ‘Yl

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

3

and highlighted in fuchsia through a dynamic validation of minimum and maximum
conditions. Useful tooltips provide a detailed description of the actions to undertake when
the settings are unavailable or wrong. User frequency selection can influence some
peripheral parameters (e.g. UART baud rate limitation).

STM32CubeMX uses the clock settings defined in the Clock tree view to generate the
initialization C code for each peripheral clock. Clock settings are performed in the generated
C code as part of RCC initialization within the project main.c and in stm32f4xx_hal_conf.h
(HSE, HSI and external clock values expressed in Hertz).

Follow the sequence below to configure the MCU clock tree:

1.

Click the Clock Configuration tab to display the clock tree (see Figure 208).

The internal (HSI, LSI), system (SYSCLK) and peripheral clock frequency fields cannot
be edited. The system and peripheral clocks can be adjusted by selecting a clock
source, and optionally by using the PLL, prescalers and multipliers.

Figure 208. Clock tree view

[I] STM32CubeMX STM32Cube_simpleledToggle.ioc: STM32F407VGTx E‘Eﬂ

by W o LEEY

STM32F407VGTx !/ STM32Cube_simpleLedToggle.ioe - Clock Configuration GENERATE CODE

Pinout & Configuration Clock Configuration Project Manager Tools

Resolve Clock Issues

C Clad]
. | 16 |EthernetPTP
> J
To TWDG (1H2) r N I s
;15: . System Clack Mux r ' ’Izl“’ Cortex Sys
- . L=

SYSCLK (MHz) | AHE Prescsler _HOLK (MH) APBL Prascale
--(Ls‘t.lvllsl

HSE

=0

UM1718 Rev 31 229/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

230/363

First select the clock source (HSE, HSI or PLLCLK) that will drive the system clock of
the microcontroller.

In the example taken for the tutorial, select HSI to use the internal 16 MHz clock (see
Figure 209).

Figure 209. HSI clock enabled

System Clock Mux

SYSCLK (MHz)
HSE il

el 16

PLLCLK
L

§ -+"

-

To use an external clock source (HSE or LSE), the RCC peripheral shall be configured
in the Pinout view since pins will be used to connect the external clock crystals (see
Figure 210).

Figure 210. HSE clock source disabled

| ‘..
}
1 o
£ J

— Ll
i "HSE O5C" is not available
d Tao enzble go back to IPRCC in Pinout Tab’

Other clock configuration options for the STM32F4DISCOVERY board:

— Select the external HSE source and enter 8 in the HSE input frequency box since
an 8 MHz crystal is connected on the discovery board:

Figure 211. HSE clock source enabled

Input frequency

— Select the external PLL clock source and the HSI or HSE as the PLL input clock
source.

Figure 212. External PLL clock source enabled

PLL Source Mux

HSL |
L L]

H3E

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Note:

11.6

Caution:

11.6.1

Note:

3

3. Keep the core and peripheral clocks to 16 MHz using HSI, no PLL and no prescaling.
Optionally, further adjust the system and peripheral clocks using PLL, prescalers and
multipliers:

Other clock sources independent from the system clock can be configured as follows:

— USB OTG FS, Random Number Generator and SDIO clocks are driven by an
independent output of the PLL.

— 12S peripherals come with their own internal clock (PLLI2S), alternatively derived
by an independent external clock source.

— USB OTG HS and Ethernet Clocks are derived from an external source.

4. Optionally, configure the prescaler for the Microcontroller Clock Output (MCO) pins that
allow to output two clocks to the external circuit.

5. Click to save the project.
6. Go to the Configuration tab to proceed with the project configuration.

Configuring the MCU initialization parameters

The C code generated by STM32CubeMX covers the initialization of the MCU peripherals
and middlewares using the STM32Cube firmware libraries.

Initial conditions

From the Pinout & Configuration tab, select and configure (one by one) every component
(peripheral, middleware, additional software) required by the application using the Mode
and Configuration panels (see Figure 213).

Tooltips and warning messages are displayed when peripherals are not properly configured
(see Section 4: STM32CubeMX user interface for details).

The RCC peripheral initialization will use the parameter configuration done in this view as
well as the configuration done in the Clock tree view (clock source, frequencies, prescaler
values, etc...).

UM1718 Rev 31 231/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.6.2

232/363

Figure 213. Pinout & Configuration view

[T STM32CubeMX STM32Cube_simpleLedToggle.joc*: smszm_ = | o
¥
smz' @ File Window Help oy < L4y

CubeMX

STM32Cube_simpleLedToggle.ioc - Pinout & Configuration GENERATE CODE
Clock Configuration Project Manager
Additional Softwares v Pinout
TIM3 Mode and Configuration 4 Pinout view £ System view
Mode 4
»
Slave Mode [Disable ~] Middlewares
System Core >
Trigger Source Disable ~]
Analog > Clock Source [Internal Clock ~]
Channel1 Disable ~]
Timers e Channel2 Disable <]
System Core Analog Timers Connectivity
- Channel3 Disable ~]
RTC Channel4 Disable v
T M3 @ i
TIMZ Combined Channels [Disable ~] = |
TR e Gl Soue
TIME ORac |
TIVG —
M7 [One Pulse Mode e
TIME
Hmn
T Reset Configuration
TIM12
TIM13 e ® User Constants 5
T4 [Configure the below g |
QechCtFH] @ O [|
Connectiity > > Counter Settings fl
> Trigger Output (TRGO) Parameters
Multimedia >
I
Security >
Comnsios N

Configuring the peripherals

Each peripheral instance corresponds to a dedicated button in the main panel. Some
peripheral modes have no configurable parameters, as illustrated below.

Figure 214. Case of Peripheral and Middleware without configuration parameters

Pinout & Configuration Clock Configuration

Additional Softwares

RMG Mode and Configuration

Activated

~ Pinout

| sPn

gg:g Reset Configuratian

@& Parameter Settings

Warning: This IP has no parameters to be configured.

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Follow the steps below to proceed with peripheral configuration:

1. Click the peripheral button to open the corresponding configuration window.
In our example
a) click TIM3 to open the timer configuration window.

Figure 215. Timer 3 configuration window

@ Paramete ings User C [5 @ [MA Settings

[Configure the below parameters - |

Q " - o
4 WLt w

~ Counter Settings
Prescaler (PSC - 16 bits value)

Counter Mode Up
Counter Period (AutoReload Register - 16 bits value) 0
Internal Clock Division (CKD) Mo Division
~ Trigger Qutput (TRGO) Parameters
Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)
Trigger Event Selection Reset (UG bit from TIMx_EGR)

Prescaler (PSC - 16 bits value)
Prescaler must be between 0 and 65 535.

b) with a 16 MHz APB clock (Clock tree view), set the prescaler to 16000 and the
counter period to 1000 to make the LED blink every millisecond.

Figure 216. Timer 3 configuration

® Parameter Setti
[Configure the below parameters |

~ Counter Settings

Prescaler (PSC - 16 bits value) 16000

Counter Mode Up
Counter Period (AutoReload Register - 16 bits value) 0
Internal Clock Division (CKD) Mo Division
~ Trigger Qutput (TRGO) Parameters
Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)

Trigger Event Selection

Trigger Event Selection
TIM_MasterOutputTrigger

UM1718 Rev 31 233/363

3

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

2. Optionally, and when available, select:

— The NVIC Settings tab to display the NVIC configuration and enable interruptions
for this peripheral.

— The DMA Settings tab to display the DMA configuration and to configure DMA
transfers for this peripheral.

In the tutorial example, the DMA is not used and the GPIO settings remain
unchanged. The interrupt is enabled, as shown in Figure 217.

— The GPIO Settings tab to display the GPIO configuration and to configure the
GPIOs for this peripheral.

— Insertan item:
— The User Constants tab to specify constants to be used in the project.

Figure 217. Enabling Timer 3 interrupt

Configuration

Reset Configuration

11.6.3 Configuring the GPIOs

The user can adjust all pin configurations from this window. A small icon along with a tooltip
indicates the configuration status.

Figure 218. GPIO configuration color scheme and tooltip

40 Pinout view £ Sﬂem view

Middlewares

System Core Analog Timers Connectivity Multimedia Security Computing

TN & RNG &
Wi @ GPIO: General Purpose Input Output
This IP is correctly configured. You can generate code using current values.

RCC @

3

234/363 UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Follow the sequence below to configure the GPIOs:

1. Click the GPIO button in the Configuration view to open the Pin Configuration
window below.

2. The first tab shows the pins that have been assigned a GPIO mode but not for a
dedicated peripheral and middleware. Select a Pin Name to open the configuration for
that pin.

In the tutorial example, select PD12 and configure it in output push-pull mode to drive
the STM32F4DISCOVERY LED (see Figure 219).

Figure 219. GPIO mode configuration

GPIO Mode and Configuration :
Group By Peripherals

Search Signals

[Search (CtFF) | [Show only Modified Pins
GPIO output level GPIO mode | GPIO Pull-up/Pull-_.. [Maximum output s... User Label WModified
P12 nia Low Qutput Push Pull Mo pull-up and no ... Low O

¢PDA12 Configuration :

GPIO output level [Cow v]
GPIO mode [Output Push Pull ~|
GPIO Pull-up/Pull-down |NU pull-up and no pull-down V|
Maximum output speed [Low ~|
User Label [|

3

UM1718 Rev 31 235/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.6.4

Note:

236/363

Configuring the DMAs

This is not required for this example. It is recommended to use DMA transfers to offload the
CPU. The DMA Configuration window provides a fast and easy way to configure the DMAs
(see Figure 220):

1. add a new DMA request and select among a list of possible configurations.
2. select among the available streams.

3. select the Direction: Memory to Peripheral or Peripheral to Memory.

4. select a Priority.

5. enable the FIFO.

Configuring the DMA for a given peripheral and middleware can also be performed using
the Peripheral and Middleware configuration window.

Figure 220. DMA parameters configuration window

DMA Mode and Configuration

@ DAl @ MemToMem

DIIA Request
Select ~
Select
TIM3_CH4/UP

DMA Request Settings

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.6.5 Configuring the middleware

This is not required for the example taken for the tutorial.

If a peripheral is required for a middleware mode, the peripheral must be configured in the
Pinout view for the middleware mode to become available. A tooltip can guide the user as
shown below.

Figure 221. Middleware tooltip

Middleware s

-DMA Reguest Settings

-

FATFS
FREERTOS

Maode

| Lightweight TGPAP stack I
Status:
Mot available:
Active only if: ETH IP configured / FREERTOS is enabled when MBEDTLS is enabled.

1. Configure the USB peripheral from the Pinout view.

Figure 222. USB Host configuration

(Ipt|r|r|~. Q USB_OTG_FS Mode and Configuration
n_ Mode
UCIHI‘(I J
USARTE | Mode |[Host_Only |
 USB_0TG [Activate_SOF

USB 0TG.
O Activate_vBUS

2. Select MSC_FS class from USB Host middleware.
3. Select the checkbox to enable FatFs USB mode in the tree panel.

3

UM1718 Rev 31 237/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

238/363

Figure 223. FatFs over USB mode enabled

FATFS Mode and Configuration

[External SRAM
O so card
LUSB Disk

] User-defined

Feset Configuration

@ Uszer Constants | @ Platform Settings

Configure the below parameters :

Q | | | Frs) P
L L

~ Yersion
FATFS version RO.12c

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

4. Select the Configuration view. FatFs and USB buttons are then displayed.

Figure 224. System view with FatFs and USB enabled

[I] STM32CubeMX STM32Cube_simpleledToggle.ioc®: STM32F407VGTx & ‘

E
STM32 ﬁ i i
i File Window Help

STM32Cube_simpleLedToggle.ioc - Pinout & Configuration GENERATE CODE

Pinout & Configuration ® Clock Configuration

Additional Softwares ~ Pinout

£ Pinout view

Project Manager

== System view

Middlewares

Timers >

FATFS @ USB_HOST & |
Connectivity >

Multimedia ? System Core Analog Timers Connectivity Multimedia Security Comput

a» |

Security >

GPIO @

Computing >

Middleware ~
. NIC @

FATFS "
FREERTOS RCC @
LIBJPEG i

MBEDTLS

3

UM1718 Rev 31 239/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

5. FatFs and USB using default settings are already marked as configured . Click
FatFs and USB buttons to display default configuration settings. You can also change
them by following the guidelines provided at the bottom of the window.

Figure 225. FatFs define statements

Reset Configuration

@ Advanced Settings

[Configure the below parameters : |

Q | r | Fr ey
W wa

~ Version
FATFS version RO1Z2c
~ Function Parameters
FS_READOMLY (Read-only mode) Disabled
FS_MINIMIZE (Minimization level)
USE_STRFUMC (String functions) Enabled with LF -= CELF conversion
USE_FIND (Find functions) Dizabled
USE_MKFS (Make filesystem fun... Enabled

FS_MINIMIZE (Minimization level)

_FS_MINIMIZE

Diagnostic:

Function list updated for R0.12

Parameter Description:

The FS_MINIMIZE option defines minimization level to remove some functions.

0: All basic functions are enabled.

1: {_stat(), T_getfree(), T_unlink(), _mkdir(), i_truncate() and f_rename() functions are
removed.

240/363 UM1718 Rev 31

3

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.7

11.71

3

Generating a complete C project

Setting project options

Default project settings can be adjusted prior to C code generation as shown in Figure 226.
1. Select the Project Manager view to update project settings and generation options.

2. Select the Project Tab and choose a Project name, location, a toolchain and a
toolchain version to generate the project (see Figure 226).

Figure 226. Project Settings an

d toolchain selection

Pinout & Configuration

¢Project Settings

Clock Configuration

Project Manager

Project Name

Project Location

|C:‘LSTM 32CubeMX_Projects\

| Browse

Application Structure

|Elasic 4

Toolchain Folder Location

[Do not generate the ma._

Code Generator (C:\STM32CubeMX_Projects\

Toolchain / IDE Min Wersion
EWARM EN
TEVWARM
_|MDK-ARM
SW4STM32
k200
TrueSTUDIO
400
Advanced Settings TR E——
| Makefile
Other Toolchains (GPD

«Mcu and Firmware Package

Mcu Reference

ISTM32G431KETx

Firmware Package Mame and Version

|STM32€ube FW G4 V1.1.0

Use Default Firmware Location

Browse

3. Select the Code Generator tab to choose various C code generation options:

— The library files copied to Projects folder.

— C code regeneration (e.g. what is kept or backed up during C code regeneration).
— HAL specific action (e.g. set all free pins as analog I/Os to reduce MCU power

consumption).

In the tutorial example, select the settings as displayed in Figure 227 and click OK.

UM1718 Rev 31

241/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Note:

11.7.2

242/363

A dialog window appears when the firmware package is missing. Go to next section for
explanation on how to download the firmware package.

Figure 227. Project Manager menu - Code Generator tab

Pinout & Configuration @ Clock Configuration Project Manager

Generate Report

+STM32Cube Firmware Library Package

© Copy all used libraries into the project folder
O Copy only the necessary library files

@ Add necessary library files as reference in the toolchain project configuration file

¢ Generated files
[Generate peripheral initialization as a pair of ".c/.l" files per peripheral
[Backup previously generated files when re-generating

Keep User Code when re-generating

Delete previously generated files when not re-generated

+HAL Settings

Set all free pins as analog (to optimize the power consumption)

[Enable Full Assert

¢ Template Settings

Select a template to generate customized code Settings...

Downloading firmware package and generating the C code

1. Click to generate the C code.

During C code generation, STM32CubeMX copies files from the relevant STM32Cube
MCU package into the project folder so that the project can be compiled. When
generating a project for the first time, the firmware package is not available on the user
PC and a warning message is displayed:

Figure 228. Missing firmware package warning message

Project Manager Settings u

The Firmware Package (STM32Cube FW_F4 V1.22.0RC1) or one of its dependencies required by the Project is not available in your STM32CubeMX Repository.
Do you want to download this now 7

2. STM32CubeMX offers to download the relevant firmware package or to go on. Click
Download to obtain a complete project, that is a project ready to be used in the
selected IDE.

By clicking Continue, only /nc and Src folders will be created, holding STM32CubeMX
generated initialization files. The necessary firmware and middleware libraries will have
to be copied manually to obtain a complete project.

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

If the download fails, an error message is displayed.

Figure 229. Error during download

Problem during Download and/or Unzip u

-

(@) Error during Access to HTTP Server.

k-

\-_.-'/

Please check Proxy settings under 'Help = Updater Settings = Connection Parameters'.

To solve this issue, execute the next two steps. Skip them otherwise.

Select Help > Updater settings menu and adjust the connection parameters to match
your network configuration.

3.

Figure 230. Updater settings for download

[Updater Settings u

Updater Settings [NEGRREEHIORFSFAMEIErs

¢ Proxy Server Type
O Mo Proxy

O Use System Proxy Parameters
® Manual Configuration of Proxy Server

+Manual Configuration of Proxy Server
Praoxy HTTP |

| Port [B0B0 |

-Authentication

Require Authentication Remember my Credentials

User Login | JohnDoe

Password |................l

Check Connection

b

4. Click Check connection. The check mark turns green once the connection is

established.

3

UM1718 Rev 31 243/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

244/363

Figure 231. Updater settings with connection

.
[Updater Settings

==

«Proxy Server Type

«Manual Configuration of Proxy Server

Updater Settings (SESRREEHGR P Erameters

O Mo Proxy
O Use System Proxy Parameters

@ Manual Configuration of Proxy Server

Proxy HTTP | do.it. mycompany.com

| Port [5080 |

~Authentication

Require Authentication Remember my Credentials

User Login | JohnDoe

Password |.................

& Check Connection

5. Once the connection is functional, click to generate the C code.
The C code generation process starts and progress is displayed (see next figures).

Figure 232. Downloading the firmware package

Ll Downloading selected software packages

==

Download File stm32cube fw f4 w1220 zip

1.7 MBytes / 648.0 MBytes

Download and Unzip selected Files

Cancel

UM1718 Rev 31

3

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Figure 233. Unzipping the firmware package

LIl Downloading selected software packages u

Download File stm32cube fw 4 v1220.zip

Download and Unzip selected Files)

6. Finally, a confirmation message is displayed to indicate that the C code generation has
been successful.

Figure 234. C code generation completion message

-
[[] Code Generation u
o The Code is successfully generated under C:/STM32CubeMX_Projects/stm32f429 fatfs sd test

Open Folder

UM1718 Rev 31 245/363

3

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

Caution:

246/363

7.

Click Open Folder to display the generated project contents or click Open Project to
open the project directly in your IDE. Then proceed with Section 11.8.

Figure 235. C code generation output folder

e =]
@Uw| « STM3.. » STM32Cube Si.. » I | Search STM32Cube_SimpleLed.. 2
File Edit View Tools Help
Organize .| Open Include in library v = R | @
4 | STM32Cube SimpleledToggle * Name B -
Drivers
Drivers
Inc
) Inc
Middlewares . :
i Middlewares F
Projects -
| . Projects
Src
Src I
= STM32Cube_SimpleLedToggle.ioc -
- 4 111 »
Projects Date modified: 2/3/2014 10:05 AM

i File folder IJ

— e

The generated project contains:

The STM32CubeMX .ioc project file located in the root folder. It contains the project
user configuration and settings generated through STM32CubeMX user interface.

The Drivers and Middlewares folders hold copies of the firmware package files relevant
for the user configuration.

The Projects folder contains IDE specific folders with all the files required for the project
development and debug within the IDE.

The Inc and Src folders contain STM32CubeMX generated files for middleware,
peripheral and GPIO initialization, including the main.c file. The STM32CubeMX
generated files contain user-dedicated sections allowing to insert user-defined C code.

C code written within the user sections is preserved at next C code generation, while C code
written outside these sections is overwritten.

User C code will be lost if user sections are moved or if user sections delimiters are
renamed.

3

UM1718 Rev 31

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.8

3

Building and updating the C code project

This example explains how to use the generated initialization C code and complete the
project, within IAR™ EWARM toolchain, to have the LED blink according to the TIM3
frequency.

A folder is available for the toolchains selected for C code generation: the project can be
generated for more than one toolchain by choosing a different toolchain from the Project
Manager menu and clicking Generate code once again.

1. Open the project directly in the IDE toolchain by clicking Open Project from the dialog
window or by double-clicking the relevant IDE file available in the toolchain folder under
STM32CubeMX generated project directory (see Figure 234).

Figure 236. C code generation output: Projects folder

[T ——— o o=
@\;}‘4 « » STM32Cube simpleLedToggle » - |4¢| | Search STM... O |

File Edit View Tools Help

Organize » Include in library « Share with = Burn MNew folder == w DJ (7]
4 5TM32Cube_simpleLedToggle * MName
Dirivers ;
Drivers
EWARM
EWARM
Inc
. Inc
MDK-ARM N
MDK-ARM
§ Src ||
Sre
SW4STM32
SW45TM32
TrueSTUDIO
TrueSTUDIO
| .mxproject

% 5TM32Cube_simpleledToggle.ioc
L | 5STM32Cube_simpleledToggle bt
'&, 5TM32Cube_simpleLedToggle_Configuration.pdf

m
=

v 1 | }

11 items

UM1718 Rev 31 247/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

248/363

2. As an example, select .eww file to load the project in the IAR™ EWARM IDE.

Figure 237. C code generation for EWARM

= [

G-

b 5TM32Cube_simpleLedToggle » EWARM »

+ [42 |[Searchew.. o

G Project.eww
:/6 IAR IDE Workspace

Date modified: 7/28/2015 2:39 PM

File Edit View Tools Help
Organize v g@' Open « Burn MNew folder = « [@.
9 S
5TM32Cube_simpleledToggle = Name Date modified
Drivers . "
) settings 7/28/2015 2:44
. EWARM . ,
: 5TM32Cube_simpleLedToggle Configura... 2015 2:44
. Inc o TS e
| 4] Project.ewan 2015 2:39
MDK-ARM ; e .
5 | STM32Cube_simpleLedToggle.ewd 1/28/2015 2:39
y Src
|| STM32Cube_simpleLedToggle.ewp 7/28/2015 2:39
SW45TM32 : %
|| str32fa07xx_flash.icf 7/16/2015 5:52
. TrueSTUDIO
7/16/2015 5:52

| stm32f407:0_sram.icf

L |

- 4| 1l |

Date created: 7/28/2015 2:39 PM
Size: 169 bytes

UM1718 Rev 31

3

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

3. Select the main.c file to open in editor.

Figure 238. STM32CubeMX generated project open in IAR™ IDE

& Project - IAR Embedded Waorkbench IDE =NAEE X

File Edit View Project Tools Window Help

==y ==y | o o | - "mEe &P |BEDEGE 2|2

Workspace x L fl «x
S5TM32Cube_simpleledT ogale Configuration A /% Includes f
Eileg) #include "stm32f4xx _hal.h"

/* USER CODE BEGIN Includes */

B STM32Cube_simpleLedToggle... v /* USER CODE END Includes #/

8 03 Application

| CIEWARM /* Private wvariables

| Letuser TIM HandleTypeDef htim3;

| main.c /+# USER CODE BEGIN BV +/

| st 32fde_hal_msp.c /* Private variables

| stmaefdor_itc /* USER CODE END FV #/

[Drivers

3 Dutput /* Private function prototypes

wvoid SystemClock_Config(wvoid):
static void ME_GPIO Init (woid);
static void ME_TIM3_Init(void); \
/* USER CODE BEGIN FFF +*/ I
/* USER CODE END PFF */

m

/* USER CODE BEGIN 0 */ b
/* USER CODE END 0 */
int main(void)
B {
/* USER CODE BEGIN 1 #/
/* USER CODE END 1 *=/
/* MCU Configuration
/* Reset of all peripherals, Initiaslizes the Flash interface and the 5y
HAL Init();
/* Configure the system clock *#/
SystemClock_Config():
/* Initialize all configured peripherals *#/
MX_GPIO Init();
MX_TIM3 Init();:
/% USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE +*/
while (1)
B
/* USER CODE END WHILE +#/
/* USER CODE BEGIN 3 #/
rol
/* USER CODE END 3 #/

I | STM32Cube_simpleLedT ogale

[Ready Ln51, Coll System NL

The htim3 structure handler, system clock, GPIO and TIM3 initialization functions are
defined. The initialization functions are called in the main.c. For now the user C code
sections are empty.

3

UM1718 Rev 31 249/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

250/363

4. Inthe IAR™ |DE, right-click the project name and select Options.

Figure 239. IAR™ options

’STMSECUbe_SimpIeLedTDggIe Caonfiguration

7]

& [Application
= [Drivers
& C1Example
L@ (3 Output

e
Ly

Files
=fa|STM32Cube_SimpleLedToggle..| v | |

x
x

x

5. Click the ST-LINK category and make sure SWD is selected to communicate with the

STM32F4DISCOVERY board. Click OK.

Figure 240. SWD connection

r ~
Options for node "STM32Cube_SimpleLedToggle™ ﬁ
General Options >

CfC++ Compiler
Assembler ST-LINK
Output Converter
Custom Build Reset
Build Actions INQrma| il
Linker
Debugger Interface Clock setup

Simulator

Angel Il) JTAG CPUclock: 720 MHz

CMSIS DAP =

GDE Server SWOclock [[]Auto

IAR ROM-manitor 2000 KHz

Tjet/TTAGjet

JHink/-Trace

T1 Stellaris

Macraigor

PE micra

RDIL

STLINK Lo

Third-Party Driver

TI XD5100/200 N oK. I [Pyl

6. Select Project > Rebuild all. Check if the project building has succeeded.

Figure 241. Project building log

Messages
strn32fdx_hal_tim.c

st 32fdwe_hal_tim_ex.c
strn32fdx_it.c

st 32fdxe|_sdmmc.c
systerm_stm32fdocc
Linking

Taotal number of errors: 0

Total number of warnings: 0

UM1718 Rev 31

3

UM1718Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

7. Add user C code in the dedicated user sections only.

Note: The main while(1) loop is placed in a user section.
For example:
a) Edit the main.c file.
b) To start timer 3, update User Section 2 with the following C code:

Figure 242. User Section 2

HAL_Init{);

/* Configure the system clock */
SystemClock Configi):

/% Initislize &l] configured peripherals #/
MY GPIO_Init();

MY TIM3 Init();

/* USER CODE BEGIN 2 */
HAL_TIM Base_ Start_IT (shtim3};
/* USER CODE END 2 */

/% Infinite loop #/

J/# USER CODE BESIN FHILE #/
while (1}

{

c) Then, add the following C code in User Section 4:

Figure 243. User Section 4

#* USER CODE BEGIN 4 =7

woid HAL TIM PeriodElapsedCallback (TIM_HandleTypeDef *htim)
{

if | htim->Instance == htim3.Instance)
{
HAL GPID_TogglePin(GPIOD, GPIO_PIN 12):
}
¥
A* USER CODE END 4 #/7

This C code implements the weak callback function defined in the HAL timer driver
(stm32f4xx_hal_tim.h) to toggle the GPIO pin driving the green LED when the
timer counter period has elapsed.

8. Rebuild and program your board using L. Make sure the SWD ST-LINK option is
checked as a Project options otherwise board programming will fail.

4

9. Launch the program using ' = |. The green LED on the STM32F4DISCOVERY board
will blink every second.

10. To change the MCU configuration, go back to STM32CubeMX user interface,
implement the changes and regenerate the C code. The project will be updated,
preserving the C code in the user sections if Keep User Code when re-generating option in
Project Manager’s Code Generator tab is enabled.

3

UM1718 Rev 31 251/363

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

11.9

252/363

Switching to another MCU

STM32CubeMX allows loading a project configuration on an MCU of the same Series.

Proceed as follows:

1.

Select File > New Project.

2. Select an MCU belonging to the same Series. As an example, you can select the

STM32F429Z1Tx that is the core MCU of the 32F429IDISCOVERY board.

3. Select File > Import project. In the Import project window, browse to the .ioc file to

load. A message warns you that the currently selected MCU (STM32F429ZITx) differs
from the one specified in the .ioc file (STM32F407VGTx). Several import options are
proposed (see Figure 244).

4. Click the Try Import button and check the import status to verify if the import has been

successful.

5. Click OK to really import the project. An output tab is then displayed to report the import

results.

6. The green LED on 32F429IDISCOVERY board is connected to PG13: CTRL+ right

click PD12 and drag and drop it on PG13.

7. From Project Manager project tab configure the new project name and folder location.

Click Generate icon to save the project and generate the code.

8. Select Open the project from the dialog window, update the user sections with the

user code, making sure to update the GPIO settings for PG13. Build the project and
flash the board. Launch the program and check that LED blinks once per second.

Figure 244. Import Project menu

[@ Import Project ﬁ
-Imported Project
|C\STM32CubeMX_Projects\s_0_UM_Tulo1\STM32Cube_simpleLedToggle\STM32Cube_simpleLedToggle. ioc | -‘

Import MX Settings

[Import Power Cansumption Calculator Settings

[Import Project Settings

Import Pinout/Clock Configuration/Configuration Settings
@ Automatic Import
© Manual Import

| =
./
Peripheral List
To STM32F4297ITx
FATFS M FATFS
M MVIC
RCC
M RNG
move
Try Import Show View
Import Status

Initializing: STM32F407V(E-G)Tx
Import Analysis: C:\SIM32CubeMX Projects\5_0 UM Tutol\SIM32Cube simpleLedToggle‘\SIM32Cube simplelLedToggle.ioc project

The Mcu (STM32F407VGIx) found in the Project being imported is not the same as the Mcu (5THM32F42SZITx) currently edited

Import Try @
Importing project completed

Nl

3

UM1718 Rev 31

UM1718

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

12

3

Tutorial 2 - Example of FatFs on an SD card using
STM324291-EVAL evaluation board

The tutorial consists in creating and writing to a file on the STM32429I-EVAL1 SD card using
the FatFs file system middleware.

To generate a project and run tutorial 2, follow the sequence below:

1.

ok wbd

Launch STM32CubeMX.

Select File > New Project. The Project window opens.

Click the Board Selector Tab to display the list of ST boards.

Select EvalBoard as type of Board and STM32F4 as Series to filter down the list.

Answer Yes to Initialize all peripherals with their default mode so that the code is
generated only for the peripherals used by the application.

Select the STM32429I-EVAL board and click OK. Answer No in the dialog box asking
to initialize all peripherals to their default modes (see Figure 245). The Pinout view is
loaded, matching the MCU pinout configuration on the evaluation board (see

Figure 246).

Figure 245. Board peripheral initialization dialog box

[Board Project Options: STM324291-E... IS

e Initialize all peripherals with their default Mode ?

UM1718 Rev 31 253/363

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

254/363

Figure 246. Board selection

,
[I] New Project from a Board E
MCU Selector |SEoardSelecior
+Board Filter:
* @ EQ" o Feat... Large Pi... Docs & Resou.. Datas... - .-
I Part Number Search ~ Pwrg STM324291- EVAL -
STMicroelectronics STM324291 Evaluation Board
~
{ Q Support and Examples |
Vendar 3 Active Unit Price (US$) : 389.0 |
" Productis in mass production Mounted device STM32F420NIHx
Type ~ f
Check/Uncheck All
I L
D
1 O Discavery Boards List: 7 items i
Evaluation Board
L
(00 Hucleot44 || Overview | PartHo___[Type[Market JUnit Pric. JMounte._[MCU Se._JCustom Fo_] Memory | _ROM] t
[Nucleo64 b
| t
b+ STM3241G-.. Ev. Active 3400 STH22F. STM32. 0 1 0 |
| MCU Series v
"
CheckiUncheck All
" O stm32F0 r 3 STM32429F-... Ev.. Active 389.0 STM32..0 0 1
" [sTM32F1 | |
[sTM32F2
|
== -
7. From the Peripheral tree on the left, expand the SDIO peripheral and select the SD 4

bits wide bus (see Figure 247).

Figure 247. SDIO peripheral configuration

Pinout & Configuration ® Clock Configuration
Additional Softwares
Options §e4 SOIO Mode and Configuration
>
FMC WMode|MMC 4 bits Wide bus ~|
12C1
@ 12c2
@ 12C3
) [
@ SPI1

3

UM1718 Rev 31

UM1718

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

8. Under the Middlewares category, check SD Card as FatFs mode (see Figure 248).

Figure 248. FatFs mode configuration

Lser-defined

FATFS Mode and Configuration

9. Configure the clocks as follows:
a) Select the RCC peripheral from the Pinout view (see Figure 249).

Figure 249. RCC peripheral configuration

Q, RCC Mode and Configuration :
| High Speed Clock [HSE}|Cr§,rstaI.-‘Cerami|: Resonator V||
System C...™~ .
/ Low Speed Clock (LSE) |D|sable V|
DMA [Master Clock Qutput 1
WDG
NVIC | AudioClockinput(25_CKIN)
& RCC
WWDG
b) Configure the clock tree from the clock tab (see Figure 250).
Figure 250. Clock tree view
HSIRC System Clock Mux J
) HSE SYSCLK (MHzZ)) 7AHB>Fréscav\Er_~-1CL(lf5";Hz] y |
st | ﬁ_ 7*
& —»= Enable C33
Input frequency >l IS X336 ~ f2 =
M»tl}} HSE - i - /M N [/P
Main PLL Q
‘Yl UM1718 Rev 31 255/363

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

10. In the Project tab, specify the project name and destination folder. Then, select the
EWARM IDE toolchain.

Figure 251. FATFS tutorial - Project settings

Pinout & Configuration Clock Configuration Project Manager

Generate Report

¢Project Settings

Project Name
[STM32F429NI-STM32F4291-EVAL |

Project Location
[C:\STM32CubeMX_Projects |

Application Structure

|Eaaic [Do not generate the main()

Toolchain Folder Location
|C:\STM 32CubeMX_Projects\STM32F429NI-STM32F4291-EVAL

Toolchain / IDE
|EWARM V8 ~ | [Generate Under Root

¢Linker Settings

Minimum Heap Size 0x200
Minimum Stack Size 0x400

¢Mcu and Firmware Package

Mcu Reference
[STM32L053CBTx

11. Click Ok. Then, on the toolbar menu, click to generate the project.

12. Upon code generation completion, click Open Project in the Code Generation dialog
window (see Figure 252). This opens the project directly in the IDE.

Figure 252. C code generation completion message
[[] Code Generation u

o The Code is successfully generated under C:/STM32CubeMX_Projects/STM32F429NI-STM32F429-EVAL

Open Folder @ Open Project

3

256/363 UM1718 Rev 31

UM1718 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

13. In the IDE, check that heap and stack sizes are sufficient: right click the project name
and select Options, then select Linker. Check Override default to use the icf file from
STM32CubeMX generated project folder. if not already done through CubeMX User
interface (under Linker Settings from Project Manager's project tab), adjust the heap
and stack sizes (see Figure 253).

Figure 253. IDE workspace

Options for node "fatfs_sd_test” | 23 |

Cateqgony: Factom Settings

General Options

Static Analysis

Runtime Checking
CjC++ Compiler Config |I_i|::|E|r)r I InpLt IOptirnizations Advanced I Output I List I e
Assembler
Output Converter Linker corfiguration file

Custom Build .
Build Actions Overide default

SPROJ_DIRS\stm32f42%0¢_flash icf D

Debugger
Simulator
Angel
CMSIS DAP Configuration file symbol definttions: (one per ling)
GOB Server
IAR. ROM-monitor
I4et/TTAGjet
J-Link{1-Trace
TI Stellaris
Macraigor
PE micro i
ROI Linker configuraticon file editor

ST-LIMNK
Third-Party Driver Vector Table | Memary Regions | Stack/Heap Sizes
TLXDS

CSTACK 0xi300

HEAP 0400

[Save] [Cancel

Note: When using the MDK-Arm toolchain, go to the Application/MDK-ARM folder and
double- click the startup_xx.s file to edit and adjust the heap and stack sizes there.

3

UM1718 Rev 31 257/363

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board

UM1718

14. Go to the Application/User folder. Double-click the main.c file and edit it.

15. The tutorial consists in creating and writing to a file on the evaluation board SD card

using the FatFs file system middleware:
a) At startup all LEDs are OFF.

b) The red LED is turned ON to indicate that an error occurred (FatFs initialization,

file read/write access errors..).

c) Theorange LED is turned ON to indicate that the FatFs link has been successfully

mounted on the SD driver.

d) The blue LED is turned ON to indicate that the file has been successfully written to

the SD Card.

e) The green LED is turned ON to indicate that the file has been successfully read

from file the SD Card.
16. For use case implementation, update main.c with the following code:
a) Insert main.c private variables in a dedicated user code section:

/* USER CODE BEGIN PV */
/* Private variables ———————————————— */

FATFS SDFatFs; /* File system object for SD card logical drive */

FIL MyFile; /* File object */
const char wtext[] = "Hello World!";
const uint8 t imagel bmp[] = {

0x42,0x4d,0x36,0x84,0x03,0x00,0x00,0x00,0x00,0x00,0x36,0x00,0x00,0x00,
0x28,0x00,0x00,0x00,0x40,0x01,0x00,0x00,0x£f0,0x00,0x00,0x00,0x01,0x00,
0x18,0x00,0x00,0x00,0x00,0x00,0x00,0x84,0x03,0x00,0x00,0x00,0x00,0x00,
0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x29,0x74,
0x51, 0x0e, 0x63, 0x30,0x04,0x4c, 0x1d, 0x0f, 0x56,0x25,0x11,0x79,0x41,0x1£f,
0x85,0x6f,0x25,0x79,0x7e,0x27,0x72,0x72,0x0b, 0x50,0x43,0x00,0x44,0x15,
0x00,0x4b, 0x0f,0x00, 0x4a,0x15,0x07,0x50,0x16,0x03,0x54,0x22,0x23,0x70,
0x65,0x30,0x82,0x6d,0x0f, 0x6c, 0x3e,0x22,0x80,0x5d, 0x23,0x8b, 0x5b, 0x26};

/* USER CODE END PV */
b) Insert main functional local variables:

int main (void)

{

/* USER CODE BEGIN 1 */

FRESULT res; /* FatFs function common result code */

uint32_t byteswritten, bytesread; /* File write/read counts */
char rtext[256]; /* File read buffer */
/* USER CODE END 1 */

/* MCU Configuration-—--—-—--———-—-———-———-—-—"——-—————~—~———~—~—————————— */

/* Reset of all peripherals, Initializes the Flash interface and the

Systick. */
HAL Init();

c) Insert user code in the main function, after initialization calls and before the while

loop, to perform actual read/write from/to the SD card:
int main (void)

{

258/363 UM1718 Rev 31

S74

UM1718

Tutorial 2 - Example of FatFs on an SD card using STM32429I1-EVAL evaluation board

3

MX_FATFS Init();

/* USER CODE BEGIN 2 */
/*##-0- Turn all LEDs off (red, green, orange and blue) */
HAL GPIO WritePin(GPIOG, (GPIO PIN 10 | GPIO PIN 6 | GPIO PIN 7 |
GPIO PIN 12), GPIO PIN SET);
/*##-1- FatFS: Link the SD disk I/O driver ##########*/
if (retSD == 0) {

/* success: set the orange LED on */
HALiGPIOiTNritePin(GPIOG, GPIO PIN 7, GPIO PIN RESET);
/*##-2- Register the file system object to the FatFs module ###*/
if (f mount (&SDFatFs, (TCHAR const*)SD Path, 0) != FR OK) {

/* FatFs Initialization Error : set the red LED on */
HAL GPIO WritePin(GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {
/*##-3- Create a FAT file system (format) on the logical drive#*/
/* WARNING: Formatting the uSD card will delete all content on the
device */
if (f mkfs ((TCHAR const*)SD Path, 0, 0) != FR OK) {
/* FatFs Format Error : set the red LED on */
HAL GPIO WritePin(GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {
/*##-4- Create & Open a new text file object with write access#*/
if (f open(&MyFile, "Hello.txt", FA CREATE ALWAYS | FA WRITE) !=
FR OK) {
/* 'Hello.txt' file Open for write Error : set the red LED on */
HAL GPIO WritePin(GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;

} else {
/*##-5- Write data to the text file ######H#H#4FH44FFEHESY/
res = f write(&MyFile, wtext, sizeof (wtext), (void

*) &byteswritten) ;
if ((byteswritten == 0) || (res != FR OK)) {
/* 'Hello.txt' file Write or EOF Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1)
} else {
/*##-6- Successful open/write : set the blue LED on */
HAL GPIO WritePin(GPIOG, GPIO PIN 12, GPIO PIN RESET);
f_close(&MyFile);
/*##-7- Open the text file object with read access #*/
if (f open(&MyFile, "Hello.txt", FA READ) != FR OK) {
/* 'Hello.txt' file Open for read Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;
} else {
/*##-8- Read data from the text file ########4*/
res = f read(&MyFile, rtext, sizeof (wtext), é&bytesread);

UM1718 Rev 31 259/363

Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board UM1718

if ((strcmp (rtext,wtext) !=0) || (res != FR OK)) {

/* 'Hello.txt' file Read or EOF Error : set the red LED on */
HAL GPIO WritePin (GPIOG, GPIO PIN 10, GPIO PIN RESET);
while (1) ;

} else {

/* Successful read : set the green LED On */

HAL GPIO WritePin(GPIOG, GPIO PIN 6, GPIO PIN RESET);
/*##-9- Close the open text file ######4#4##444444>/
f_close(&MyFile);

FRYYRLY

/*##-10- Unlink the micro SD disk I/O driver #######4#>/
FATFS UnLinkDriver (SD_Path);

/* USER CODE END 2 */
/* Infinite loop */

/* USER CODE BEGIN WHILE */
while (1)

3

260/363 UM1718 Rev 31

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

13

13.1

Note:

3

Tutorial 3 - Using the Power Consumption Calculator
to optimize the embedded application consumption
and more

Tutorial overview

This tutorial focuses on STM32CubeMX Power Consumption Calculator (Power
Consumption Calculator) feature and its benefits to evaluate the impacts of power-saving
techniques on a given application sequence.

The key considerations to reduce a given application power consumption are:

e Reducing the operating voltage

e Reducing the time spent in energy consuming modes

It is up to the developer to select a configuration that gives the best compromise
between low-power consumption and performance.

e Maximizing the time spent in non-active and low-power modes
e Using the optimal clock configuration

The core should always operate at relatively good speed, since reducing the operating
frequency can increase energy consumption if the microcontroller has to remain for a
long time in an active operating mode to perform a given operation.

e Enabling only the peripherals relevant for the current application state and clock-gating
the others

e When relevant, using the peripherals with low-power features (e.g. waking up the
microcontroller with the 12C)

e Minimizing the number of state transitions
e Optimizing memory accesses during code execution
— Prefer code execution from RAM to Flash memory
— When relevant, consider aligning CPU frequency with Flash memory operating
frequency for zero wait states.

The following tutorial shows how the STM32CubeMX Power Consumption Calculator
feature can help to tune an application to minimize its power consumption and extend the
battery life.

The Power Consumption Calculator does not account for I/O dynamic current consumption
and external board components that can also affect current consumption. For this purpose,
an “additional consumption” field is provided for the user to specify such consumption value.

UM1718 Rev 31 261/363

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

13.2 Application example description

The application is designed using the NUCLEO-L476RG board based on a
STM32L476RGTx device and supplied by a 2.4 V battery.

The main purpose of this application is to perform ADC measurements and transfer the
conversion results over UART. It uses:

e Multiple low-power modes: Low-power run, Low-power sleep, Sleep, Stop and Standby
e Multiple peripherals: USART, DMA, Timer, COMP, DAC and RTC

— The RTC is used to run a calendar and to wake up the CPU from Standby when a
specified time has elapsed.

— The DMA transfers ADC measurements from ADC to memory
— The USART is used in conjunction with the DMA to send/receive data via the
virtual COM port and to wake up the CPU from Stop mode.

The process to optimize such complex application is to start describing first a functional only
sequence then to introduce, on a step by step basis, the low-power features provided by the
STM32L476RG microcontroller.

13.3 Using the Power Consumption Calculator

13.3.1 Creating a power sequence

Follow the steps below to create the sequence (see Figure 254):
1. Launch STM32CubeMX.
2. Click new project and select the Nucleo-L476RG board from the Board tab.

3. Click the Power Consumption Calculator tab to select the Power Consumption
Calculator view. A first sequence is then created as a reference.

4. Adapt it to minimize the overall current consumption. To do this:

a) Select2.4V Vpp power supply. This value can be adjusted on a step by step basis
(see Figure 255).

b) Select the Li-MnO2 (CR2032) battery. This step is optional. The battery type can
be changed later on (see Figure 255).

3

262/363 UM1718 Rev 31

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Figure 254. Power Consumption Calculation example

[@ STM32CubeMX Untitled*: STM32L476RGTx - a X
£ 4
s @ i i [§ x Ky7
X File Window Help u , Y/

Untitled - Tools GENERATE CODE

Clock Configuration Project Manager

v Power

STM32L4T6RGTx v
[Newseep | 5 E R W O
Series STM32L4
Line STM32L4%6 Tabl
Datasheet 025976_Revd | Step | Mode | vdd [RangesScale [] CPU/Bus Freq Clock Config | Peripherals
1 RUN 24 Range1-High ... 24 MHz HSE ADCifs 6_.. 5.9mA 1ms
2 STANDBY 24 NoRange . 0Hz LSIRTC RTC* 464 nA 1ms
°C/
T 25°C 1 Vg 24V RS WU_FROM_ 24 NoRange .4 MHz S| FAST 17 mA 201 ps
N o 4 RUN 24 Range1-High HSE RTC 216 mA 1ms
Ambient 5 RUN 24 Rangs2-Med HSE ADCifs 6_... 447 mA 1ms
Voo 6 SLEEP 24 Range2-Med. HSE 589 pA 1ms
7 RUN 24 Range2-Med. HEE ADCifs 6. 447mA 1ms
L STOPA 24 NoRange ALLCLOCK . USARTI* 665pA 1ms
Li-MnO2(CR2032) (1x1) 9 WU_FROM_... 24 NoRange HSI16 1.62 mA 6.3ps
10 RUN 24 Range2-Med. HSE RTC USART1 189 mA 1ms
Reset 11 STANDBY 24 NoRange LS| RTC 464 nA 1ms
Display Choi
In Series | 1 In Parallel| 1 & Select your Preferred Display [Plot: All Steps v @
Capacity 225.0 mAh Consumption Profile by Step
Self Discharge ~ 0.12 %/month 5 po o
Nominal Votage 3.0V S Traon
Max Cont Current 3.0 mA Za
5 RN
k=4 10:RUN
a3 awstnav SWSTOP
Information Notes > £ 1
72 ESCEEP| ¥
5 2:sTandr 5:570P1 14:STANDEY
Help > 81
i}
0.0 05 1.0 15 20 25 3.0 35 4.0 4.5 50 55 6.0 B85 7.0 75 8.0 85 9.0
Time (ms)
=—1dd by Step werage Current

3

Sequence Time/ TaMax 9 ms/104.36 °C
Battery Life Estimation

4 days, 7 hours (Battery compatibility not garanteed with defined ... Average DMIPS

Average Consumption 2.16 mA
Not Availablef

Figure 255. Vpp and battery selection menu

STM32L4TBRGTx hd
Series STM32L4
Line STM32L4x6
Datashest 025976_Rewd
T, 25°C 1V, 2.4V v
T ambient 25°C

DD |2-‘1 > |
Li-MnO2{CR2032) (1x1) hd

ange Reset

In Series | 1 2 In Parallel | 1 2
Capacity 225.0 mAh
Self Discharge 0.12 %/month
MNominal Voltage 3oV
Mazx Cont Current 3.0 mA

UM1718 Rev 31

263/363

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

5. Enable the Transition checker to ensure the sequence is valid (see Figure 255). This
option allows verifying that the sequence respects the allowed transitions implemented
within the STM32L476RG.

6. Click the Add button to add steps that match the sequence described in Figure 255.

— By default the steps last 1 ms each, except for the wakeup transitions that are
preset using the transition times specified in the product datasheet (see
Figure 256).

— Some peripherals for which consumption is unavailable or negligible are
highlighted with *’ (see Figure 256).

Figure 256. Sequence table

Sequence Table
m—!m
1 RUN Range1-High ... 24 MHz HSE ADC1fs_ 5 ... 5.9 mA 1ms
2 STANDBY 2_4 NoRange _0Hz LSIRTC RTC* 464 nA 1ms
3 WU_FROM_... 24 MoRange .4 MHz MSI FAST 1.7 mA 201 ps
4 RUM 24 Range1-High ... 16 MHz HSE RTC 216 mA 1ms
5 RUN 24 Range2-Med... .._ 16 MHz HSE ADCifs 5 . 44T mA 1ms
6 SLEEP 24 Range2-Med_.. .._ 16 MHz HSE 589 pA 1ms
7 RUM 24 Range2-Med... ... 16 MHz HSE ADC1fs_5_... 447 mA 1ms
8 STOP1 24 MoRange _..0Hz ALL CLOCK... USART1* 6.65 pA 1ms
9 WU_FROM ... 2.4 NoRange 16 MHz HSI16 162 mA 6.3 ps
10 RUN 24 Range2-Med... .._ 16 MHz HSE RTC USART1 1.89 mA 1ms
11 STANDBY 24 MoRange _..0Hz LSIRTC 464 nA 1ms

7. Click the Save button to save the sequence as SequenceOne.
The application consumption profile is the generated. It shows that the overall sequence
consumes an average of 2.01 mA for 9 ms, and the battery lifetime is only 4 days (see
Figure 257).
Figure 257. sequence results before optimization
Display Choices
Select your Preferred Display |F'I0t All Steps ~ | o
Consumption Profile by Step
6 S:RUN T:RUN
g = AL:Rum l l
T
=] 4:RUN 10:RUN
‘é_ 3 3:wsinsv 9WSTOP1
£ _ T
w2 v 6:SLEEP 2
g 1 2:5TANDHY l B:5TOP1 11:5TANDBEY
&)
! l !
a

00 05 10 15 20 25 30 35 40 45 50 55 &0 &5 70 75 80 B85 9.0
Time (ms)

|—Idd by Step == Average Current|

Sequence Time/ TaMax 9 ms/104.36 °C Average Consumption 2.16 mA
Battery Life Estimation 4 days, 7 hours (Battery compatibility not garanteed with defined ... Average DMIPS Not Available

13.3.2 Optimizing application power consumption

Let us now take several actions to optimize the overall consumption and the battery lifetime.
These actions are performed on step 1, 4, 5, 6, 7, 8 and 10.

264/363 UM1718 Rev 31 ‘Yl

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

3

The next figures show on the left the original step and on the right the step updated with

several optimization actions.

Step 1 (Run)
e Findings

All peripherals are enabled although the application requires only the RTC.

. Actions

— Lower the operating frequency.

— Enable solely the RTC peripheral.

— To reduce the average current consumption, reduce the time spent in this mode.

. Results

The current is reduced from 9.05 mA to 2.16 mA (see Figure 258).

Figure 258. Step 1 optimization

[Edit Step

Reset Step Settings | Enable All IPs | Disable All IPs [SIEGIENISER GG

[Edit Step

Reset Step Settings | Enable All IPs | Disable All IPs | Enable [Ps from Pinout
Powerll ip|

Y
Power Mode
Wemory Fetch Type
Voltage Source
Clocks
CPU Frequency 2z v

Clock Configuration HSE ~

Clock Source Freguency 24 MHz v

Optional Setting:

Step Duration [s V]
‘Addtional € onfo ma v
Results

StepC Esma

Without Peripherals [3.18 mA

Peripherals Part [2.72 mA (A' 2.58 mA - D: 1416 pA)

[toe.36

Ta Max (:C)

p
Peripherals
¥ ADC1
O fs_10_ksps
[ts_1_msps
fs_5_Msps
v ADC2
O fs_10_ksps
[ts_1_msps
fs_5_Msps
¥ ADC3
O fs_10_ksps
[ts_1_msps
fs_5_Msps
[AHB_APB1_Bridge
[aHB_APB2_Bridge
O cant
O cre
¥ DAC1
[J ouT1+0UT2-Buffe:
[J ouT1+0UT2-Buffel
[ouT4+0UT2-Buffel
[ouT1-Buffer_OFF-
[ouT1-Buffer_ON-N
[J ouT1-Butrer_oN-v

o I,

&=

‘Memory

Power Mode RUN

II

Power Range Range 1-High

FLASH/ART/Cache v

Memory Fetch Type

Voo

W
=
II

Votage Source Battery

Clocks

CPU Frequency 18 WHz

Clock Configuration E

Clock Source Frequency |12 - ~

optifal setting

il

Step Duration o s]
Additional C b >
Result:

Step C pigma

Without Peripherals [2.16 ma

Peripherals Part [0 nA (A0 nA-D:0nA)

froa77

Ta Max ("C)

Oes
[moG
¥ LCD
[Buffer_OFF
O LeTime
O LpTimz2
[LpuaRT1
- OPAMP1
O Low_power
[Normal
¥ OPAMP2
[Low_Power
[Normal
[pvpiBor
[pwr
[quapspy
[rG
RTC
[san
[sar
[sommc1
[spit
[spiz

il

Selection——

RTC]

arning
The step consumption i higher than the max continuous current (3 mA) of the Selected battery.

Available use cases: 1 Max: 520

Available use cases: 1 Max: 520

Step 4 (Run, RTC)

. Action

Reduce the time spent in this mode to 0.1 ms.

UM1718 Rev 31

265/363

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

266/363

Step 5 (Run, ADC, DMA, RTC)

Actions

— Change to Low-power run mode.
— Lower the operating frequency.

Results

The current consumption is reduced from 6.17 mA to 271 pA (see Figure 259).

Figure 259. Step 5 optimization

[edit Step

En; All IPs | Disable All IPs BSAEENEER NN
2

P iMemory Peripherals Selection——
Powier Mode RUN ~ I Peripherals
V- ADC1
Memory Fetch Type [fs_1_Msps
- ADCZ
locks [fs_1_msps
- ADC3
‘ L] L1 to_10_keps
[fs_1_msps
: fs_5_Msps

Clock Configuration

Clock Source Frequency

Optional Settings

Step Duration [1 [lms:]
Additional C lo fme]
Results

Step C |

Without Peripherals [1.81 ma.

Peripherals Part [2.66 mA (A: 2.58 mA - D: 76.8 uA)

[104.52

Ta Max (°C)

[AHB_APB4_Bridge
[AHB_APB2_Bridge
[cant
O cre

Optimized settings

[Edit Step

GEECSICRRSEIEN NEGERICRANISEN Disable All IPs Enable IPs from Pinout

Power Mode
Fower Range

Memory Fetch Type

Power/Memory

LOWPOWER_RUN

FLASHIARTICache v

Voo
Valiage Source
Clock

CPU Frequency

Clock Configuration

Clock Source Frequency

- DAC1
[J ouT1+0UT2-Buffel
[J ouT1+0UT2-Buffel
[J ouT1+0UT2-Buffel

Optional Setting

[] ouT1-Buffer_OFF-
[] ouT1-Buffer_ON-h

Step Duration [1 ms. ~]

Addtional C [o fma]
It

Stepc |

[] ouT1-Buffer_ON-V

i e

arnings

The step consumption is higher than the max continuous current (2 mA) of the selected battery,

Without Peripherals
Peripherals Part
Ta Wax (°C)

271 pa
[ona i ona-Diona)
[104.97

—— Peripherals Selection—]|
Peripherals
~ ADC1
[fs_10_ksps
[1s_1_Msps
[1s_5 Msps
- ADC2
[fs_10_ksps
[1s_1_Msps
[1s_5 Msps
~ ADC3
[fs_10_ksps
[1s_1_Msps
[1s_5 Msps
[] AHB_APB1_Bridge
[AHB_APB2_Bridge
[cant
O ere
~ DAC1
[] ouT4+0UT2-Buffer
[] ouT4+0UT2-Buffer
[] ouT4+0UT2-Buffer
[] ouT4-Buffer_OFF-
[] ouT4-Buffer_ON-A
[1 0uT4-Ruffer ON-V

Warning

UM1718 Rev 31

3

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Step 6 (Sleep, DMA, ADC,RTC)

e Actions
— Switch to Lower-power sleep mode (BAM mode)
— Reduce the operating frequency to 2 MHz.
e Results
The current consumption is reduced from 703 pA to 93 YA (see Figure 260).

Figure 260. Step 6 optimization

[Edit Step Optimized settings
t Step Settings | En URIEER Disable AllIPs Enable IPs from Pinout [edit step
iMemory Peripherals Selection GEEERETENEEETNREN U =IELIERNNIEER Disable All IPs Enable [Ps from Pinout
Power Mode ISLEEP Peripherals Power/Memor Perip selection—— [—
V- ADC1
- :\‘. " Peripherals
Power Range [ts_10_ksps Fower Modz LOWPOWER SLEEF - ADCA
Flash Status [fs_1_Msps Power Range NoRange - [fs_10_ksps
Voo ADCZD =5 Maps Flash Status [O s_t_msps
v
Votage Source O ts 10 ksps e L
Jock = 1| [fs_10_ksps
1s_5_Msps locks
Bus Frequency Iwe MHz s [ts_1_Msps
Y- ADC3 Bus Frequency l’?‘—‘/‘ [fs_5_Msps
epostanganes [] Dlvs 0 ksps v Anca
fs_1_M)
Use [J1s_1_msps B [fs_10_ksps
[ts_5_msps Uss s 1_Msps
Clock Configuration HSE ~ [AHB_APB1_Bridge Clock Configuration ~ O fsi.‘:Mapa
Clock Source Frequency |16 MHz ~ g AHB_APB2_Bridge Clock Source Frequency |2 11112 ~ [AHB_APB1_Bridge
Bus-Matrix
Optional Setting: O cam Optional Setting [] AHB_APB2_Bridge
cten Dot i i J [Bus-Matrix
2p Duration ms [cre Step Duration [1 Jms] [cant
Additional Consumption [0 [[ma ~| Y- DAC1 Additional Consumption [0 [ma ~] [cre
esults [ouT1+0UT2-Buffer oot e pact
[ouT1+0UT2 Buffe:] OUT4+0UT2.Buffe!
580 i lo3 .
Step C""s“"“)ml T ‘ [ouT1+0uT2 Butfe: Step C | I | [] OUT1+0UT2-Buffe!
Without Peripherals. 589 pA | [oUT1-Buffer_OFF- Without Peripherals. [23.4 . |] OUT1+0UT2-Buff
+0UT2-Buffe!
Peripherals Part [0 nA (A:0nA-D: 0nA)] [OUIT4_Ruffar ON Peripherals Part [0 nA (A 0nA- D 0n4)]] OUT1-Buffer_OFF.
Warnings Ta Max (C) [104.99] [] OIIT1-Ruffer QN

3

UM1718 Rev 31 267/363

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Step 7 (Run, DMA, RTC, USART)

e Actions
— Switch to Lower-power run mode.
— Use the power-efficient LPUART peripheral.

— Reduce the operating frequency to 1 MHz using the interpolation feature.
e Results

The current consumption is reduced from 1.92 pA to 42 pA (see Figure 261).

Figure 261. Step 7 optimization

[T Newe Step —p Optimized Settings
Reset Step Settings | Enable All IPs | Disable All IPs | Enable IPs from Pinout [Edit Step
Power/Memor ripherals Selection Enal
Powsr Mode - [PV Y | [P | Reset Step Setiings | Enable All Ps | Disable Al 1Ps [SEHEIEEREINENEN
[T coMP_ultra_Low_Pow Memory ip
Power Range Range?-Medium ~ L1 OV Z-BuTter_UR-Wo
[[]cOMP_uitra_Low_Pow Power liode LOWPOWER_RUN 1 oFsom1 LPUART1
Memary Fetch Type FLASH/ART/Cache ~ [comp_uitra_Low_Pow Power Range O omat
b COMP_Ultra_Low_Pow -
Voo 24 - U lira_tow. ! Nemory Fetch Type FLASHARTICache V| [omaz
Ll mwa O FLasn
W
tocke Ome N— D omon
CPU Fraquency 6 MHz [ma O crios
[CIvwes CPU Frequency User-defined v O epioc
] nme O epiop
nterpoation Ranges [100 iz — 2 11z V]
ser Choice (Hz, [w7 [cpio
[mms User Choice (Hz) -munun O et
Clock Gonfiguration IS
ook Soren Fromorcy 10 L coctsouearmeny Qe
Optional Settings—————————— |- [] M7 g
N : Oirs Optional 0 v Lep
tep Duration ms - '7 o
Orse Step Duration 1 [Bufrer_oFF
Additional Consumplion 0 mA [JuarTa Addtonal Consumption 0| O LeTime
O pTimz
Results [] UARTS
LPUART1
Step Consumption 189 mA USART1 Step [12.08 pA - OPAMP1
Without Peripherals. |1.81 mA [JusarT2 Without Peripherals [41.6 uA [Low_Power
Lusaars Ol vormar
Peripherals Part 848 A (A°ONA - D: 848 pA) []use_oTc_Fs Peripherals Part 50 nA (A 0 nA - D: 260 nA)
- TaMax (0) LrAwr:
Ma (°C) 5
Ta Max (°C) 104 8 [1wwbG

268/363 UM1718 Rev 31

3

UM1718 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded applica-

Step 8 (Stop 0, USART)

e Actions
— Switch to Stop1 low-power mode.
— Use the power-efficient LPUART peripheral.
e Results
The current consumption is reduced (see Figure 262).

Figure 262. Step 8 optimization

[New sep — @ Edit step Optimized Settings

Reset Step Settings | Enable All IPs | Disable All IPs [GETICRIER (GTHRSLTITT
Reset Step Settings | Enable All IPs | Disable All IPs [ShEREREERINEEHLTNG

pi

Pawer Mode sTOPO . COMP_Medium_Power | |[1)sar1]

COMP_Medium_Power | Power Mode

Pawer Range ‘ loRange v p— N

LCOMP_Medium_Power Power Range
Memory Fatch Type | -] COMP_Medium_Power

COMP_Medium_Power Memory Fetch Type

Voo 5o . g X X

] COMP_Medium_Power Voo
Voitago Saurco [pattory ~] COMP_Medium_Power

[COMP_Medium_Power Wottage Source
CPU Fraquancy 0 Hz - ‘ COMP_OFF_VREFBUF

COMP_OFF_VREFBUF
COMP_OFF_VREFBUF
COMP_Ultra_Low_Pow
COMP_Ultra_Low_Pow
COMP_Ultra_Low_Pow

CPU Frequency H

Clack Configuration AL ¢ s O ‘
¥ OPAMP1

Clack Source Froquancy 0 1z - ‘ COMP_Untra_Low,_Pon Clock Configuration ALL CLOCKS OFF 7 Low_Power
Optional o [/coMP_uttra_Low_Pow Clock Source Frequency [0 Hz v [wormat
Ston Duration 1 [ms] L/ COMP._uttra_Low_Pow Optional Sefting OPAMPZ
[COMP_Ultra_Low_Pow O Low_power

Additional Consumption 0 ma v

Result

Withou! Peripherels 111 uA

COMP_Ultra_Low_Ps Step Duration 1 [Hormal
ART4 ‘Additional Consumption [0 [pvoiBor

|

mfulu]Jul=

| Step Consumptiof] |25 4 - SYS-VREFBUFICOMP1
Paripherais Part |0 nA (A 0 nA - D. 0 nA) | Wihout Peripherals [BespA] [comp_tigh_spee
Ta Max (C) 1049 | Peripherals Part [].£OMP Hinh Snee

3

UM1718 Rev 31 269/363

Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application con-

Step 10 (RTC, USART)

e Actions
— Use the power-efficient LPUART peripheral.
— Reduce the operating frequency to 1 MHz.
e Results
The current consumption is reduced from 1.89 mA to 234 pA (see Figure 263).

The example given in Figure 264 shows an average current consumption reduction of
155 pA.

Figure 263. Step 10 optimization

[Edit step —pp | [Edit Step Optimized Settings
Reset Step Settings | Enable All IPs | Disable All Ps [ISIEUENEENERNEIETS Reset Step Setlings | Enable All Ps [Disable All IPs | Enable IPs fram Pinout
v p a y ip Periphe
Peripherals 0 p
Fower lode Im] P! (re)fusarmi| | Poweriose [[run] [ouT2-Buffer_oN-v
Y- Anci [oFsoms B
Power Range Range2 Medum ~ O Power Range Range2-Medum v
's_10_ksps O omat
Wemory Fetch Type FLASHIARTICache ~ [fs_1_msps Memory Fetch Type FLASHIART/Cache ~] omaz
O crioa
[ts_1_msps lock O crioc
O fs_5_msps
CPU Frequency 151tz Lapes =0 cPU Frequency [[rure D oo
. O rion
e = [] [1s_t0_ksps S I D et
[1s_1_Msps O izca
O fs_5_Msps
e Slock Sonfigurin Deeca
Clock Configuration [AHB_APB1_Bridge O moe
O can Optional
Optional o O ene " “ [Buffer_ofF
Sten Drat | Step Duration 1 O eeTime
ep Duration ms v v DAC
Additional Consumption [0 ma ~ O temimz
Addtional Consumption. [0 [ouT1+0uT2-Butfe! i LPUART1
[J ouT1+0uT2 Buffe! - oPAMP1
ste O ourt- 0072 batic S e —| [Low_Power
RS—— T E— D oo ot e
Buffer_OFF- ithout Peripherals [232 2 [Normal
Without Peripherals. [1.61 mi. [0uT1-Butfer_ONA
- Peripherals Part [2.2 44 (A 004D 22 pA) v OPAMP2
Peripherals Part (34 3 A (A- 0nA-D: 848 pA) [] QuT1-Ruffer ON-V -
Ta Max (C) fross7 —
arning arning

See Figure 264 for the sequence overall results: 7 ms duration, about 2 month battery life,
and an average current consumption of 165.25 pA.

Use the compare button to compare the current results to the original ones saved as
SequenceOne.pcs.

Figure 264. Power sequence results after optimizations

Display Choices——
Select your Preferred Display |F'Iut: All Steps s | o

Consumption Profile by Step

2.25

SWSTOP1

RUN / Td:FIUN

S0 S:LP_RUN 10:RUN
Is:LP_SLEEP I?;LP_RUN 8:5TOP1 11:5TANDBY

F —— ! T

0.0 0.5 1.0 15 2.0 253 3.0 B 4.0 4.5 5.0 5.5 G.0 6.5 7.0 7.5 2.0 85
Time (ms)

|—Idd by Step == Average Current ‘

Sequence Time / TaMax 8 ms/104.77 °C Average Consumption 377.61 pA
Battery Life Estimation 24 days, 19 hours Average DMIPS Not Available]

270/363 UM1718 Rev 31 ‘Yl

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

14 Tutorial 4 - Example of UART communications with
an STM32L053xx Nucleo board

This tutorial aims at demonstrating how to use STM32CubeMX to create a UART serial
communication application for a NUCLEO-L053R8 board.

A Windows PC is required for the example. The ST-Link USB connector is used both for
serial data communications, and firmware downloading and debugging on the MCU. A
Type-A to mini-B USB cable must be connected between the board and the computer. The
USART?2 peripheral uses PA2 and PA3 pins, which are wired to the ST-Link connector. In
addition, USART2 is selected to communicate with the PC via the ST-Link Virtual COM Port.
A serial communication client, such as Tera Term, needs to be installed on the PC to display
the messages received from the board over the virtual communication Port.

14.1 Tutorial overview

Tutorial 4 will take you through the following steps:
1. Selection of the NUCLEO-L053R8 board from the New Project menu.

2. Selection of the required features (debug, USART, timer) from the Pinout view:
peripheral operating modes as well as assignment of relevant signals on pins.

3. Configuration of the MCU clock tree from the Clock Configuration view.
4. Configuration of the peripheral parameters from the Configuration view

5. Configuration of the project settings in the Project Manager menu and generation of
the project (initialization code only).

6. Project update with the user application code corresponding to the UART
communication example.

7. Compilation, and execution of the project on the board.
Configuration of Tera Term software as serial communication client on the PC.
9. The results are displayed on the PC.

©

14.2 Creating a new STM32CubeMX project and
selecting the Nucleo board

To do this, follow the sequence below:

1. Select File > New project from the main menu bar. This opens the New Project
window.

2. Go to the Board selector tab and filter on STM32L0 Series.

3. Select NUCLEO-L053R8 and click OK to load the board within the STM32CubeMX
user interface (see Figure 265).

3

UM1718 Rev 31 271/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

UM1718

Figure 265. Selecting NUCLEO_L053R8 board

New Project

WU selector| Roard Selector |

Boerd Filters

Vendor

Check/Lnchezk All
D STWicroeledrenics

Type)

Check/Lncheck All
[T iscovery

[evaluation Board
[nucleosz
Nucleosd

MCU Series

Check/Uncheck All
[sTv3zro
[sTvaze:
[[]sTvazr3
[sTv32r4
STN32L0
[l sTvaan
[] sTmaata

Advanced Choice &)

Price =13.0

Oscillator Freq. = 0 (Miiz)

Q NUCLEO-L053R8

STMicroelectronics NUCLEQ-L053R3 Board Support and Examples

- Unit Price (LIS8§) :13.0
[ACTVEL pctive
Sroduct s in mass prodiction

Mounted device: STM32L052RETx

Features

@ On-boarc ST-LINKA2-1

8 USBVBUS, exl. VIN, exL 5V, exl +3 3V

5| Microelectronics Morpho connecior - (2 x 38)

@ STMicroelectronics Arduino connector - 10+ (2x 8) + €
& Push-buttons: User and Reset

@ LEDs: COM. Fower. User LEDs

| »

n

I T R |

Start Project |

Warketing Status unil Price (US5) Mcunted Uevice Memory

b d Nucleod

ROW

272/363

UM1718 Rev 31

3

UM1718

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

14.3

3

Selecting the features from the Pinout view
1. Select Debug Serial Wire under SYS (see Figure 266).

Figure 266. Selecting debug pins

-
& STM32CubeMX Untitled*: STM32L053R8Tx NUCLEQ-L053R8 .
-

—

= =R

File Project Pinout Window Help

B B HE & O [Keepcurentsignals Placement ¢ & (] = @ <= Find

- =, 4 = [¥]Show user Label

PP Y

Pinout | Clock Configuration | G ion | Power Consumption Calculator

B CRC -

B8

-
&

-

=
BB

LPTIM1
LPUART1

B1 [Bluz Pushutton] [LaE]
RACC_OSCR2 N

- - - B

o
%
o
o
&
&
&
&
&
L
&
A4y RTC
&
&
A

o

[T] System Wake-Up 1

|-VREFINT_ADC Connection | Disable

B & TIM2
& TIM6
% TIM21

-
i~ Power Voltage Detector In Disable x| LY
“-Timebase Source | SysTick -

ROC_0SCI2.0UT
RCC_OSC_IN
ACC_0SC_OUT

m

USART_TX

2. Select Internal Clock as clock source under TIM2 peripheral (see Figure 267).

Figure 267. Selecting TIM2 clock source

-
& STM32CubeMX Untitled*: STM32L053R8Tx NUCLEO-LOS3R8 1

P e

File Project Pinout Window Help

B B HE & O []KeepCurentSignals Placement 9 ¢ (] = @ <= Find

s
~

\ | [|Showuser Label : (2| - | $

Pinout ‘ Clock Configuration | Configuration I Power Consumption Calculator

% RCC
é) @ RNG
[\, RTC
[& SPI1
I [& SPI2
24\ svs

= Debug Serial Wire

- [[] System Wake-Up 1

|- VREFINT_ADC Connection |Disable
-Power Voltage Detector In Disable
L. Timebase Source -svsT}ck

& & TIM2

i Slave Mode Disable

-

- Trigger Source |Disable

m

\-Clock Source | Internal Clock

+~Channell DisalDisable
~Channel2 | Disal e

1+ Chemnel3 Diselera through Remap
i~ Channel4 | Disable

+-Combined Channels | Disable
i~{se ETR as Clearing Source | Disable
XOR activation

i [] One Pulse Mode

UM1718 Rev 31

273/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

UM1718

274/363

3. Select the Asynchronous mode for the USART2 peripheral (see Figure 268).

Figure 268. Selecting asynchronous mode for USART2

% STM32CubeMX Untitled*: STM32L053R8Tx NUCLEC-LO53R8

File Project Pinout Window Help

T
| — — T———— e

[BU & @3 Q [V] Keep Current Signals Placement © & (] == @ <= Find

v @, 4 @ [@ShowuserLabel | (71 D | &

Pinout | Clock Configuration | Configuration I Power Consumption Calculator
e ——— s

- VREFINT_ADC Connection [Disable -

Power Voltage Detector In Disable v.‘
Timebase Source 15ysTid< v:

B & TIM2

| Slave Mode Esabie

¥ 4

~-Trigger Source | Disable —

F —

' Clock Source | Internal Clock
~-Channel 1 | Disable
Channel2 | Disable
~-Channel3 Disable
~-Channel4 Disable

--Combined Channels |Disable
T T
{se ETR as Clearing Source lisab\e

4] e[l fe e

‘

"] XOR activation

[] One Pulse Mode

- & TIMé

- ® TIM21

- & TIM22

B 4\ TSC

t- & USART1

£ & USART2

i~Mode Asynchronous -

-HardwDisable
FH Asynchronous

[

g
P

ISynchronous

S 7 P NI Y

4. Check that the signals are properly assigned on pins (see Figure 269):

— SYS_SWDIO on PA13
— TCKonPA14

— USART _TX on PA2

— USART_RXon PA3

Figure 269. Checking pin assignment

-~
© STM32CubeMX Untitled*: STM32L073RZTx NUCLEO-LO73RZ -

File Project Pinout Window Help
B B UK & O @KepCurentSgndsPlacement 9 & [= @ 4 Find

2P e

w |, (4 =[] Show user Label

Pinout | Clack G |c | power c son Calaator

[® CRC ¥
[~ % DAC
- % I2C1
- ® 1202
[G- ® 1203
- ® 1252

@ IWDG
I &ew
& LPTIM1
[® LPUARTL 1 [Blue PushBution]
RCC_0SsC32_ IN
i RCC_OSC32_0UT
@ RNG eo
[) RTC
o SPIL
o SP12
A SYSs
& TIM2

m

STM32L073RZTx
& TIM3 LaFPes
- TIM6

o TIM7
F- % TIM21 USART_TX
% TIM22
a4 TsC <
[& USARTL z
& & USART2 i

Mode | Asynchronous = -

Hardware Flow Control (R5232) | Disable -

] Hardware Flow Control (R5485)

II i 5 IISARTA. =

[p= vesio] zan [T

F (46)-PA13 : TMS ’

® 5YS_SWDIO (Serial_Wire)

UM1718 Rev 31

3

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

14.4 Configuring the MCU clock tree from the Clock Configuration
view

1. Go to the Clock Configuration tab and leave the configuration untouched, in order to
use the MSI as input clock and an HCLK of 2.097 MHz (see Figure 270).

Figure 270. Configuring the MCU clock tree

r — 5
% STM32CubeMX Untitled*: STM32L073RZTx NUCLEO-L073RZ o |8 g
File Project Clock Configuration Window Help

BeoRUE 60 Qa9 c 00 2P ¢

[Pinout| Clock C [Power C Calculator

RTC/LCD Source Mux

HS SE RTC | 7 LCD (KHz)
S 3 HSE_RTC |
Ingut frequency 2097 | CK_PWR (MHz)
- : ! L . 7 | RTC(KHD) "
I 37 KHz 2097 | FCLK (MHz)

1000 Kz |
f LSIRC A HCLK(MH:)
—% Enable C33 r

» 7 IWDG (KHz) s 'Oormsyseemnm

bt APB1 peripheral cl =
System Cloc Mx N v periphera
mst [N
= _ ot b] e e

HSI 16

“MSIRC

| HsE | 2097 lam j1 » ... T— i APB2 peripheral
HsE t LR oKz
- s SYSOLK (MHz) AHB Prescaler HOLK (MH2)
. ! » X1 APB2 timer clocks
PLL Source Mux L 4 USART1 Source Mux
st [b N
r— O
st 1 } 16 H X3 = /2 - L4
AR o g () VOOInput *PlMdl | /PLLDiv 12C1 Seurce Mux [2097 USART1CLK (MHz]
48M Source Mux
HSIAC : —
/2 @) >0
| L2 benl 21 USBCLK (MHz) i
chrets | 12C1CLK (MHz)
| ‘ - LPTIM Source Mux
e - RNGCLK (MHz) —0,)
| -
HS1 16
18 ADC (MHz) .
LPUART Source Mux 1SE > 2 LPTIMCLK (MHZ) _
MEA e Mu : —
« i] »

3

UM1718 Rev 31 275/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

14.5 Configuring the peripheral parameters from the
Configuration view
1. From the Configuration tab, click USART2 to open the peripheral Parameter

Settings window and set the baud rate to 9600. Make sure the Data direction is set to
“Receive and Transmit” (see Figure 271).

2. Click OK to apply the changes and close the window.

Figure 271. Configuring USART2 parameters

' B
% USART2 Configuration St

o/ Parameter Settings {| o/ User Constants | o/ NVIC Settings | «// GPIO Settings | </ DMA Settings |

Configure the below parameters :

Search :| Search (Crtl+F v &
[= Basic Parameters
Baud Rate 3600 Bits/s
Word Length 8 Bits (including Parity)
I Parity None 1
Stop Bits 1
[= Advanced Parameters
Data Direction Receive and Transmit
| Over Sampling 16 Samples
I Single Sample Disable
[= Advanced Features
Auto Baudrate Disable
TX Pin Active Level Inversion Disable
RX Pin Active Level Inversion Disable
Data Inversion Disable
TX and RX Pins Swapping Disable
Overrun Enable
DMA on RX Error Enable
MSB First Disable
[Apply } I Ok } l Cancel
. 4
276/363 UM1718 Rev 31 Kys

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

3. Click TIM2 and change the prescaler to 16000, the Word Length to 8 bits and the
Counter Period to 1000 (see Figure 272).

Figure 272. Configuring TIM2 parameters

P Y
% TIM2 Configuration ﬁ

«f Parameter Settings | o/? User Constants | o7 NVIC Settings | o/ DMA Settings |

Configure the below parameters :

Search :| Search (Citl+F) v &
=] Counter Settings
Prescaler (PSC - 16 bits value) 16000
Counter Mode Up
 Coimrpeod Gutoead Regeer - bt v [v
Internal Clock Division (CKD) Mo Division
1 (=] Trigger Output (TRGO) Parameters |
I Master /Slave Mode Disable (no sync between this TIM (Master) and its Slaves
Trigger Event Selection Reset (UG bit from TIMx_EGR)

Counter Period (AutoReload Register - 16 bits value)
Period must be between 0 and 65 535.

[Apply] [Ok] [Cancel

3

UM1718 Rev 31 277/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

UM1718

278/363

4.

Enable TIM2 global interrupt from the NVIC Settings tab (see Figure 273).

Figure 273. Enabling TIM2 interrupt

-
@& TIM2 Configuration

| o/ Parameter Settings | o/ User Constants | &/ NVIC Settings | /7 DMA Settings

Interrupt Table

globa = p

Enabled Preemption Priority

v

[tomy] |

Ck

] [Cancel

UM1718 Rev 31

3

UM1718

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board

14.6

3

Configuring the project settings and generating the project

In the Project Settings menu, specify the project name, destination folder, and select
the EWARM IDE toolchain (see Figure 274).

Figure 274. Project Settings menu

Project Settings

==

Project | Code Generator | Advanced Settings

Project Settings

Project Mame
Mudleo_L073_UART_Comm

Project Location
C:\STM32CubeMX_Projects\Tutoriel

Toolchain Folder Location

C:\STM32CubeMX_Projects\Tutoriel\Nucleo_LO73_UART_Comm

Toolchain [IDE
EWARM -
Linker Settings
Minimum Heap Size 0x200
Minimum Stack Size 0x400

Mcu and Firmware Package

Mcu Reference
STM32L073RZTx

Firmware Package Name and Version
STM32Cube FW_LO V1.7.0

Generate Under Root

Ok

Cancel

If the firmware package version is not already available on the user PC, a progress

window opens to show the firmware package download progress.

UM1718 Rev 31

279/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

2. Inthe Code Generator tab, configure the code to be generated as shown in
Figure 275, and click OK to generate the code.

Figure 275. Generating the code
f Project Settings &J‘

- Code Generator | Advanced Settings

5TM32Cube Firmware Library Package

() Copy all used libraries into the project folderi

(@ Copy only the necessary library files

() Add necessary library files as reference in the toolchain project configuration file

Generated files
[] Generate peripheral initialization as a pair of *.c/.h’ files per peripherals I
[] Backup previously generated files when re-generating
Keep User Code when re-generating

Delete previously generated files when not re-generated

HAL Settings |
Set all free pins as analog (to optimize the power consumption)
[Enable Full Assert

Template Settings

Select a template to generate customized code Settings...

Ok I [Cancel

14.7 Updating the project with the user application code

Add the user code as follows:

/* USER CODE BEGIN 0 */

#include "stdio.h"

#include "string.h"

/* Buffer used for transmission and number of transmissions */
char aTxBuffer[1024];

int nbtime=1;

/* USER CODE END 0 */

Within the main function, start the timer event generation function as follows:
/* USER CODE BEGIN 2 */

3

280/363 UM1718 Rev 31

UM1718 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board
/* Start Timer event generation */
HAL_TIM Base_Start_ IT(&htim2) ;
/* USER CODE END 2 */
/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback (TIM_HandleTypeDef *htim) {
sprintf (aTxBuffer, "STM32CubeMX rocks %d times \t", ++nbtime);
HAL_UART_Transmit (&huart2, (uint8_t *) aTxBuffer, strlen(aTxBuffer), 5000);
}
/* USER CODE END 4 */
14.8 Compiling and running the project
1. Compile the project within your favorite IDE.
2. Download it to the board.
3. Run the program.
14.9 Configuring Tera Term software as serial communication

3

client on the PC

1. On the computer, check the virtual communication port used by ST Microelectronics
from the Device Manager window (see Figure 276).

Figure 276. Checking the communication port

r
&4 Device Manager = | E S
File Action View Help

e @ HE®

.8 Microsoft Virtual WiFi Miniport Adapter #2 -
KB Portable Devices
4 75 Ports (COM & LPT)

T2 Communications Port (COM1)

=" ECP Printer Port (LPT1)

i '? STMicroelectronics STLink Virtual COM Port (COM17)

» |2} Processors
[Security Devices

m

. |2 Sensors

UM1718 Rev 31 281/363

Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board UM1718

2. To configure Tera Term to listen to the relevant virtual communication port, adjust the
parameters to match the USART2 parameter configuration on the MCU (see
Figure 277).

Figure 277. Setting Tera Term port parameters

Tera Term: Serial port setup &J
! Port: lcom17 ~| ‘T‘ |
Baud rate: 9600 -
Data: '8 bit -] | Cancel |
Parity: ‘nnneiv")
Stop: Mbn .| | Help
Flow control: ‘rnonc ',‘
Transmit delay
0 msecjchar 0 msec/line

3. The Tera Term window displays a message coming from the board at a period of a few
seconds (see Figure 278).

Figure 278. Setting Tera Term port parameters

F .l
5 COM17 - Tera Term VT = | B |

File Edit Setup Control Window Help

STH32CubeM¥ rocks 6 times STM32CubeME rocks 7 times
= 8 times STH32CubeMd rocks 9 times STH32CubeM¥
STM32CubeM¥ rocks 11 times STM32CubeME rocks 12 times

3

282/363 UM1718 Rev 31

UM1718

Tutorial 5: Exporting current project configuration to a compatible MCU

15

3

Tutorial 5: Exporting current project configuration to
a compatible MCU

When List pinout compatible MCUs is selected from the Pinout menu, STM32CubeMX
retrieves the list of the MCUs which are compatible with the current project configuration,
and offers to export the current configuration to the newly selected compatible MCU.

This tutorial shows how to display the list of compatible MCUs and export your current
project configuration to a compatible MCU:

1. Load an existing project, or create and save a new project:

Figure 279. Existing or new project pinout

1 STM32CubaMX Untitled*; STM32F031F4Px ‘-_é@g
A
A T
st @ ; i ® I . ky7
maz X File Window Help DYy Y/

Untitled - Pinout & Configuration GENERATE CODE

Pinout & Configuration Clock Configuration Project Manager

Additional Softwares » Pinout

<CF Pinout view == System view

ADC
CRC
DMA
FATFS
FREERTOS
GPIO
1281
WDG 12C1_SDA
NVIC
Ree 12C1_SCL
RTC
SPI1
TIM1
TIM2 N
TIM3
TIM14 |
TIM16 STM32F031F4Px
TIMAT TSSOP20
r
Q@ o a b o | —

2. Go to the Pinout menu and select List Pinout Compatible MCUs. The Pinout
compatible window pops up (see Figure 280 and Figure 281).

If needed, modify the search criteria and the filter options and restart the search
process by clicking the Search button.

The color shading and the Comments column indicate the level of matching:

— Exact match: the MCU is fully compatible with the current project (see Figure 281
for an example).

— Partial match with hardware compatibility: the hardware compatibility can be
ensured but some pin names could not be preserved. Hover the mouse over the
desired MCU to display an explanatory tooltip (see Figure 280 for an example).

UM1718 Rev 31 283/363

Tutorial 5: Exporting current project configuration to a compatible MCU UM1718

— Partial match without hardware compatibility: not all signals can be assigned to the
exact same pin location and a remapping will be required. Hover the mouse over

the desired MCU to display an explanatory tooltip (see Figure 281 for an
example).

Figure 280. List of pinout compatible MCUs - Partial match
with hardware compatibility

F |
[@ Pinout Compatible Dialog M
+MCUs Filters ————— -MCUs List: 104 ltems ~
Series - | mcu | Package | Flash | Ram | Signalstoremap | Comments [
[sTM32F0 | sTmazroatkeTc LOFP32 32 4 2 Need HW change
Packages : STM32F030KETX LOFP32 a2 4 2 Need HW change '
[||| sTM32FO31K4UX UFOFPN32 16 4 B Need HW change
) STM32F031KEUx UFQFPN32 32 4 B Need HW change
Search Options ||sTMazZFogsvCTx LQFP100 256) 4 Need HW change
Ignore Pinning Status || sTI32F070CETx 4 LOFP4S 32 B 4 Need HW change
Ignore Power Pins =10k USARTY_TX remaps from Pin(8)-PA2 to Pin(30)-PA9 Need HW change
Ignore System Pins STM32F USiART‘l_R)(remaps from Pin(9)-PA3 to Pin(31}-PA10 - Need HW change
X ! eTmazr IZ(:‘I _SCL remaps from Pin(17)-PA3 to Pin(6)-PF1 —OSL_‘OUT Need HW change
S STMAzF 12C1_SDA remaps from Pin(18}-PA10 to Pin(5)}-PF0-OSC_IN Need HW change
- STM32FO31EGYx WLCSP25 12 4 4 Need HW change
STM32F030RCTx LQFP64 256 12 4 Need HW change
STM32F030RSTx LOFP64 64] 4 Need HW change
STM32F030CCTx LQFP43 256 12 4 Need HW change

Figure 281. List of Pinout compatible MCUs - Exact and partial match

F |
[@ Pinout Compatible Dialog M
+MCUs Filters ————— +MCUs List: 3 ltems

Series : [mcu | Package | Flash | Ram | Signalstoremap | Comments
[an | |sTmM32F020FaPx TSSOP20 18 4 0 Full Compatible
Packages : STM32FO31FEPx TSSOP20 32 4 0 Full Compatible
[TssoPz20 || |sTm3zFossFePx TSsoP20 32 4 0 Full Compatible

+Search Options
Ignore Pinning Status

Ignore Power Pins

Ignore System Pins

3

284/363 UM1718 Rev 31

UM1718

Tutorial 5: Exporting current project configuration to a compatible MCU

3

3.

Then, select an MCU to import the current configuration to, and click OK, Import:

Figure 282. Selecting a compatible MCU and importing the configuration

F |
[@ Pinout Compatible Dialog M
+MCUs Filters MCUs L|st 104 ltems
Series - [McU | Package | Flash | Ram [Signalstoremap | _ Comments |
[sTM32F0 > w 16 4 0
Packages : STM32F031F6Px TSSOP20 32 4 0 FuII Compatible | '
Al ~ [TSTM3ZFUSBFEFY TSSUPZ0 3z T T

STM32F031G4Ux UFQFPN28 16 4 2 Need HW change

(Search Options ———— | STM32F031G6Ux UFQFPNZ2E 32 4 B Need HW change
Ignore Pinning Status || STM32F038KELx UFQFPN32 B2 4 2 Need HW change
Ignore Power Pins STM32F038G6Ux UFQFPN28 32 4 2 Need HW change
\gnore System Pins STM32FO31KETx LQFP32 32 4 2 Need HW change

L || 8TM32F030KETX LQFP32 32 4 2 Need HW change
STM32F031K4Ux UFQFPN32 16 4 2 Need HW change

STM32F031K6Ux UFQFPN32 32 4 2 Need HW change
STM32F098VCTx LQFP100 256 32 4 Need HW change

STM32F070CETx LOFP48 32 6 4 Need HW change

STM32F070CBTx LQFP48 128 16 4 Need HW change

The configuration is now available for the selected MCU:

Figure 283. Configuration imported to the selected compatible MCU

[l STM32CubeMX Untitled*: STM32F031F6Px

. W

. W

sm' @

CubeMX

File

led

Window

= | D

Help

Loy x 4;

- Pinout & Configuration

GENERATE CODE

Pinout & Configuration

Clock Configuration
Additional Softwares

ADC

CRC

DMA
FATFS
FREERTOS
GPIO

1281

IWDG
NVIC
RCC
RTC
SPI1

TIM1
TIM2
TIM3
TIM14
TIM16
TIM17

STM32F030F4Px
STM32F031FGPx
STM32F038FGPx
STM32F031G4Ux
STM32F031G6Ux
STM32F038KEUx
STM32F038G6Ux

WWDG

'

Compatibls

I Signals to remap

UFQFPN28
UFQFPN28
UFQFPN32
UFQFPN28

16
32

]

B

Project Manager
v Pinout

£ Pinout view

N
MMM NS oo

12C1_SDA
[2C1_SCL

al]

Comments =3
Full Compatible =
Full Compatible
Full Compatible
MNeed HW change
MNeed HW change
MNeed HW change
MNeed HW change

UM1718 Rev 31

285/363

Tutorial 5: Exporting current project configuration to a compatible MCU UM1718

4. To see the list of compatible MCUs at any time, select Outputs under the Window
menu.

To load the current configuration to another compatible MCU, double-click the list of
compatible MCUs.

5. To remove some constraints on the search criteria, several solutions are possible:
— Select the Ignore Pinning Status checkbox to ignore pin status (locked pins).
— Select the Ignore Power Pins checkbox not to take into account the power pins.

— Select the Ignore System Pins not take into account the system pins. Hover the
mouse over the checkbox to display a tooltip that lists the system pins available on
the current MCU.

3

286/363 UM1718 Rev 31

UM1718

Tutorial 6 — Adding embedded software packs to user projects

16

3

Tutorial 6 — Adding embedded software packs to user
projects

In this tutorial, the Oryx-Embedded.Middleware.1.7.8. pack is taken as an example to
demonstrate how to a to add pack software components to STM32CubeMX projects. The
use of this package shall not be understood as an STMicroelectronics recommendation.

To add embedded software packs to your project, proceed as follows:

1. Install Oryx-Embedded.Middleware.1.7.8.pack using the .pdsc file available from
http://www.oryx-embedded.com (see Section 3.4.4: Installing embedded software
packs).

2. Select New project.

Select STM32F01CCFx from the MCU selector.

4. Select Additional Software from the Pinout & Configuration view to open the
additional software component window and choose the following software components:
Compiler Support, RTOS Port/None and Date Time Helper Routines from the
CycloneCommon bundle (see Section 4.13: Additional software component selection
window).

5. Click OK to display the selected components on the tree view and click the checkbox to
enable the software components for the current project (see Figure 284).

w

Figure 284. Additional software components enabled for the current project

m STM32CubeMX Untitled*: STM32F401CCFx E@ﬁ
A =
st @ i i A8 n »}\:
a2 N File Window Help s DYy ‘y,

Untitled - Pinout & Configuration GENERATE CODE

Pinout & Configuration Clock Configuration Project Manager

Additional Softwares » Pinout

rx-Embedded Middleware 1.7_8 Mode and Cuﬂﬂgural:
.
]

42 Pinout view === System view

System Core 5 CycloneCommon CycloneCommon Middlewares
Analog >
Timers >
Additional Software

Connectivity >
Multimedia >
Computing ? Configuration System Core Analog Timers Connectivi
Additional Software ~

Oryx-Embedded Middleware__|

RCC @
A

The pack name highlighted in green indicates that all conditions for the selected
software components resolve to true. If at least one condition is not resolved, the pack
name is highlighted in orange.

UM1718 Rev 31 287/363

Tutorial 6 — Adding embedded software packs to user projects

UM1718

6. Check that no parameters can be configured in the Configuration tab (see

Figure 285).

Figure 285. Pack software components - no configurable parameters

Additional Softwares

Oryx-Embedded.Middleware.1.7.8 Mode and Configuration {4

CycloneCommon CycloneCommon

p____________ Configuation |

Mo configuration available

v Pinout

4 Pinout view

Syitem view

Middlewares

Additional Software

Middleware

7. Select the Project manager project tab to specify project parameters (see Figure 286),

and choose IAR™ EWARM as IDE.

Figure 286. Pack tutorial - project settings

Pinout & Configuration

Project Settings

Clock Configuration

Project Manager

Project Name

|O ryx_project1

Project Location

|C:\STM 32CubeMX_Projects\

| Browse

Application Structure

|Basic

~ | [J Do not generate the main()

Toolchain Folder Location

|C:\STM 32CubeM¥_Projects\Oryx_project 1t

Toolchain / IDE

~ | O Generate Under Root

[EwARM Vs

¢Linker Settings

Minimum Heap Size 0x200
Minimum Stack Size 0400

+Mecu and Firmware Package

Mecu Reference

[5TM32F401CCFx

Firmware Package Name and Version

|STM 32Cube FW_F4 V1.22.0

Use Default Firmware Location

| Browse

288/363 UM1718 Rev 31

3

UM1718

Tutorial 6 — Adding embedded software packs to user projects

3

Generate your project by clicking |

| . Accept to download the

STM32CubeF4 MCU package if it is not present in STM32Cube repository.
Click Open project. The Oryx software components are displayed in the generated

project (see Figure 287).

Figure 287. Generated project with third party pack components

© Project - IAR Embedded Workbench IDE - ARM 8.20.1
File Edit View Project ST-Link Tools Window Help
N R@ = XK3 OC | - £ Q D> 85 = L
Workspace v X
[projet:ﬂ .
Files g .
| B @ project] - project] * <
= W Application
B E'WARM @
 User e
8 Drrivers @
=1 M Middlewares
L@ @ Onyx-Embedded Middleware 1.7 8
= & CycloneCommon/CompilerQoSupport
| [c] cpu_endian.c @
& 8 CycloneCommon/DateOoTimeOoHelperOoRoutines
| [l date_time.c]
LE B CycloneCommon/RTOS0oPart/Naone
[os_por_none.c ™
B Output
UM1718 Rev 31 289/363

Tutorial 7 — Using the X-Cube-BLE1 software pack UM1718

17 Tutorial 7 — Using the X-Cube-BLE1 software pack

This tutorial demonstrates how to achieve a functional project using the X-Cube-BLE1
software pack.
Below the prerequisites to run this tutorial:

e Hardware: NUCLEO-L053R8, X-NUCLEO-IDB05A1 and mini-USB cable (see
Figure 288)

e Tools: STM32CubeMX, IDE (Atollic® or any other toolchain supported by
STM32CubeMX)

e Embedded software package: STM32CubelL0 (version 1.10.0 or higher), X-Cube-BLE1
1.1.0 (see Figure 289).

e Mobile application (see Figure 290): STMicroelectronics BlueNRG application for i0s®
or Android ™

Figure 288. Hardware prerequisites

NUCLEO-LO53R8 X-NUCLEO-IDBO5A1

STLink v2.1

User
Button on gl %
PC13

3

290/363 UM1718 Rev 31

UM1718

Tutorial 7 — Using the X-Cube-BLE1 software pack

3

Figure 289. Embedded software packages

[Embedded Software Packages Managl ‘ M

I E S5TM32Cube MCU Packages and embedded software packs releases

Releasesﬁurmatiun was last refreshed 3 hours ago.

:
[| Description
¥ STM}ZLI}'
|] STM32Cube MCU Package for STM32L0 Series 1.10.0 1.10.0
[} STM32Cube MCU Package for STM32L0 Series 19.0 1.9.0
r B
] STM32| [Embedded Software Packages Manager M
STM32Cube MCU Packages and embedded software packs releases
Details -
Releases Information was last refreshed 3 hours ago. /
g be MCL Pac s | Alibaba 5 E roelectronics
|| Desciiption

¥ X-CUBE-BLE1

(] BLE stack and sample applications for BlueNRG-MS module 110 |

|

» X-CUBE-MEMS1

Details

| / / |

Figure 290. Mobile application

© BlueNRG

BlueNRG | [

STMicroelectronics NV
Osuetosth 1 PEGI 3

UM1718 Rev 31 291/363

Tutorial 7 — Using the X-Cube-BLE1 software pack UM1718

292/363

Proceed as follows to install and run the tutorial:

1. Check STM32CubeMX Internet connection:

a) Select the Help > Updater settings menu to open the updater window.

b) Verify in the Connection tab that the Internet connection is configured and up.
2. Install the required embedded software packages (see Figure 291):

a) Select the Help > Manage Embedded software packages menu to open the
embedded software package manager window.

b) Click the Refresh button to refresh the list with the latest available package
versions.

c) Select the STM32Cube MCU Package tab and check that the STM32CubelL0
firmware package version 1.10.0 or higher is installed (the checkbox must be
green). Otherwise select the checkbox and click Install now.

d) Select the STMicrolectronics tab and check that the X-Cube-BLE1 software pack
version 1.0.0 is installed (checkbox must be green). Otherwise, select the
checkbox and click Install now.

Figure 291. Installing Embedded software packages
[[I] Embedded Software Packages Manager ﬂ

Description

STM32Cube MCU Packages and embedded software packs releases

Re\easeskﬂ(mmation was last refreshed 3 hours ago.

Oryx-Embedded | STMicroelectronics | lwlP

¥ |STM32LU|
||:| STM32Cube MCU Package for STM32L0 Series 1.10.0 1.10.0 |
(] STM32Cube MCU Package for STM32L0 Series 190 190 '
r 3
m} STM32) [I] Embedded Software Packages Manager M
| STM32Cube MCU Packages and embedded software packs releases
Details -
Releases Information was last refreshed 3 hours ago. /
5 Alibaba | Oryx-Embedded |SSTMICIGEIEEIORIESS |vIP
[| Description
¥ X.CUBE-BLE1
(] BLE stack and sample applications for BlueNRG-MS module 1.1.0 |

| X-CUBE-MEMS1

Details

| / / |

a)
b)
c)
d)
e)

Start a new project:

Select New Project to open the new project window.

Select the Board selector tab.

Select Nucleo64 as board type and STM32L0 as MCU Series.

Select the NUCLEO-L053R8 from the resulting board list (see Figure 292).

Answer No when prompted to initialize all peripherals in their default mode (see
Figure 293).

UM1718 Rev 31 ‘Yl

UM1718

Tutorial 7 — Using the X-Cube-BLE1 software pack

3

Figure 292. Starting a new project - selecting the NUCLEO-L053R8 board

[New Project from a Board lé]
MCU Selector [NEBardSEIEEtor
Q
Feat... Large Pic... Docs & Resour. Datas. . [=» start Pro..
Vendor ’ NUCLEO-LO10RE
as
Type " STMicroelectronics NUCLEO-L010RB Board Support and |
- Examples
Check/Uncheck All
[Discovery Unit Price (US$):0.0
[Evaluation Board Mounted device: STM32L010RETx
[Nucleo32
Nucleo64
Boards List: 3 items =
MCU Series hd Eil
Check/Uncheck Al || Overview | Parthio [Type [Marketi..[unitPrice. |ounted. JWCU Ser. Jcustom For..] Memory | ROM |
!i{’._'.;!
[sTm32F0 i
1 STM32F1 7 m NUGLEO-L0...Nuc. 0.0 STM32L00 0 0
B
[sTM32F3 S
[sTM32F4 i,-{-‘_g!;_g
[sTu3260 & ik NUCLEO-LO.. Nuc.Active 13.0 STHZZL. STM32L0O 0 0
STM32L0 .
[sTM32L1
M eTiaana

Figure 293. Starting a new project - initializing all peripherals

I Board Project Options: NUCLEO-L010... IS

o Initialize all peripherals with their default Mode ?

ies ([

4. Add X-Cube-BLE1 components to the project:

a)

b)

Click Additional Software from Pinout & Configuration view to open the
Additional Software component Selection window.

Select the relevant components (see Figure 294)

The Application group comes with a list of applications: the C files implement the
application loop, that is the Process() function. From the Application group, select
the SensorDemo application.

Select the Controller and Utils components

Select the Basic variant for the HCI_TL component. The Basic variant provides
the STMicroelectronics implementation of the HCI_TL API while the template
option requires the user to implement his own code.

Select the UserBoard variant as HCI_TL_INTERFACE component. Using the
UserBoard option generates the <boardname>_bus.c file, that is
nucleo_l053r8 bus.c for this tutorial, while the template option generates the
custom_bus.c file and requires the user to provide his own implementation.
Refer to the X-Cube-BLE1 pack documentation for more details on software
components.

UM1718 Rev 31 293/363

Tutorial 7 — Using the X-Cube-BLE1 software pack UM1718

294/363

c) Click OK to apply the selection to the project and close the window. The left panel
Additional Software section is updated accordingly.

Figure 294. Selecting X-Cube-BLE1 components

Packs

Collapse all
Pack/ Bundle / Component [Version | Selection &

« © STMicroelectronics X-CUBE-BLE1
w2 Wireless_Application K

Application |SensnrDemD ~ |

w2 Wireless_BlueNRG-MS

Controller
HCI_TL Basic ~
HCI_TL _INTERFACE UserBoard ~
Utils

5. Enable peripherals and GPIOs from the Pinout tab (see Figure 295):

a) Configure USART2 in Asynchronous mode.

b) Configure SPI1 in Full-duplex master mode.

c) Left-click the following pins and configure them for the required GPIO settings:
PAO: GPIO_EXTIO
PA1: GPIO_Output
PA8: GPIO_Output

d) Enable Debug Serial Wire under SYS peripheral.

3

UM1718 Rev 31

UM1718

Tutorial 7 — Using the X-Cube-BLE1 software pack

3

Figure 295. Configuring peripherals and GPIOs

itled*: o
[Z1 STM32CubeMX Untitled*: STM32L010RBTx NUCLEO-LO10RB

- .

o

File Window Hel 9 n (> I »}q L
CubeMX P N
Untitled - Pinout & Configuration GENERATE CODE
Clock Configuration Project Manager
Additional Softwares ~ Pinout
i Pinout view == System view
System Core ™~ 3
ml
- = x
DMA s -
GPIO
IWDG 2|2 s &2 2| 25 2 & z
NVIC
B1 [Blue PushButton]
WWDG RCC_OSC32_IN TS
S REGC_OSC32_0UT
MCO g5
Analog 5 RCC_OSC_OUT |Gaiee
Timers > GPIO_Output
Connectivity ™~
. STM32L010RBTx
1261 LQFP64
LPUART1 =
GPIO_EXTID [
GPIO_Output [Fatl
L] USART_Tx |ghet
2 3 :HEHEEEHEE
Computing > < o &
& it
= 3
Middieware > H R
Ed s 5 &
o
Additional S... > E|
r
@ oo a @ 4 al]

Configure the peripherals from the Configuration tab:

a) Click the NVIC button under the System section to open the NVIC configuration
window. Enable EXTI line 0 and line 1 interrupts and click OK (see Figure 296).

b) Click the SPI button under the Connectivity section to open the SPI
configuration window. Check that the data size is set to 8 bits and the prescaler
value to 16 so that HCLK divided by the prescaler value is less or equal to 8 MHz.

c) Click USART2 under the Connectivity section to open the Configuration window
and check the following parameter settings:

Under Parameter Settings:
Baud rate: 115200 bits/s
Word length: 8 bits (including parity)
Parity: none
Stop bits: 1
Under GPIO Settings:
User labels: USART_TX and USART_RX

UM1718 Rev 31 295/363

Tutorial 7 — Using the X-Cube-BLE1 software pack UM1718

Figure 296. Configuring NVIC interrupts

[0 STM32CubeMX Untitled*: STM32L010RBTx NUCLEO-LO10RB E=hE g
A 7
sz @ File Window Hel (s} n »}q L
CubeMX v = oy v/
ome [/ ORBTx - NUCLEO-LO10RB / Untitled - Pinout & Configuration GENERATE CODE
| Clock Configuration Project Manager Tools
Additional Softwares v Pinout
NVIC Mode and Configuration :
Configuration
@ ACY @ Code generation
System C.
N [Sort by Premption Priority and Sub Priority
gg‘% Search | | © © [Show only enabled interrupts
WDG
NVIC Interrupt Table Enabled Preemption Priority
MNon maskable Interrupt 0
Hard fault interrupt 0
WWDG System service call via SWI instruction 0
o Pendable request for system service 0
Time base: System tick timer 0
Flash and EEPRCM global interrupt [m] 1]
Analog 3 RCC global interrupt [m] 0
EXTlline 0 and line 1 interrupts 1]
EXTlline 4 to 15 interrupts [m] 0
Timers > SPI1 glabal interrupt [m] 0
USART2 global interrupt / USART2 wake-up interrupt through EXTl line 26 [m] 0
Connectivity™
12C1
LPUARTI
— Enabled Preemption Priority
= — ——

7. Enable and configure X-Cube-BLE1 pack components from the
Pinout & Configuration view:

a) Click the pack items from the left panel to show the mode and configuration tabs.

b) Click the check boxes from the Mode panel to enable X-Cube-BLE1, the
configuration panel appears showing the parameters to configure. An orange
triangle indicates that some parameters are not configured. It turns into a green
check mark once all parameters are correctly configured (see Figure 297).

c) Leave the Parameter Settings Tab unchanged.

d) Go the Platform settings tab, configure the connection with the hardware
resources as indicated in Figure 297 and Table 23.

Table 23. Connection with hardware resources

Name IPs or components Found solutions
BUS IO driver SPl in Full-duplex master mode SPI1
EXTI Line GPIO:EXTI PAO
CS Line GPIO:output PA1
Reset Line GPIO:output PA8
BSP LED GPIO:output PA5
BSP Button GPIO:EXTI PC13
BSP USART USART in Asynchronous mode USART2

Check that the icon turns to Qin . Click OK to close the Configuration window.

296/363 UM1718 Rev 31 ‘Yl

UM1718 Tutorial 7 — Using the X-Cube-BLE1 software pack

Figure 297. Enabling X-Cube-BLE1

[I] STM32CubeMX Untitled*: STM32L010RBTx NUCLEO-LO10RB (= [s3]
59 , , , G
3 9

s 8 File Window Help (e n oy %’\' Y/

STM32L010RBTx - NUCLEC-LO10RB / Untitled - Pinout & Configuration

Pinout & Configuration

Clock Configuration
Additional Softwares v Pinout

STMicroelectronics X-CUBE-BLE1.1.1.0 Mode and Configuration
Mode 4

Project Manager

45E Pinout view == System view

Nireless BlueNRG-MS Middlewares
System Core >
Nireless Application
Analog >
i
Configuration
Timers » —
Reset Ganfiguration Additional Software
M Connectivity >
Computing HCI_TL_INTERFACE
) Name IPs or Components Found Solutions BSP API
Middleware > . Timers Connectivity
ExtiLine [GPIO:EXTI ~| [PAD ~| HAL_EXTI DRIVER
fdd“im‘ Software e BUS 10 driver [SPIFull-Duplex Master ~| [SPIT ~] BSP_BUS_DRIVER

57 STMicroelectronics X-CUBE-BLE11.1.0

CS Line [GPI0:Output ~| [Pa1 ~| Unknown m

Reset Line [GPIO:Output ~| [PAg ~] Unknown USART2 @

BSP

Name IPs or Components Found Solutions BSP API
BSP BUTTON [GPIO:EXTI ~| [PC13 [B1 [Blue PushBut__. ~| BSP_COMMON_DRIVER
BSP USART [USART:Asynchro_. | [USART2 ~| BSP_COMMON_DRIVER!
BSPLED [GPIO:Output ~| [PA5 [LD2 [Green Led]] | BSP_COMMON_DRIVER

8. Generate the SensorDemo project:
a) Click | | to generate the code. The Project settings window
opens if the project has not yet been saved.
b) Click | | to generate the code once the project settings have

been properly configured (see Figure 298). When the generation is complete, a
dialog window requests to open the project folder (Open Folder) or to open the
project in IDE toolchain (Open Project). Select Open Project (see Figure 299).

c) If .cproject files are associated to Atollic® TrueStudio®, TrueStudio® is
automatically launched by clicking Open Project: from the TrueStudio launch
window, create or select an existing workspace (see Figure 300) and click OK.
STM32CubeMX generated project appears in the TrueStudio® Project explorer
panel (see Figure 301).

3

UM1718 Rev 31 297/363

Tutorial 7 — Using the X-Cube-BLE1 software pack

UM1718

298/363

Figure 298. Configuring the SensorDemo project

Pinout & Configuration Clock Configuration Project Manager

Project Settings

Tools

Project Name

‘SensorDemo

Project Location

Application Structure

‘Basic ~ | O Do not generate the main()

Toolchain Folder Location

[C:\STM32CubeMX_Projects%-Cube-BLE \

Toolchain / IDE
‘TrueSTUDIO e Generate Under Root

¢+ STM32Cube Firmware Library Package

© Copy all used libraries into the

@ Copy only the necessary library files

O Add necessary library files as reference in the toolchain project configuration file

~Generated files

[Generate peripheral initialization as a pair of "c/.h’ files per peripheral
[Backup previously generated files when re-generating

Keep User Code when re-generating

Delete previously generated files when not re-generated

= o
CritF) |
RCC
STMicroelectronics.X-CUBE-BLE1.1.1.0
GPIO

HAL
HAL
HAL

Generated Function Calls

Function Mame IP Instance Mame [Mot Generate Function Call a Visibility (Static)

1 MX_GPIO_Init GPIO [m]
2 SystemClock_Config RCC a
3 MX_X_CUBE_BLE1_Init STMicroelectronics X-CUBE-BLE1.1.1.0 [m]
4 MX X _CUBE BLE1 Process STMicroelectronics X-CUBE-BLE1.1,1.0 [m]

| <J<qmll<]

Figure 299. Open SensorDemo project in the IDE toolchain

.
[[Code Generation

o The Code is successfully generated under C:/STM32CubeMX_Projects/X-Cube-BLE/SensorDemo

UM1718 Rev 31

3

UM1718 Tutorial 7 — Using the X-Cube-BLE1 software pack

Figure 300. Launching the SensorDemo project in Atollic® TrueStudio®

r L= - i
E Eclipse Launcher u
Select a directory as workspace
Atollic TrueSTUDIO for STM32 uses the workspace directory to store its preferences and development artifacts.
T el Lsers\JohnDoe \Atollic\TrueSTUDIO\STM32_workspace_9.0j]
["] Use this as the default and do not ask again
» Recent Workspaces I
[OK] { Cancel]
Figure 301. Viewing the SensorDemo project in Atollic® TrueStudio®
E STM32_workspace_9.0 - C/C++ - SensorDemo/Src/main.c - Atollic TrueSTUDIO for STM32 ; =Ehg
File Edit Source Refactor View Navigate Search Project Run Window Help
B [ARAGSG | B RGP Oy~ BO~B >R G Quick Access ;| B | [@)
[Project Explorer 2 E&|e =0 [9maincs I
9 - =
> B Includes 95 /* USER CODE BEGIN Init */ =
» & Drivers 96 N -
L e 2; /¥ USER CODE END Init */ &
4 & Middlewares 99 /* Configure the system clock */ '5-
“ =50 1060 SystemClock Config(); o
4 [STMicroelectronics_BlueNRG-MS | 101 a
I = Documentation 192 /* USER CODE BEGIN SysInit */ o
» = hei 183 . o
» & includes igg /* USER CODE END SysInit */ -
b = utils o % s s . . « B =
| 106 /* Initialize all configured peripherals */ E =
4 (& Src 107 _MX_GPTO_Tnit(}- -
» [8 app_bluenrg-ms.c 108 [MX_BlueNRG_Ms_Init()) S
o [g hei_tl_interface.c 189 = USER CODE BEGIN 2 */ <
» |l main.c 110
o |8 nucleo_l033r8_bus.c 11 /* USER CODE END 2 */
» [€ sensar_service.c 112
B - 113 /* Infinite loop */
> 8 stm32_bluenrg_bsp.c 114 /* USER CODE BEGIN WHILE */
o [8 stm3210xx_hal_exti.c 115 while (1)
o L€ stm3210xx_hal_msp.c 116
b [8 stm3210xx_itc 117
o [system_stm3210xcc 118 /* USER CODE END WHILE */
i+ 2 startup 119
B mscratch 120 ‘ MX_HlueNRG_MS_Pr‘ocess();’
) 121 USER CODE BEGIN 3
[= SensorDemo.elf.launch 122
|2 SensorDema.ioc 123 3
STM32L053R8_FLASH.Id 124 /¥ USER CODE END 3 */ -
R | I 3
[¢ /SensorDemao/Src/main.c :
IS73 UM1718 Rev 31 299/363

Tutorial 7 — Using the X-Cube-BLE1 software pack UM1718

300/363

9. Build and Run the SensorDemo application from the Atollic® TrueStudio®:
a) Configure the project properties (see Figure 302)
From the Project explorer panel, right-click the project name (SensorDemo) and
select Properties to open the Properties window.
Select C/C++ Build and enable parallel build from the Behavior tab to speed the
build process up.
b) Click the build icon, &, to build the project.
c) Connect your computer to the Nucleo board ST-link connector via the USB cable.
-] .
d) Click % from the Run menu to run the project on the board.
Figure 302. Configuring the SensorDemo project in Atollic® TrueStudio®
E Properties for SensorDemo . ~ —— - E=IEN X
type filter text C/C++ Build Qv - -
> Resource
RBuilders
4 C/C++ Build Configuration: [Debug [Active] v] IManage Configurations...
Buila Vanables
Environment
Logging [E Builder Settings| @ Behavior [,nfh Refresh Policy‘
Settings - Build settings
Tool Chain Editor Stop on first build error [¥]Enable parallel build
» C/C++ General St opime oY
CMSIS-SVD Settings (©) Use parallel jobs: | 4
Project References *) Use unlimited jobs
Review . i
Run/Debug Settings Workbench BuFId Behavior
. Task Repository ‘Workbench build type:
WikiText || Build on resource save (Auto build)
MNote: See Workbench automatic build preference
Build (Incremental build)
[¥] Clean
iRestorE Qefaults] i Apply]
@ I OK] l Cancel l
10. Test the STM32 SensorDemo application by launching the BlueNRG application on the
phone:
e) Scan for nearby devices.
f) Select the BlueNRG device.
g) Since there is no MEMs sensing elements on the hardware, press the Blue

Button to simulate MEMs data: the ST cube rotates by a fixed value each time the
button is pressed (see Figure 303).

3

UM1718 Rev 31

UM1718

Tutorial 7 — Using the X-Cube-BLE1

software pack

3

Figure 303. Testing the SensorDemo application

BlueNRG

Charge 2

ES06:7AB0TI41

Flex 2

DECTS1IANCIE

UP MOVE

EIAITIEEAGAR

Unknown device

DVFZ66ART:AL

Unknown device

ABEDBAAEERTS

X: X
Unknown device
F1708ABE 4888 - | ¥
Unknown device Z: z:

2049 78.7CASES

UM1718 Rev 31

301/363

FAQ

UM1718

18

18.1

18.2

18.3

18.4

Note:

302/363

FAQ

On the Pinout configuration panel, why does STM32CubeMX
move some functions when | add a new peripheral mode?

You may have deselected || keep current Signals Placement . In this case, the tool performs an
automatic remapping to optimize your placement.

How can | manually force a function remapping?

Use the Manual Remapping feature.

Why are some pins highlighted in yellow or in light green in
the Pinout view? Why cannot | change the function of some
pins (when | click some pins, nothing happens)?

These pins are specific pins (such as power supply or BOOT) which are not available as
peripheral signals.

Why do | get the error “Java 7 update 45” when installing
“Java 7 update 45” or a more recent version of the JRE?

The problem generally occurs on 64-bit Windows operating system, when several versions
of Java™ are installed on your computer and the 64-bit Java™ installation is too old.

During STM32CubeMX installation, the computer searches for a 64-bit installation of

Java™,

e If oneis found, the ‘Java 7 update 45’ minimum version prerequisite is checked. If the
installed version is older, an error is displayed to request the upgrade.

e Ifno 64-bit installation is found, STM32CubeMX searches for a 32-bit installation. If one
is found and the version is too old, the ‘Java 7 update 45’ error is displayed. The user
must update the installation to solve the issue.

To avoid this issue from occurring, it is recommended to perform one of the following

actions:

1. Remove all Java™ installations and reinstall only one version (32 or 64 bits) (Java 7
update 45 or more recent).

2. Keep 32-bit and 64-bit installations but make sure that the 64-bit version is at least
Java 7 update 45.

Some users (Java developers for example) may need to check the PC environment
variables defining hard-coded Java paths (e.g. JAVA_HOME or PATH) and update them so
that they point to the latest Java installation.

On Windows 7 you can check the Java installation using the Control Panel. To do this,
double-click the |£| = icon from Control Panel\All Control Panel to open the Java™
settings window (see Figure 304).

UM1718 Rev 31 ‘Yl

UM1718 FAQ
Figure 304. Java™ Control Panel
rl-:-J Java Control Panel . = | B3 \
General| 13va3 | Sacurity | Advanced
View and manage Java Runtime versions and settings for Java
applications and applets. i
] ||
1 Ll .
| £ Java Runtime Environment Settings ﬁ
L.Jser-.-Sr.;tem |
Platform Product Location Path Runtime ... En.. | |
| 1.7.0_45 Thitp:fiava.... EOProgram Files\davaire?y..] v
I
o) |
\ | m l
[][cocel]
You can also enter java —version’ as an MS-DOS command to check the version of your
latest Java installation (the Java program called here is a copy of the program installed
under C:\Windows\System32):
java version “1.7.0_45"
Java (TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot (TM) 64-Bit Server VM (build 24.45-b08, mixed mode)
18.5 Why does the RTC multiplexer remain inactive on the Clock

3

tree view?

To enable the RTC multiplexer, the user shall enable the RTC peripheral in the Pinout view
as indicated below.

Figure 305. Pinout view - Enabling the RTC

% RTC
- i~Alarm A | Internal Alarm A -

“WakeUp :Disahle v:

~-Calibration :Disahle |

UM1718 Rev 31 303/363

FAQ

UM1718

18.6

18.7

304/363

How can | select LSE and HSE as clock source and
change the frequency?

The LSE and HSE clocks become active once the RCC is configured as such in the Pinout
view. See Figure 306 for an example.

Figure 306. Pinout view - Enabling LSE and HSE clocks

RCI

High Speed Clock (HSE) Crystal/Ceramic Resonator -

Low Speed Clock (LSE) Crystal/Ceramic Resonator -
Master Clodk Ouput 1

The clock source frequency can then be edited and the external source selected, see
Figure 307.

Figure 307. Pinout view - Setting LSE/HSE clock frequency
FLL SOOTOW /e |

5]
-
PpUE gLy = 15 - -

e 5K
|- — | HEE -

Why STM32CubeMX does not allow me to configure PC13,
PC14, PC15 and PI8 as outputs when one of them

is already configured as an output?

STM32CubeMX implements the restriction documented in the reference manuals as a
footnote in table Output Voltage characteristics:

“PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only
sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output
mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and
these I/Os must not be used as a current source (e.g. to drive a LED).”

3

UM1718 Rev 31

UM1718

FAQ

18.8

Note:

3

Ethernet configuration: why cannot | specify DP83848
or LAN8742A in some cases?

For most Series, STM32CubeMX adjusts the list of possible PHY component drivers
according to the selected Ethernet mode:

¢ when the Ethernet MIl mode is selected the user is able to choose between the
DP83848 component driver or a “User Phy”.

e when the Ethernet RMIlI mode is selected, the user is able to choose between the
LAN8742A component driver or a “User Phy”.

When “User Phy” is selected, the user must manually include the component drivers to be
used in its project.

For STM32H7 Series, the PHY is seen as an external component and is no longer specified
under the Ethernet peripheral configuration. The user can select the PHY under LwIP
Platform settings tab. However, since the STM32H7 firmware package provides only the
driver code for the LAN8742A component that is available on all STM32H7 evaluation and
Nucleo boards, STM32CubeMX user interface offers only the choice between "User Phy"
and LAN8742.

When LAN8742 is selected, the BSP driver code is copied into the generated project.

UM1718 Rev 31 305/363

STM32CubeMX pin assignment rules UM1718

Appendix A STM32CubeMX pin assignment rules

AA1

306/363

The following pin assignment rules are implemented in STM32CubeMX:

Rule 1:
Rule 2:
Rule 3:
Rule 4:
Rule 5:
Rule 6:
Rule 7:
Rule 8:
Rule 9:

Block consistency

Block inter-dependency

One block = one peripheral mode

Block remapping (only for STM32F 10x)

Function remapping

Block shifting (only for STM32F 10x)

Setting or clearing a peripheral mode

Mapping a function individually (if Keep Current Placement is unchecked)
GPIO signals mapping

Block consistency

When setting a pin signal (provided there is no ambiguity about the corresponding
peripheral mode), all the pins/signals required for this mode are mapped and pins are
shown in green (otherwise the configured pin is shown in orange).

When clearing a pin signal, all the pins/signals required for this mode are unmapped
simultaneously and the pins turn back to gray.

Example of block mapping with a STM32F107x MCU

If the user assigns 12C1_SMBA function to PB5, then STM32CubeMX configures pins and
modes as follows:

[2C1_SCL and I12C1_SDA signals are mapped to the PB6 and PB7 pins, respectively
(see Figure 308).

I12C1 peripheral mode is set to SMBus-Alert mode.

3

UM1718 Rev 31

UM1718 STM32CubeMX pin assignment rules

Figure 308. Block mapping

F - — —
o STM32CubeMX Untitled*: STM3ZFIOTVETx . o o 0 = a— o E

File Project Pinout Window Help
Bod & @g g [C] Keep Current Signals Placement 4 o (O — @ < Find v T\ \ =\ [¥] Show user Label : (2| £

Pinout | Clock Configuration | Configuration | Power Consumption Calculatorl

B ® 1201 o

. i.q2c [SMBus-Alert-mode -

=% 1252

?-"Mode Half-Duplex Slave -
Master Clock Output

i- & 1283
i & IWDG
i & RCC
t
=)

-
P W

- & RTC
- & SPT1
i--Mode | Disable -

{1}

Hardware NSS Signal
o
& SPI3
© SYS
- & TIM1
- & TIM2
- 0 TIM3
- & TIM4
- & TIM5
- & TIM6
- & TIM7
- & UART4
. & _UARTS ¥

L e ——

STM32F107VBTx
LQFP100

b B e e e e B
- G- B - - - B B - - B

Example of block remapping with a STM32F107x MCU

If the user assigns GPIO_Output to PB6, STM32CubeMX automatically disables 12C1
SMBus-Alert peripheral mode from the peripheral tree view and updates the other 12C1 pins
(PB5 and PB7) as follows:

e If they are unpinned, the pin configuration is reset (pin grayed out).

o |[f they are pinned, the peripheral signal assigned to the pins is kept and the pins are
highlighted in orange since they no longer match a peripheral mode (see Figure 309).

3

UM1718 Rev 31 307/363

STM32CubeMX pin assignment rules UM1718

Figure 309. Block remapping

.
5 STM32CubeMX Untitled®; STM32FL07VETx . S —— — - [E= e
File Project Pinout Window Help

B d & @& O [[]Keep Curent Signaks Placement 9 ¢] — @ < Find| v |# 4 [7)Show user Label | (7]
Pinout | Clock C [c | Pamer jon Calculator |

=1 % CAN1

- [] Master Mode
£ e cAN2

- [7] Slave Mode
& & CRC
@ DAC
= % ETH

Mode Disable -
B 1201

I visasle -]

Mnde[Dlsabl: v]
Master Clock Output
o 1283
- & IWDG
@ RCC
@ RTC
@ SPI1
| Mnde[Dlsable -
Hardware NSS Signal
& P2 STM32F107VBTx
o SPI3 LQFP100
o SYS
® TIM1
& TIM2 L4
& TIM3
o TIM4
o TIM5
- & TIM6
& TIM7 &

@
n

&g

it

-G-8

B8

B8

]

&

For STM32CubeMX to find an alternative solution for the 12C peripheral mode, the user will
need to unpin 12C1 pins and select the 12C1 mode from the peripheral tree view (see
Figure 310 and Figure 311).

3

308/363 UM1718 Rev 31

UM1718

STM32CubeMX pin assignment rules

3

Figure 310. Block remapping - Example 1

7
& STM32CubeMX Umm_:d‘: STMSZF_IO?VBTX .

File Project Pinout Window Help

B HE @& O :[]Keep CurentSignals Placement 9 & L] = @ < Find

Pinout | Clock C ion | € [Power c Calcuiator

= & CAN1
] Master Mode

£ o CcAnN2
- [F] Slave Mode

t & CRC

@ DAC

| & @ ETH

ode Diabie =

B0 11

12C [Disable -

I 1262

‘Mode | Disable v]
Master Clock Output

1253

IWDG

RCC

RTC

SPI1

i~Mode Disable -

Hardware NSS Signal

e e e 90

@9 @9 9 90000

12C1_SDA
12C1_SMBA

STM32F107VBTx
LQFP100

Figure 311. Block remapping - Example 2

& STM32CubeMX Ui

1 B

File Project Pinout Window Help

G B @& O [keepCurentSignalsPlacement 9 & L — @ < Find -

L =\ [showuser Label = (7 -

’

Pinout | Clock Confi [c | Power c Calaulator

5 e can i

|1 [7] Master Mode

5o can2
.. [] Stave Mode

55 CRC

- & DAC

-4 ETH

Ml - Mode/Disable -]

-8 1201
12C | sMBus-Alert-mode -

5 1252
~Wiode Disable =

i [] Master Clock Output

m-

© 1283
© IWDG
i % RCC
L]
L]

n

==
0

i-Mode [Disable -
i [] Hardware NSS Signal

SP12

SPI3

SYS

TIM1

M2 -
TIM3

TIM4

C IR NN TR NRC RN TRE MR N M)

STM32F107VBTx
LQFP100

UM1718 Rev 31

309/363

STM32CubeMX pin assignment rules UM1718

A.2 Block inter-dependency

On the Pinout view, the same signal can appear as an alternate function for multiple pins.
However it can be mapped only once.

As a consequence, for STM32F1 MCUs, two blocks of pins cannot be selected
simultaneously for the same peripheral mode: when a block/signal from a block is selected,
the alternate blocks are cleared.

Example of block remapping of SPI in full-duplex master mode with a
STM32F107x MCU

If SPI1 full-duplex master mode is selected from the tree view, by default the corresponding
SPI signals are assigned to PB3, PB4 and PB5 pins (see Figure 312).

If the user assigns to PA6 the SPI1_MISO function currently assigned to PB4,
STM32CubeMX clears the PB4 pin from the SPI1_MISO function, as well as all the other
pins configured for this block, and moves the corresponding SPI11 functions to the relevant
pins in the same block as the PB4 pin (see Figure 313).

(by pressing CTRL and clicking PB4 to show PAG alternate function in blue, then drag and
drop the signal to pin PAG)

Figure 312. Block inter-dependency - SPI signals assigned to PB3/4/5

[@ STM32CubeMX Untitled®: STM32F107VBTx E@g
File Project Pinout Window Help
Bod =8 @ Q [Keep Current Signals Placement « g _— 0 < Find - \“_ \ =4 [V] Show user Label - |2/ -1
Pinout | Clock C son | Config | Power C: ption Calauiator |
@ & CANL -

o CAN2
@ & CRC

PI1_MOSI
PI1_MISO
PI1_SCK

- & DAC
& & ETH
12C1 m
1252 g
1253 P =
wbe [pes_|
- % RCC
% RTC lPeis.]
B % SPI1 [pc1a. |
i ModejFuII-Duplex Master -: m
[] Hardware NSS Signal
o SPI2 g
[% SPI3 =
4 svs et |
- & TIM1 oo |
o TIM2 = =
o TIM3 =N
W6 TIMA [pes | STM32F107VBTx
@ % TIMS e LQFP100
o TIM6
% TIM7 =
% UART4 pas.]
- % UARTS PaL |
% USART1 Paz |
% USART2
G & USART3

[#- % USB_OTG_FS B
Lo wounG

3

310/363 UM1718 Rev 31

UM1718

STM32CubeMX pin assignment rules

3

Figure 313. Block inter-dependency - SPI1_MISO function assigned to PA6

7
% STM32CubeMX Untitled*: STM32F107VBTx

=

File Project Pinout Window Help

B JE @& O [[keepcurrent SignalsPlacement 9 &] — @ 4 Find -

L = [V] show user Label

Pinout | Clock Confi IE

i IPuwerr

tion Calculator

o CANL

o CAN2

o CRC

4\ pac

o ETH

1201

1252

1253

WDG

RCC

RTC

SPIL

‘Mode |Full-Duplex Master
s [7] Hardware NSS Signal

B-&-g-8-e-a-u-a-a
RN YO SR YR YR)

o

SPI2
SPI3
SYS
TiM1
M2
M3
TiMa
TIM5
TIM6

TIM7
UART4
UARTS
USART1
USART2
USART3
USB_OTG_FS

&-g-2-8-8-8-8-5-g-8-8-8-8-8-8-8
e 9009009 e e e e e eee

E

a

STM32F107VBTx
LQFP100

1S 11ds

W iIds

W 1lds

UM1718 Rev 31

311/363

STM32CubeMX pin assignment rules

UM1718

A3

One block = one peripheral mode

When a block of pins is fully configured in the Pinout view (shown in green), the related
peripheral mode is automatically set in the Peripherals tree.

Example of STM32F107x MCU

Assigning the 12C1_SMBA function to PB5 automatically configures 12C1 peripheral in
SMBus-Alert mode (see Peripheral tree in Figure 314).

Figure 314. One block = one peripheral mode - 12C1_SMBA function assigned to PB5

r
% STM32CubeMX Untitled*: STM32F107VBTx

. | [ge—

Filen PivjectsPincutsWindos:Help

B HE @& O [IKeepcurentSignalsPlacement 4 o (] —

@ + Fnd v.“ \ =y [¥] Show user Label = (7| -2

Pinout ‘ Clock Configuration | Configuration | Power Consumption Calculator

- & CAN1
@ CAN2
& CRC
@ DAC
o ETH

e

a

(2= 12C1_SCL
R T2C1_SMBA

5:P T2C1_SDA

PB4
PBE3

@ 1201

)
0 m

L v Ly

~12C | SMBus-Alert-mode -

o 1253

- & RCC
@& RTC
% SPI1

% SPI2
% SPI3
& SYS

@ TIM1
o TIM2
& TIM3
o TIM4
& TIM5
o TIM6
& TIM7

b e e) e [
&8

ol

RO = T
ok

f | Mode |Disable =
Master Clock Qutput

@ IWDG

--Mode | Disable -
: Hardware NS5 Signal

% UART4
% UARTS
@ USART1

STM32F107VBTx
LQFP100

oo I
=2 l=} (| =,
el e l
=]l) |

A4

312/363

Block remapping (STM32F10x only)

To configure a peripheral mode, STM32CubeMX selects a block of pins and assigns each
mode signal to a pin in this block. In doing so, it looks for the first free block to which the
mode can be mapped.

When setting a peripheral mode, if at least one pin in the default block is already used,
STM32CubeMX tries to find an alternate block. If none can be found, it either selects the
functions in a different sequence, or unchecks [keep Current Signals Flacement , and remaps alll
the blocks to find a solution.

S74

UM1718 Rev 31

UM1718 STM32CubeMX pin assignment rules
Example
STM32CubeMX remaps USART3 hardware-flow-control mode to the (PD8-PD9-PD11-
PD12) block, because PB14 of USARTS3 default block is already allocated to the
SPI2_MISO function (see Figure 315).
Figure 315. Block remapping - Example 2
USART3 ATS
USART3 CTS
LSARTS AX
USARTS TX
SPI2_MOS]
SPI2_MISD
SPI2_SCK
A.5 Function remapping

3

To configure a peripheral mode, STM32CubeMX assigns each signal of the mode to a pin.
In doing so, it will look for the first free pin the signal can be mapped to.

Example using STM32F415x

When configuring USART3 for the Synchronous mode, STM32CubeMX discovered that the
default PB10 pin for USART3_TX signal was already used by SPI. It thus remapped it to
PDS8 (see Figure 316).

Figure 316. Function remapping example

USART3_TX

USART3_CK

dd
ad

== =] -

1

HDS ZIds [N

¥d Eldwsn

UM1718 Rev 31 313/363

STM32CubeMX pin assignment rules UM1718

A.6

314/363

Block shifting (only for STM32F10x and when
“Keep Current Signals placement” is unchecked)

If a block cannot be mapped and there are no free alternate solutions, STM32CubeMX tries
to free the pins by remapping all the peripheral modes impacted by the shared pin.

Example

With the Keep current signal placement enabled, if USART3 synchronous mode is set first,
the Asynchronous default block (PB10-PB11) is mapped and Ethernet becomes unavailable
(shown in red) (see Figure 317).

Unchecking [~ keep current Signals Flacement allows STM32CubeMX shifting blocks around
and freeing a block for the Ethernet MIl mode. (see Figure 318).

Figure 317. Block shifting not applied

-
& STM32CubeMX Untitled™; STM32F107VBTx [E=REER S
a

File Project Pinout Window Help

-~
EocdE 45 | k}ééiﬁ"(fi.iFr'éHf"S"i;q"HéIEﬁl‘éiﬁéﬁiéﬁﬁ-} o= O =@ < Find w | =, 4 = [¥] Show user Label
Finout | Clock Configuration I Configuration | Power Consumption Ca\culainrl
i @ ADC1 s
k- B ADC2
i & CAM1
k- B CAN2
- & CRC
t- & DAC
-9 ETH
E-"-:DISEME -
- & 1201
H-69 1252
i & 1253
k- & IWDG
- & RCC
- W RTC
@ SPI1
- W SPI2
% SPI3
- @ SYS

/L STM32F107VBTx p [

O : LQFP100
@ TIM3 o

i
=)
i
=)
i
=)
i
=)
t % TIM4
=)
i
=)
i
=)
)
i}

m

@ TIM5
- B TIMG

@ TIM7
- UART4

=8 USART3_CK

% UARTS
- USART1
% USART2

(g s
1
¥ ELHWS
e ELdVS

3

UM1718 Rev 31

UM1718

STM32CubeMX pin assignment rules

A.7

A.8

A9

3

Figure 318. Block shifting applied

e e e e

File Project Pinout Window Heln
RoWR & Co6 it © O — @ +

PFinout | Clock Configuration I Configuration I Power Consumption Ca\culaborl

k- & ADCL -

k- & ADC2

£ & CAN1

k- & CAN2

i & CRC

- & DAC

= % ETH P
- Mode :Disahle -

-0 1201
% 1252
% 1253
@ IWDG
% RCC
@ RTC
% SPI1
@ SPI2
% SPI3
% 5YS
% TIM1
@ TIM2
@ TIM3
@ TIM4
% TIM5
@ TIM&
% TIM7
@ UART4
% UARTS
% USART1
% USART2

v | =, 4 =, [¥]Show user Label

r
l=feflao| e el o+ I o+ - -
alalala ala o o o o o

CJ

m

STM32F107VBTx
LQFP100

=8 USART3_CK

X1 ELAYS

o ELAYS

Setting and clearing a peripheral mode

The Peripherals panel and the Pinout view are linked: when a peripheral mode is set or
cleared, the corresponding pin functions are set or cleared.

Mapping a function individually

When STM32CubeMX needs a pin that has already been assigned manually to a function
(no peripheral mode set), it can move this function to another pin, only if
[] keep Current Signals Flacement iS unchecked and the function is not pinned (no pin icon).

GPIO signals mapping

I/0 signals (GPIO_Input, GPIO_Output, GPIO_Analog) can be assigned to pins either
manually through the Pinout view or automatically through the Pinout menu. Such pins can
no longer be assigned automatically to another signal: STM32CubeMX signal automatic
placement does not take into account this pin anymore since it does not shift I/0 signals to
other pins.

The pin can still be manually assigned to another signal or to a reset state.

UM1718 Rev 31 315/363

STM32CubeMX C code generation design choices and limitations UM1718

Appendix B STM32CubeMX C code generation design
choices and limitations

B.1 STM32CubeMX generated C code and user sections

The C code generated by STM32CubeMX provides user sections as illustrated below. They
allow user C code to be inserted and preserved at next C code generation.

User sections shall neither be moved nor renamed. Only the user sections defined by
STM32CubeMX are preserved. User created sections will be ignored and lost at next C
code generation.

/* USER CODE BEGIN 0 */
(..)
/* USER CODE END 0 */
Note: STM32CubeMX may generate C code in some user sections. It will be up to the user to

clean the parts that may become obsolete in this section. For example, the while(1) loop in
the main function is placed inside a user section as illustrated below:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

B.2 STM32CubeMX design choices for peripheral initialization

STM32CubeMX generates peripheral _Init functions that can be easily identified thanks to
the MX_ prefix:

static void MX_GPIO_Init (void);

static void MX_ <Peripheral Instance Name>_Init (void);

static void MX_I2S2 Init(void);

An MX_<peripheral instance name>_Init function exists for each peripheral instance
selected by the user (e.g, MX_[2S2_Init). It performs the initialization of the relevant handle

structure (e.g, &hi2s2 for I2S second instance) that is required for HAL driver initialization
(e.g., HAL I2S_Init) and the actual call to this function:

void MX_TI2S2 Init (void)

{

hi2s2.Instance = SPI2;
hi2s2.Init.Mode = I2S_MODE_MASTER_TX;
hi2s2.Init.Standard = I2S_STANDARD_PHILLIPS;
hi2s2.Init.DataFormat = I2S_DATAFORMAT_16B;
hi2s2.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;

3

316/363 UM1718 Rev 31

UM1718 STM32CubeMX C code generation design choices and limitations
hi2s2.Init.AudioFreq = I2S_AUDIOFREQ_192K;
hi2s2.Init.CPOL = I2S_CPOL_LOW;
hi2s2.Init.ClockSource = I2S_CLOCK_PLL;
hi2s2.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_ENABLE;
HAL_I2S_Init(&hi2s2);
}
By default, the peripheral initialization is done in main.c. If the peripheral is used by a
middleware mode, the peripheral initialization can be done in the middleware corresponding
.cfile.
Customized HAL <Peripheral Name>_Msplnit() functions are created in the
stm32f4xx_hal_msp.c file to configure the low-level hardware (GPIO, CLOCK) for the
selected peripherals.
B.3 STM32CubeMX design choices and limitations for
middleware initialization
B.3.1 Overview

3

STM32CubeMX does not support C user code insertion in Middleware stack native files
although stacks such as LwIP might require it in some use cases.

STM32CubeMX generates middleware Init functions that can be easily identified thanks to
the MX_ prefix:

MX_LWIP_Init(); // defined in lwip.h file
MX_USB_HOST Init(); // defined in usb_host.h file
MX_FATFS_Init(); // defined in fatfs.h file

Note however the following exceptions:

e No /nit function is generated for FreeRTOS unless the user chooses, from the Project
settings window, to generate /nit functions as pairs of .c/.h files. Instead, a
StartDefault Task function is defined in the main.c file and CMSIS-RTOS native function
(osKernelStart) is called in the main function.

e If FreeRTOS is enabled, the Init functions for the other middlewares in use are called
from the StartDefaultTask function in the main.c file.
Example:

void StartDefaultTask(void const * argument)

{

/* init code for FATFS */
MX_FATFS_Init();

/* init code for LWIP */
MX_LWIP_Init () ;

/* init code for USB_HOST */
MX_USB_HOST_Init () ;

/* USER CODE BEGIN 5 */

/* Infinite loop */

for(;;)

{

UM1718 Rev 31 317/363

STM32CubeMX C code generation design choices and limitations UM1718

B.3.2

B.3.3

B.3.4

318/363

osDelay (1) ;

}
/* USER CODE END 5 */

}

USB host

USB peripheral initialization is performed within the middleware initialization C code in the
usbh_conf.c file, while USB stack initialization is done within the usb_host.c file.

When using the USB Host middleware, the user is responsible for implementing the
USBH_UserProcess callback function in the generated usb_host.c file.

From STM32CubeMX user interface, the user can select to register one class or all classes
if the application requires switching dynamically between classes.

USB device

USB peripheral initialization is performed within the middleware initialization C code in the
usbd_conf.c file, while USB stack initialization is done within the usb_device.c file.

USB VID, PID and String standard descriptors are configured via STM32CubeMX user
interface and available in the usbd_desc.c generated file. Other standard descriptors
(configuration, interface) are hard-coded in the same file preventing support of USB
composite devices.

When using the USB Device middleware, the user is responsible for implementing the
functions in the usbd_<classname>_if.c class interface file for all device classes (e.g.,
usbd_storage _if.c).

USB MTP and CCID classes are not supported.

FatFs

FatFs is a generic FAT/exFAT file system solution well suited for small embedded systems.
FatFs configuration is available in ffconf.h generated file.

The initialization of the SDIO peripheral for the FatFs SD Card mode and of the FMC
peripheral for the FatFs External SDRAM and External SRAM modes are kept in the main.c
file.

Some files need to be modified by the user to match user board specificities (BSP in
STM32Cube embedded software package can be used as example):

e bsp_driver_sd.c/.h generated files when using FatFs SD Card mode

e bsp_driver_sram.c/.h generated files when using FatFs External SRAM mode

e bsp_driver_sdram.c/.h generated files when using FatFs External SDRAM mode.
Multi-drive FatFs is supported, which means that multiple logical drives can be used by the
application (External SDRAM, External SRAM, SD Card, USB Disk, User defined). However

support of multiple instances of a given logical drive is not available (e.g. FatFs using two
instances of USB hosts or several RAM disks).

NOR and NAND Flash memory are not supported. In this case, the user shall select the
FatFs user-defined mode and update the user_diskio.c driver file generated to implement
the interface between the middleware and the selected peripheral.

UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX C code generation design choices and limitations

B.3.5 FreeRTOS

FreeRTOS is a free real-time embedded operating system well suited for microcontrollers.
FreeRTOS configuration is available in FreeRTOSConfig.h generated file.

When FreeRTOS is enabled, all other selected middleware modes (e.g., LwlIP, FatFs, USB)
will be initialized within the same FreeRTOS thread in the main.c file.

When GENERATE_RUN_TIME_STATS, CHECK_FOR_STACK_OVERFLOW,
USE_IDLE_HOOK, USE_TICK_HOOK and USE_MALLOC_FAILED_HOOK parameters
are activated, STM32CubeMX generates freertos.c file with empty functions that the user
shall implement. This is highlighted by the tooltip (see Figure 319).

Figure 319. FreeRTOS HOOK functions to be completed by user

F ™
& FREERTOS Configuration [

E:ff? Config parameters | g? Include parameters | QO User Constants | Q/,?’Tasks and Queues | Q?Tlmers and Semaphores | Qﬁ FreeRTOS Heap Usage|
Configure the following parameters:

Search :| Search (Cril+F) ¥ &
= Versions -
CMSIS-RTOS version 1.02 F
FreeRTOS version 8.2.3
Kernel settings
[= Hook function related definitions
USE_IDLE_HOOK Disabled
USE_MALLOC_FAILED _HOOK Disabled
CHECK_FOR_STACK_OVERFLOW Disabled
= Run time and task stats gathering related definitions
USE_TRACE_FACILITY Enabled
GEMERATE_RUM_TIME_STATS Disabled
[= Co-routine related definitions M
USE_CO_ROUTINES Disabled
MaAX_CO_ROUTINE_PRIORITIES 2
= Software timer definitions
USE_TIMERS Enabled -

USE_TICK_HOOK

configlSE_TICK_HOOK

Parameter Description:

The tick hook function is & hook (or callbadk) function that, if defined and configured, will be called during each tick interrupt.

-if USE_TICK_HOOK is set to 1 (Enabled) then the application must define a tick hook function: void vApplicationTickHook({void).
-if USE_TICK HOOK is set to 0 (Disabled) then the tick hook function will not be called, even if one is defined.

Ilnte(when set to 1, an empty function is generated in the freertos.c file (to be completed by the user))

[Apply] [Ok] [Cancel

3

UM1718 Rev 31 319/363

STM32CubeMX C code generation design choices and limitations

UM1718

B.3.6

320/363

LwiIP

LwlIP is a small independent implementation of the TCP/IP protocol suite: its reduced RAM
usage makes it suitable for use in embedded systems with tens of Kbytes of free RAM.

LwlIP initialization function is defined in Iwip.c, while LwIP configuration is available in
Iwipopts.h generated file.

STM32CubeMX supports LwIP over Ethernet only. The Ethernet peripheral initialization is
done within the middleware initialization C code.

STM32CubeMX does not support user C code insertion in stack native files. However, some
LwlIP use cases require modifying stack native files (e.g., cc.h, mib2.c): user modifications
shall be backed up since they will be lost at next STM32CubeMX generation.

Starting with LwIP release 1.5, STM32CubeMX LwlIP supports IPv6 (see Figure 321).

DHCP must be disabled, to configure a static IP address.

Figure 320. LwIP 1.4.1 configuration

LWIP Configuration Iﬁ1
| o Statistics I o Checksum I Q/} Debug I Q/) User Constants
o/ General Settings /" Key Options o/ PerfiChecks
Configure the below parameters
Search : | Search {CriHF) Wi
= LwIP Version -
LwIP Version (Version of LwIP sup... 1.4.1 I
[=] DHCP Option
|| LWIP_DHCP (DHCP Module) Enabled I
[=] RTOS Settings L
WITH_RTOS (Use FREERTOS ** ... Disabled r
[=] Protocols Options
LWIP_ICMP {ICMP Module Activati... Enabled
LWIP_IGMP {IGMP Module) Disabled A
LWIP_DMS (DMS Module) Disabled
LWIP_LUDP (UDP Module) Enabled
MEME MILIM LINP BrR (Mumber of 4 i
[Apply] [Ok] [Cancel
h

UM1718 Rev 31

3

UM1718

STM32CubeMX C code generation design choices and limitations

3

Figure 321. LwIP 1.5 configuration

LWIP Configuraticn

==

| o/ Perfichecks | o/ Statistics I

Qf‘ﬁ Checksum

I Qf‘ﬁ Debug

Qf‘ﬁ User Constants

o/ General Settings

| Q’?Keyopﬁons | Q:{?IPVG |

o/ HTTPD | o/ snmp | o sTP

Configure the below parameters :

Search :| Search (Crtl+F) L

=] LwIP Version

= DHCP Option
LWIP_DHCP {DHCP Module)
[=] RTOS Settings

= Protocols Options
LWIP_ICMP (ICMP Module Activation)
LWIP_IGMP (IGMP Module)
LWIP_DNS {DNS Module)
LWIP_UDP {UDP Module)

LWIP_TCP {TCP Module)

LwIP Version (Version of LwIP supported b...

WITH_RTOS {(Use FREERTOS ** CubeMX ...

MEMP_NUM_UDP_PCB (Number of UDP Co...

1.5.0_RC0O_201580211

Enabled

Disabled

Enabled
Disabled
Disabled
Enabled
4

Enabled

~

m

[emty | |

Ok

] [Cancel]

b

STM32CubeMX generated C code will report compilation errors when specific parameters
are enabled (disabled by default). The user must fix the issues with a stack patch
(downloaded from Internet) or user C code. The following parameters generate an error:

e MEM_USE_POOLS: user C code to be added either in Iwipopts.h or in cc.h (stack file).

e PPP_SUPPORT, PPPOE_SUPPORT: user C code required

e MEMP_SEPARATE_POOLS with MEMP_OVERFLOW_CHECK > 0: a stack patch

required

e MEM_LIBC_MALLOC & RTOS enabled: stack patch required

e LWIP_EVENT_API: stack patch required

In STM32CubeMX, the user must enable FreeRTOS in order to use LwIP with the netconn
and sockets APIs. These APIs require the use of threads and consequently of an operating
system. Without FreeRTOS, only the LwIP event-driven raw API can be used.

UM1718 Rev 31

321/363

STM32CubeMX C code generation design choices and limitations UM1718

B.3.7

322/363

Libjpeg

Libjpeg is a widely used C-library that allows reading and writing JPEG files. It is delivered
within STM32CubeF7, STM32CubeH7, STM32CubeF2 and STM32CubeF4 embedded
software packages.

STM32CubeMX generates the following files, whose content can be configured by the user
through STM32CubeMX user interface:

libjpeg.c/.h

The MX_LIBJPEG Init() initialization function is generated within the libjpeg.c file. It is
empty. It is up to the user to enter in the user sections the code and the calls to the
libjpeg functions required for the application.

jdata_conf.c

This file is generated only when FatFs is selected as data stream management type.
jdata_conf.h

The content of this file is adjusted according to the datastream management type
selected.

jeonfig.h

This file is generated by STM32CubeMX. but cannot be configured.

jmorecfg.h

Some but not all the define statements contained in this file can be modified through
the STM32CubeMX libjpeg configuration menu.

3

UM1718 Rev 31

UM1718

STM32CubeMX C code generation design choices and limitations

B.3.8

3

Figure 322. Libjpeg configuration window

r

% LIBJPEG Configuration

=x=)

o Config parameters q-"’ Usar Constants]
Configure the below parameters :

Search ;| Search (Crii+F # & [V]sShow Advanced Parameters
Version -
LIBIPEG version ad
= MW configuration
| Data Stream management type JFates
FREERTOS Enabled |
= General Settings 7
Use FREERTOS Memory Allocator Disabled
-| JPEG basic settings
BITS_IN_JSAMPLE 8 bits
MaAX_COMPONENTS 12
JCOEF short
(= JPEG encoder and decoder common ca...
DCT_ISLOW_SUFPORTED Enabled
DCT_IFAST_SUPPORTED Enabled
DCT_FLOAT_SUFPORTED Enabled
= JPEG encoder options
C_ARITH_CODING_SUFPORTED Enabled
C_MULTISCAN_FILES_SUFPFORT... Disabled -
Data Stream management type -
LIBJPEG_FS_type
Parameter Description:
Default Value : FatFs -

| Restore Default |

[apply | [ok || cancel |

Mbed TLS

Mbed TLS is a C-library that allows including cryptographic capabilities to embedded
products. It handles Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols, that are used for establishing a secure, encrypted and authenticated link between
two parties over an insecure network. Mbed TLS comes with an intuitive APl and minimal
coding footprint. Visit https://tls.mbed.org/ for more details.

Mbed TLS is delivered within STM32CubeF2, STM32CubeF4, STM32CubeF7 and
STM32CubeH7 embedded software packages.

Mbed TLS can work without LwIP stack (see Figure 323: Mbed TLS without LwiP).
If LwIP stack is used, FreeRTOS must be enabled as well (see Figure 324: Mbed TLS with

LwlIP and FreeRTOS).

UM1718 Rev 31

323/363

STM32CubeMX C code generation design choices and limitations UM1718

STM32CubeMX generates the following files, whose contents can be modified by the user
through STM32CubeMX user interface (see Figure 325: Mbed TLS configuration window)
and/or using user sections in the code itself:

e mbedtls_config.h
e mbedtls.h

e net _sockets.c (generated only if LwIP is enabled)
e mbedtls.c

Figure 323. Mbed TLS without LwIP

-
+ MBEDTLS Configuration e 28
| =7 Modules | =/ Modules Configuration I Q/’ User Constants
o Version and modes | o/ Feature support | o/ Alternate implementation
Configure the below parameters :
Search :| Search (Cril+F) L
= Version
MBEDTLS version 2.4.0
"l |2 TCP/IP stack i
= RNG dependency
RNG IP SW RNG
= Modes
MBEDTLS_S5L_CLL C Mot Defined
MBEDTLS_S5L_SRV_C Mot Defined
Restore Default Apply] [Ok] [Cancel
i - _- —
324/363 UM1718 Rev 31 Kys

UM1718

STM32CubeMX C code generation design choices and limitations

3

Figure 324. Mbed TLS with LwIP and FreeRTOS

-

% STM32CubeMX Untitled*: STM32F407ZETx

& 5TM32CubeMX Untitled*: STM32F407ZETx

File Project Pinout Window Help

File Project Pinout Window Help

B B dE & O []Keep current Sigr

o W | @ 05 [T]Keep Current Signals Fla

Pinout|) Clock Conﬂgurationl Configuration | Power

Finout | .4 Clock Configuration I Configuration | Power Consur

|configuration |lconfiguration -
+MiddleWares [-MiddleWares r
[% FATFS [+- % FATFS
E‘ % FREERTOS B % FREERTOS
. |:| Enabled b Enabled
[& LIBIPEG [& LIBIPEG
=% LWIP =R =
. [¥] Enabled .~ [7] Enabled,
=N (=& MBEDTLS
Enabled b [] Enabled
H-® &
B-® B i
[=l-Peripherals =h-Peripherals
[H- 4y ADC1 G-y ADC1
- 1), ADC2 E- 4, ADC2
- 1), ADC3 [H- 14 ADC3
- & CAN1 H® CAN1
[& CAN2 @ CAN2
- ® CRC - ® CRC
& DAC I ® DAC
& DCMI f® DeMI
=% ETH B'® ETH
- Mode [MII v . ~Mode |MI
-] Activate Rx Err signal b [] Activate Rx Err signal
FSMC - FSMC
12c1 H-® 121
UM1718 Rev 31 325/363

STM32CubeMX C code generation design choices and limitations UM1718

B.3.9

326/363

Figure 325. Mbed TLS configuration window

* MBEDTLS Configuration et]
gy - —
| =7 Modules | =7 Modules Configuration | Q/’ User Constants
«f Version and modes | «/ Feature support | /" Alternate implementation

Configure the below parameters :

Search :| Search (Cril+F) &
=] Version

MBEDTLS wersion 2.4.0
= TCP/IP stack

TCP/(TP stack LWIP

=] RNG dependency

RNG TP SW RNG
= Modes

MBEDTLS_S5L_CLL C Defined

MBEDTLS_S5L_SREV_C Defined

ooy) [ok) [

TouchSensing

The STM32 TouchSensing library is a C-library that allows the creation of higher-end human

interfaces by replacing conventional electromechanical switches by capacitive sensors with
STM32 microcontrollers.

It requires the touch-sensing peripheral to be configured on the microcontroller.

STM32CubeMX generates the following files, whose contents can be modified by the user
through STM32CubeMX user interface (see Figure 326: Enabling the TouchSensing
peripheral, Figure 327: Touch-sensing sensor selection panel and Figure 328:
TouchSensing configuration panel) and/or using user sections in the code itself:

e ftouchsensing.c/.h
e tsl user.c/.h
e {sl _conf.h

3

UM1718 Rev 31

UM1718

STM32CubeMX C code generation design choices and limitations

3

Figure 326. Enabling the TouchSensing peripheral

% STM32CubeMX testioc*: STM32F302C6Tx
- p— ragees ~ =

- —

File Project Pinout Window Help

RoRUR €60
[] Keep Current Signals Placement = o [} ‘ =@ 4 | Find |

- | Show User Label

O]
-

Pinout 1 Clock Configuration I Configuration | Power Consumption Calculator

BE'®% TSC r

| E+% Group 1

 -Sampling G1_101 Z
- Shield | G1_102 A
. [] 61_I01

-] G1_102

] 61_103

. ~[Jel104

{ B-% Group 2

~ -Sampling G2_I01 =

:-Shield | Disable "

| G2_101

- V] Gz2_102

O
@
%)
o}
w

i

UM1718 Rev 31

327/363

STM32CubeMX C code generation design choices and limitations UM1718

Figure 327. Touch-sensing sensor selection panel

» TOUCHSENSING Configuration e S

«/ Sensors selection | «/” Config paranmtersl o/ User Constants‘

Configure the below parameters :

S =

TSC_ACTIVE_CHANNELS = ... 1
TSLPRM_TOTAL_CHANNELS 1
I [+ Linear/Rotary sensors used I
[=| TouchKey sensors
TSLPRM_TOTAL_TOUCHKEYS 1
I0_TOUCHKEY1 G2_102
TSLPRM_TOTAL_TOUCHKE... 0

TSLPRM_TOTAL_OBJECTS
TSLPRM_TOTAL_OBIECTS must be 1.
Parameter Description:

Total number of sensors/objects in application
Count all TouchKeys, Linear and Rotary sensors

Restore Default] [Apply] [ok] I Cancel

L —

328/363 UM1718 Rev 31

3

UM1718 STM32CubeMX C code generation design choices and limitations

Figure 328. TouchSensing configuration panel

* TOUCHSENSING Configuration ot S

|/ Sensors selection| «/” Config parameters </ User Constants|
Configure the below parameters :

Search :| Search (Crtl+F) ¥ &

[=l Version and modes

TouchSensing version 2.2.0
[+ Optional features
I [+ Acquisition limits I
[+ Calibration
[+ Thresholds for TouchKey sensors
[+ Thresholds for Linear and Rotary s...
[+ Linear/Rotary sensors position
[+ Debounce counters
I [+ Environment Change System (ECS) I
[+ Detection Time Out (DTQ)
[+ Detection Exclusion System (DXS)
[+ Miscellaneous parameters

{ Restore Default [Apply] [Ok } [Cancel]

B.3.10 PDM2PCM

The PDM2PCM library is a C-library that allows converting a pulse density modulated
(PDM) data output into a 16-bit pulse-code modulation (PCM) format. It requires the CRC
peripheral to be enabled.

STM32CubeMX generates the following files, whose content can be modified by the user
through STM32CubeMX user interface and/or using user sections in the code itself:

e pdm2pcm.h/.c

3

UM1718 Rev 31 329/363

STM32CubeMX C code generation design choices and limitations UM1718

B.3.11

330/363

STM32WPAN BLE/Thread (STM32WB Series only)
STM32WPAN BLE and Thread middleware are now supported in STM32CubeMX.

Figure 329. BLE and Thread middleware support in STM32CubeMX

Pinout & Configuration Clock Configuration Project Manager
Additional Softwares v Pinout

al V] STM32_WPAN Mode and Configuration 4

O BLE BLE Disabled:
System Core > O THREAD Active only if RF, RTC & HSEM are enabled &% FreeRTOS is disabled
Analog >
Timers >
Connactivity >
Multimedia >
Security >
Computing >
Middleware ~

Configuration

FATFS
FREERTOS

They are exclusive in a given project and configuration with FreeRTOS is not yet supported.

3

UM1718 Rev 31

UM1718

STM32CubeMX C code generation design choices and limitations

3

Application projects generated with STM32CubeMX can be found in the project folder of the
STM32CubeWB MCU package.

Figure 330. STM32CubeWB Package download

4 | STM32Cube_FW_WB_V1.0.0 & Name
_htmresc
] Core
Documentation
] EWARM
> L. Drivers
] MDK-ARM
> L. Middlewares
ot I STM32_WPAN
4 | Projects
== I SWASTM32
4 | NUCLEO-WB55.Nucleo
P extsSettings
4 | pplications
——— m BLE_Beacon.ioc
4 | BLE
readme.txt
> | . BLE_Beacon
> | BLE_BloodPressure
> | BLE_CableReplacement
> | BLE_DataThroughput
> | BLE_HealthThermometer —
.). BLE HeartRate e
> | BLE_HeartRate_ota
> | BLE_HeartRateFreeRTOS
> . BLE_Hid
- o4 11
UM1718 Rev 31 331/363

STM32CubeMX C code generation design choices and limitations

UM1718

This package can be installed through STM32CubeMX following the standard procedure

described in Section 3.4.2: Installing STM32 MCU packages.

Figure 331. STM32CubeWB BLE applications folder

STM32CubeWB Firmware Package V1.0.0
Il | Main Changes

From Local ... From Url ... Refresh Install Now Remove Now

@& First release of STM32CubeWB (STM32Cube for STM32WB Series) supporting STM32WB3 3xx devices.

[Embedded Software Packages Manager |i|
STM32Cube MCU Packages and embedded software packs releases
ﬂ Releases Information was last rafrashed lass than ona hour aon
STM32Cube MCLU Packages
| p
» STM32F7
» STM32G0 [@ Downloading selected software packages X]
> STM32H7 Unzip File - stm32cube_fw_wb_v100.zip :
> STH32L0 Download and Unzip selected Files
> STM32L1 |
» STM32L4 OK Cancel
> STM32MP1 . . \
¥ STM32WB I
STM32Cube MCU Package for STM32WE Series (Size : 70.8 MB) 1.0.0
Details

BLE configuration
To enable BLE some peripherals (RTC, HSEM, RF) must be activated first.

Then, an application type must be selected, it can be one among Transparent mode, Server

profile, Router profile or Client profile.

Finally, the mode and other parameters relevant to this application type must be configured.

Note: The BLE Transparent mode and all Thread applications require either the USART or the

LPUART peripheral to be configured as well.

332/363 UM1718 Rev 31

3

UM1718

STM32CubeMX C code generation design choices and limitations

3

Figure 332. BLE Server profile selection

STM32_WPAMN Mode and Configuration

Mode
BLE

Configuration

Reset Configuration

@ Parameter Settings

& BLE Applications and Sernvices

|Conﬁgure the below parameters :

Q) ey
WS LS

~ BLE Application Type

BLE Application Type |Sewer profile V|
~ Server Mode
BT SIG Beacon Enabled <

* BT SIG Blood Pressure Sensor Disabled
* BT SIG Health Thermometer ... Disabled
* BT SIG Heart Rate Sensor Disabled
* Custom P2P Server Disabled
Custom Template Disabled
~ BLE Semvices Configuration
The device needs to support 1
The device needs to support ... 0
* BLE_CFG_SWC_MAX_MNBR_... 7
BLE CFG_CLT MAX_NBR_... 0

Figure 333. BLE Client profile selection

@ BLE Applications and Senices @ Configuration

|Cnnﬂgure the below parameters :

afseachctrh] © ®

~ BLE Application Type ‘/
BLE Application Type

~ Client Mode

« [Custom P2P Client | Ensbled d—

~ BLE Semices Configuration

The devic ds to support t.__ 0

e nee

The device needs to supportt.__ 1
* BLE_CFG_SVC_MAX_NBR_... 7
* BLE CFG CLT MAX NBR CB 1

UM1718 Rev 31

333/363

STM32CubeMX C code generation design choices and limitations UM1718

Thread configuration
To enable Thread some peripherals (RTC, HSEM, RF) must be activated first.

Then, an application type must be selected and the relevant parameters configured.

Figure 334. Thread application selection

STM32_WPAN Mode and Configuration |

THREAD <

Reset Configuration

@ Farameter Settings @ User Constants
@ THREAD Applications and Sewices @ Configuration

|C|:|nﬂgure the below parameters |

Q| | @ © * o
~ THREAD application type

Thread Application Thread_Coap_Generic d
Thread_Cli_Cmd
Thread_Coap_Generic

B.3.12 OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines)

New software and hardware have been introduced on dual-core products to enable
multi-core cooperation.

e For STM32MP1 Series only: the inter-processor communication controller (IPCC) used
to exchange data between two processor instances relies on the fact that shared
memory buffers are allocated in the MCU SRAM and that each processor owns specific
register bank and interrupts.

e For STM32MP1 Series only: the OpenAMP middleware for intercommunication
between Cortex-A and Cortex-M cores implements the RPMsg messaging protocol
(see Figure 335).

e The resource manager library (RESMGR_UTILITY) for system resource management:
multi-processor devices give the possibility to run independent firmware on several
cores (see Figure 336). This implies a core could use some peripherals without
knowledge of the usage of these same peripherals: the role of the resource
management library is to control the assignment of a peripheral to a dedicated core
and to provide a method to configure the system resources used to operate that
peripheral (see Figure 337).

334/363 UM1718 Rev 31 ‘Yl

UM1718 STM32CubeMX C code generation design choices and limitations

Figure 335. Enabling OpenAmp for STM32MP1 devices

mSTM}Z(ubeMKUnt\tlad": STM3ZMP153AABx - [m] X ‘
-) . - \

b P File Window Help A n [- I [1’

X > Untitled - Pinout & Configuration \

Project Manager

ut & Configuration Clock Configuration

Additional Software v Pinout

Q OPENAMP Mode and Configuration {
| Categories A2 e
* Boo... ATBL 7 m Boot time: Runtime contexts:
M Boot ROM Boot loader Cortex-A7 secure Cortex-A7 non secure
M ¥ Enabled
— V]
a
ol O Configuration
O O Reset Configuration
O & Parameter Settings | ® User Constants
- H Configure the below parameters
o Q (i]
Version

EEEEDCN N NN NN | . . nrication Mode
PUR M M m .

- EERE Conﬁgurilion
RCC M M = '
- i _ADDRE
RNG1 [/
O BUFF:
[/
o 0O

Figure 336. Enabling the Resource Manager for STM32MP1 devices

- RESMGR_UTILITY Mode and Configuration
Categories -

Q
Boot time: Runtime contexts:

Boot ROM Boot loader ATNS

Peripheral assignment request

I Dynamic system resources update ‘-—'

RCC
" RESMGR_UTILITY Reset Configuration
RINGT ® Parameter Settings

|Conﬂgure the below parameters : |

QfutiGiE | © © ®
~ Version

RESMGRE_UTILITY version mp1i1 4.0
~ configuration

use thel RPMSG/OpenAMP-based Ia'n:tensicn true ‘-—

PWR

3

UM1718 Rev 31 335/363

STM32CubeMX C code generation design choices and limitations UM1718

Figure 337. Resource Manager: peripheral assignment view

Pinout & Configuration Clock Configuration Project Manager

Additional Software v Pinout

RESMGR_UTILITY Mode and Configuration 4
4
Boot time Runtime contexts 4
ADC1 Boot ROM Boot loader Cortex-A7 secure ATNS Cortex-M4
ADC2
[/ Peripheral assignment reguest
CRC1

i Dynamic system resources update

(o]
i)
(]
(%)
[<J<]

DAC1
O
DDR /|
o d
DFSDM1
— Reset Configuration
@ Parameter Settings | Peripherals assignment Constants
ETZPC /] Configure the below parameters :
FDCAN1 Q ; @ o o
FDCAN2 ' N
RESMGR_UTILITY_Common
FREERTOS request peripheral assignment for ADC1 in resource table is assigned to Cortex-ATNS
/] r tr gnment for rce table is assigned to Cortex-A7TNS
GPIO able no
O
O
HSEM
O d
]
O O

pheral assignment f

10

For more details visit STM32MP1 dedicated wiki site at https://wiki.st.com/stm32mpu.

3

336/363 UM1718 Rev 31

UM1718

STM32 microcontrollers naming conventions

Appendix C STM32 microcontrollers naming conventions

3

STM32 microcontroller part numbers are codified following the below naming conventions:

Device subfamilies
The higher the number, the more features available.

For example STM32LO0 line includes STM32L051, L052, L053, L061, L062, L063
subfamilies where STM32L06x part numbers come with AES while STM32L05x do not.

The last digit indicates the level of features. In the above example:
— 1=Access line

- 2=with USB

— 3 =with USB and LCD.

Pin counts

— F=20pins

- G =28pins

— K=32pins

— T =236 pins

— S =44pins

— C=48pins

— R =64 (or 66) pins)

- M=280pins

— 0=90pins

— V=100 pins

— Q=132pins (e. g. STM32L162QDH®6)
— Z =144 pins

— 1=176 (+25) pins

— B =208 pins (e. g. STM32F429BIT6)
— N=216 pins

Flash memory sizes

— 4 =16 Kbytes of Flash memory

— 6 =32 Kbytes of Flash memory

— 8 =64 Kbytes of Flash memory

— B =128 Kbytes of Flash memory
— C =256 Kbytes of Flash memory
— D = 384 Kbytes of Flash memory
— E =512 Kbytes of Flash memory
— F =768 Kbytes of Flash memory
— G =1024 Kbytes of Flash memory
— 1 =2048 Kbytes of Flash memory
Packages

- B=SDIP

- H=BGA

UM1718 Rev 31 337/363

STM32 microcontrollers naming conventions UM1718

- M=SO0

- P=TSSOP
- T=LQFP

- U=VFQFPN
- Y=WLCSP

Figure 338 shows an example of STM32 microcontroller part numbering scheme.

Figure 338. STM32 microcontroller part numbering scheme

Example: STM32 F 439V 1| T 6 xxx

Device family
S5TM32 = ARM-based 32-bit microcontroller

Product type
F = general-purpose

Device subfamily

437= STM32F437xx, USB OTG FS/HS, camera interface,
Ethemet, cryptographic acceleration

439= STM32F439xx, USB OTG FS/HS, camera interface,
Ethemet, LCD-TFT, cryptographic acceleration

Pin count

V=100 pins
Z =144 pins
A =169 pins
| =176 pins
B = 208 pins
N =216 pins

Flash memory size
G = 1024 Kbytes of Flash memory
| = 2048 Kbytes of Flash memory

Package
T=LAQFP
H=BGA
Y = WLCSP

Temperature range
6 = Industrial temperature range, —40 to 85 °C.
7 = Industrial temperature range, —40 to 105 *C.

Options
xx¢ = programmed parts
TR = tape and reel

3

338/363 UM1718 Rev 31

UM1718 STM32 microcontrollers power consumption parameters

Appendix D STM32 microcontrollers power consumption
parameters

This section provides an overview on how to use STM32CubeMX Power Consumption
Calculator.

Microcontroller power consumption depends on chip size, supply voltage, clock frequency
and operating mode. Embedded applications can optimize STM32 MCU power
consumption by reducing the clock frequency when fast processing is not required and
choosing the optimal operating mode and voltage range to run from. A description of STM32
power modes and voltage range is provided below.

DA Power modes

STM32 MCUs support different power modes (refer to STM32 MCU datasheets for full
details).

D11 STM32L1 Series

STM32L1 microcontrollers feature up to 6 power modes, including 5 low-power modes:
e Run mode

This mode offers the highest performance using HSE/HSI clock sources. The CPU
runs up to 32 MHz and the voltage regulator is enabled.

e Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/event occurs.

e Low- power run mode
This mode uses the multispeed internal (MSI) RC oscillator set to the minimum clock
frequency (131 kHz) and the internal regulator in low-power mode. The clock frequency
and the number of enabled peripherals are limited.

e Low-power sleep mode
This mode is achieved by entering Sleep mode. The internal voltage regulator is in low-
power mode. The clock frequency and the number of enabled peripherals are limited. A
typical example would be a timer running at 32 kHz.

When the wakeup is triggered by an event or an interrupt, the system returns to the
Run mode with the regulator ON.

e Stop mode

This mode achieves the lowest power consumption while retaining RAM and register
contents. Clocks are stopped. The real-time clock (RTC) an be backed up by using
LSE/LSI at 32 kHz/37 kHz. The number of enabled peripherals is limited. The voltage
regulator is in low-power mode.
The device can be woken up from Stop mode by any of the EXTI lines.

e Standby mode
This mode achieves the lowest power consumption. The internal voltage regulator is

switched off so that the entire Voorg domain is powered off. Clocks are stopped and
the real-time clock (RTC) can be preserved up by using LSE/LSI at 32 kHz/37 kHz.

3

UM1718 Rev 31 339/363

STM32 microcontrollers power consumption parameters UM1718

Note:

D.1.2

340/363

RAM and register contents are lost except for the registers in the Standby circuitry. The
number of enabled peripherals is even more limited than in Stop mode.

The device exits Standby mode upon reset, rising edge on one of the three WKUP pins,
or if an RTC event occurs (if the RTC is ON).

When exiting Stop or Standby modes to enter the Run mode, STM32L1 MCUs go through a
state where the MSI oscillator is used as clock source. This transition can have a significant
impact on the global power consumption. For this reason, the Power Consumption
Calculator introduces two transition steps: WU_FROM_STOP and WU_FROM_STANDBY.
During these steps, the clock is automatically configured to MSI.

STM32F4 Series

STM32F4 microcontrollers feature a total of 5 power modes, including 4 low-power modes:

Run mode

This is the default mode at power-on or after a system reset. It offers the highest
performance using HSE/HSI clock sources. The CPU can run at the maximum
frequency depending on the selected power scale.

Sleep mode

Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU
when an interrupt/even occurs. The clock source is the clock that was set before
entering Sleep mode.

Stop mode

This mode achieves a very low power consumption using the RC oscillator as clock
source. All clocks in the 1.2 V domain are stopped as well as CPU and peripherals.
PLL, HSI RC and HSE crystal oscillators are disabled. The content of registers and
internal SRAM are kept.

The voltage regulator can be put either in normal Main regulator mode (MR) or in Low-
power regulator mode (LPR). Selecting the regulator in low-power regulator mode
increases the wakeup time.

The Flash memory can be put either in Stop mode to achieve a fast wakeup time or in
Deep power-down to obtain a lower consumption with a slow wakeup time.
The Stop mode features two sub-modes:
— Stop in Normal mode (default mode)
In this mode, the 1.2 V domain is preserved in nominal leakage mode and the
minimum V12 voltage is 1.08 V.
— Stop in Under-drive mode
In this mode, the 1.2 V domain is preserved in reduced leakage mode and V12
voltage is less than 1.08 V. The regulator (in Main or Low-power mode) is in

under-drive or low-voltage mode. The Flash memory must be in Deep-power-
down mode. The wakeup time is about 100 ps higher than in normal mode.

Standby mode

This mode achieves very low power consumption with the RC oscillator as a clock
source. The internal voltage regulator is switched off so that the entire 1.2 V domain is
powered off: CPU and peripherals are stopped. The PLL, the HSI RC and the HSE
crystal oscillators are disabled. SRAM and register contents are lost except for
registers in the backup domain and the 4-byte backup SRAM when selected. Only RTC
and LSE oscillator blocks are powered. The device exits Standby mode when an

UM1718 Rev 31 ‘Yl

UM1718

STM32 microcontrollers power consumption parameters

D.1.3

3

external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC
alarm/ wakeup/ tamper/time stamp event occurs.

e Vpar Operation

It allows to significantly reduced power consumption compared to the Standby mode.
This mode is available when the Vgar pin powering the Backup domain is connected to
an optional standby voltage supplied by a battery or by another source. The Vgar
domain is preserved (RTC registers, RTC backup register and backup SRAM) and
RTC and LSE oscillator blocks powered. The main difference compared to the Standby
mode is external interrupts and RTC alarm/events do not exit the device from Vgar
operation. Increasing Vpp to reach the minimum threshold does.

STM32L0 Series

STM32L0 microcontrollers feature up to 8 power modes, including 7 low-power modes to
achieve the best compromise between low-power consumption, short startup time and
available wakeup sources:

e Run mode
This mode offers the highest performance using HSE/HSI clock sources. The CPU can
run up to 32 MHz and the voltage regulator is enabled.

e Sleep mode

This mode uses HSE or HSI as system clock sources. The voltage regulator is enabled
and only the CPU is stopped. All peripherals continue to operate and can wake up the
CPU when an interrupt/event occurs.

e Low-power run mode

This mode uses the internal regulator in low-power mode and the multispeed internal
(MSI) RC oscillator set to the minimum clock frequency (131 kHz). In Low-power run
mode, the clock frequency and the number of enabled peripherals are both limited.

e Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in
low-power mode. Both the clock frequency and the number of enabled peripherals are
limited. Event or interrupt can revert the system to Run mode with regulator on.

e Stop mode with RTC

The Stop mode achieves the lowest power consumption with, while retaining the RAM,
register contents and real time clock. The voltage regulator is in low-power mode. LSE
or LSl is still running. All clocks in the Voore domain are stopped, the PLL, MSI RC,
HSE crystal and HSI RC oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop
mode to detect their wakeup condition. The device can be woken up from Stop mode
by any of the EXTlI line, in 3.5 ys, and the processor can serve the interrupt or resume
the code.

e Stop mode without RTC
This mode is identical to “Stop mode with RTC “, except for the RTC clock which is
stopped here.

e Standby mode with RTC

The Standby mode achieves the lowest power consumption with the real time clock
running. The internal voltage regulator is switched off so that the entire Voorg domain

UM1718 Rev 31 341/363

STM32 microcontrollers power consumption parameters UM1718

Note:

D.2

D.21

342/363

is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched
off. The LSE or LSl is still running.

After entering Standby mode, the RAM and register contents are lost except for
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz
oscillator, RCC_CSR register).

The device exits Standby mode in 60 ys when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),

RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

e Standby mode without RTC
This mode is identical to Standby mode with RTC, except that the RTC, LSE and LSI
clocks are stopped.

The device exits Standby mode in 60 ys when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.

The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop
mode.

Power consumption ranges

STM32 MCUs power consumption can be further optimized thanks to the dynamic voltage
scaling feature: the main internal regulator output voltage V12 that supplies the logic (CPU,
digital peripherals, SRAM and Flash memory) can be adjusted by software by selecting a
power range (STM32L1 and STM32L0) or power scale (STM32 F4).

Power consumption range definitions are provided below (refer to STM32 MCU datasheets
for full details).

STM32L1 Series features three Voorg ranges

e High Performance Range 1 (Vpp range limited to 2.0-3.6 V), with the CPU running at
up to 32 MHz

The voltage regulator outputs a 1.8 V voltage (typical) as long as the Vpp input voltage
is above 2.0 V. Flash program and erase operations can be performed.

e Medium Performance Range 2 (full Vpp range), with a maximum CPU frequency of
16 MHz

At 1.5V, the Flash memory is still functional but with medium read access time. Flash
program and erase operations are still possible.

e Low Performance Range 3 (full Vop range), with a maximum CPU frequency limited to
4 MHz (generated only with the multispeed internal RC oscillator clock source)

At 1.2V, the Flash memory is still functional but with slow read access time. Flash
Program and erase operations are no longer available.

3

UM1718 Rev 31

UM1718 STM32 microcontrollers power consumption parameters

D.2.2 STM32F4 Series features several Vcorg scales

The scale can be modified only when the PLL is OFF and when HSI or HSE is selected as
system clock source.

e Scale 1 (V12 voltage range limited to 1.26 - 1.40 V), default mode at reset.
HCLK frequency range = 144 MHz to 168 MHz (180 MHz with over-drive).
This is the default mode at reset.

e Scale 2 (V12 voltage range limited to 1.20 - 1.32 V).

HCLK frequency range is up to 144 MHz (168 MHz with over-drive).

e Scale 3 (V12 voltage range limited to 1.08 - 1.20 V), default mode when exiting Stop
mode.

HCLK frequency <120 MHz.

The voltage scaling is adjusted to fc k frequency as follows:
e STM32F429x/39x MCUs:
— Scale 1: up to 168 MHz (up to 180 MHz with over-drive)
— Scale 2: from 120 to 144 MHz (up to 168 MHz with over-drive)
— Scale 3: up to 120 MHz.
e STM32F401x MCUs:
No Scale 1
— Scale 2: from 60 to 84 MHz
— Scale 3: up to 60 MHz.
e STM32F40x/41x MCUs:
— Scale 1: up to 168 MHz
— Scale 2: up to 144 MHz

D.2.3 STM32L0 Series features three Voorg ranges

e Range 1 (Vpp range limited to 1.71 to 3.6 V), with CPU running at a frequency up to
32 MHz

e Range 2 (full Vpp range), with a maximum CPU frequency of 16 MHz
e Range 3 (full Vpp range), with a maximum CPU frequency limited to 4.2 MHz.

3

UM1718 Rev 31 343/363

STM32Cube embedded software packages UM1718

Appendix E STM32Cube embedded software packages

Along with STM32CubeMX C code generator, embedded software packages are part of
STM32Cube initiative (refer to DB2164 databrief): these packages include a low-level
hardware abstraction layer (HAL) that covers the microcontroller hardware, together with an
extensive set of examples running on STMicroelectronics boards (see Figure 339). This set
of components is highly portable across the STM32 Series. The packages are fully
compatible with STM32CubeMX generated C code.

Figure 339. STM32Cube Embedded Software package

Application level demonstrations

=
9
=
25
= £
= 3
=

5%
(]
£
£

Middleware level

=
o
HAL APIs Utilities
2 Evaluation boards, discovery boards,
dedicated demonstration boards
Hardware
MSv34720V2
Note: STM32CubeF0, STM32CubeF1, STM32CubeF2, STM32CubeF3, STM32CubeF4,
STM32CubelL0 and STM32CubelL 1 embedded software packages are available on st.com.
They are based on STM32Cube release v1.1 (other Series will be introduced progressively)
and include the embedded software libraries used by STM32CubeMX for initialization C
code generation.
The user should use STM32CubeMX to generate the initialization C code and the examples
provided in the package to get started with STM32 application development.
344/363 UM1718 Rev 31 Kys

UM1718

Revision history

19

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

17-Feb-2014

4.1

Initial release.

04-Apr-2014

4.2

Added support of STM32CubeF2 and STM32F2 Series in cover
page, Section 2.2: Key features, Section 5.14.1: Peripherals and
Middleware Configuration window, and Appendix E: STM32Cube
embedded software packages.

Updated Section 11.1: Creating a new STM32CubeMX Project,
Section 11.2: Configuring the MCU pinout, Section 11.6: Configuring
the MCU initialization parameters.

Section “Generating GPIO initialization C code move to Section 8:
Tutorial 3- Generating GPIO initialization C code (STM32F1 Series
only) and content updated.

Added Section 18.4: Why do | get the error “Java 7 update 45” when
installing “Java 7 update 45” or a more recent version of the JRE?.

24-Apr-2014

4.3

Added support of STM32Cubel0 and STM32L0 Series in cover page,
Section 2.2: Key features, Section 2.3: Rules and limitations and
Section 5.14.1: Peripherals and Middleware Configuration window

Added board selection in Table 13: File menu functions,

Section 5.7.3: Pinout menu and Section 4.2: New Project window.
Updated Table 15: Pinout menu.

Updated Figure 125: Power Consumption Calculator default view and
added battery selection in Section 5.1.1: Building a power
consumption sequence.

Updated note in Section 5.1: Power Consumption Calculator view
Updated Section 11.1: Creating a new STM32CubeMX Project.
Added Section 18.5: Why does the RTC multiplexer remain inactive
on the Clock tree view?, Section 18.6: How can | select LSE and HSE
as clock source and change the frequency?, and Section 18.7: Why
STM32CubeMX does not allow me to configure PC13, PC14, PC15
and PI8 as outputs when one of them is already configured as an
output?.

3

UM1718 Rev 31 345/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

19-Jun-2014

4.4

Added support of STM32CubeF0, STM32CubeF3, STM32F0 and
STM32F3 Series in cover page, Section 2.2: Key features,
Section 2.3: Rules and limitations,

Added board selection capability and pin locking capability in
Section 2.2: Key features, Table 2: Home page shortcuts, Section 4.2:
New Project window, Section 5.7: Toolbar and menus, Section 4.11:
Set unused / Reset used GPIOs windows, Section 4.9: Project
Manager view, and Section 5.15: Pinout view. Added Section 5.15.1:
Pinning and labeling signals on pins.

Updated Section 5.16: Configuration view and Section 4.8: Clock
Configuration view and Section 5.1: Power Consumption Calculator
view.

Updated Figure 37: STM32CubeMX Main window upon MCU
selection, Figure 99: Project Settings window, Figure 124: About
window, Figure 140: STM32CubeMX Pinout view, Figure 120: Chip
view, Figure 125: Power Consumption Calculator default view,
Figure 126: Battery selection, Figure 87: Building a power
consumption sequence, Figure 128: Power consumption sequence:
New Step default view, Figure 135: Power Consumption Calculator
view after sequence building, Figure 136: Sequence table
management functions, Figure 88: PCC Edit Step window, Figure 83:
Power consumption sequence: new step configured (STM32F4
example), Figure 133: ADC selected in Pinout view, Figure 134:
Power Consumption Calculator Step configuration window: ADC
enabled using import pinout, Figure 138: Description of the Results
area, Figure 100: Peripheral power consumption tooltip, Figure 254:
Power Consumption Calculation example, Figure 155: Sequence
table and Figure 156: Power Consumption Calculation results.
Updated Figure 142: STM32CubeMX Configuration view and

Figure 39: STM32CubeMX Configuration view - STM32F1 Series
titles.

Added STM32L1 in Section 5.1: Power Consumption Calculator view.
Removed Figure Add a new step using the PCC panel from

Section 8.1.1: Adding a step. Removed Figure Add a new step to the
sequence from Section 5.1.2: Configuring a step in the power
sequence.

Updated Section 8.2: Reviewing results.

Updated appendix B.3.4: FatFs and Appendix D: STM32
microcontrollers power consumption parameters. Added Appendix
D.1.3: STM32L0 Series and D.2.3: STM32L0 Series features three
VCORE ranges.

346/363

3

UM1718 Rev 31

UM1718

Revision history

Table 24. Document revision history

STM32CubeMX

Date Revision
release number

Changes

19-Sep-2014 5 4.5

Added support of STM32Cubel 1 Series in cover page, Section 2.2:
Key features, Section 2.3: Rules and limitations,

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added off-line updates in Section 3.4: Getting updates using
STM32CubeMX, modified Figure 8: Embedded Software Packages
Manager window, and Section 3.4.2: Installing STM32 MCU
packages.

Updated Section 4: STM32CubeMX user interface introduction,
Table 2: Home page shortcuts and Section 4.2: New Project window.

Added Figure 31: New Project window - Board selector.
Updated Figure 107: Project Settings code generator.
Modified step 3 in Section 4.9: Project Manager view.

Updated Figure 39: STM32CubeMX Configuration view - STM32F1
Series.

Added STM32L1 in Section 5.14.1: Peripherals and Middleware
Configuration window.

Updated Figure 61: GPIO Configuration window - GPIO selection;
Section 4.4.12: GPIO Configuration window and Figure 66: DMA
MemToMem configuration.

Updated introduction of Section 4.8: Clock Configuration view.
Updated Section 4.8.1: Clock tree configuration functions and
Section 4.8.3: Recommendations, Section 5.1: Power Consumption
Calculator view, Figure 128: Power consumption sequence: New
Step default view, Figure 135: Power Consumption Calculator view
after sequence building, Figure 83: Power consumption sequence:
new step configured (STM32F4 example), and Figure 134: Power
Consumption Calculator Step configuration window: ADC enabled
using import pinout. Added Figure 137: Power Consumption:
Peripherals consumption chart and updated Figure 100: Peripheral
power consumption tooltip. Updated Section 5.1.4: Power sequence
step parameters glossary.

Updated Section 6: STM32CubeMX C Code generation overview.

Updated Section 11.1: Creating a new STM32CubeMX Project and
Section 11.2: Configuring the MCU pinout.

Added Section 12: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and updated Section 8: Tutorial
3- Generating GPIO initialization C code (STM32F1 Series only).

Updated Section 5.1.2: Configuring a step in the power sequence.

3

UM1718 Rev 31 347/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

19-Jan-2015

4.6

Complete project generation, power consumption calculation and
clock tree configuration now available on all STM32 Series.

Updated Section 2.2: Key features and Section 2.3: Rules and
limitations.

Updated Eclipse IDEs in Section 3.1.3: Software requirements.
Updated Figure 6: Updater Settings window, Figure 8: Embedded
Software Packages Manager window and Figure 31: New Project
window - Board selector, Updated Section 4.9: Project Manager view
and Section 4.12: Update Manager windows.

Updated Figure 124: About window.

Removed Figure STM32CubeMX Configuration view - STM32F1
Series.

Updated Table 17: STM32CubeMX Chip view - Icons and color
scheme.

Updated Section 5.14.1: Peripherals and Middleware Configuration
window.

Updated Figure 64: Adding a new DMA request and Figure 66: DMA
MemToMem configuration.

Updated Section 4.8.1: Clock tree configuration functions.

Updated Figure 126: Battery selection, Figure 87: Building a power
consumption sequence, Figure 88: PCC Edit Step window.

Added Section 6.3: Custom code generation.

Updated Figure 208: Clock tree view and Figure 213: Pinout &
Configuration view.

Updated peripheral configuration sequence and Figure 215: Timer 3
configuration window in Section 11.6.2: Configuring the peripherals.
Removed Tutorial 3: Generating GPIO initialization C code (STM32F1
Series only).

Updated Figure 219: GPIO mode configuration.

Updated Figure 254: Power Consumption Calculation example and
Figure 155: Sequence table.

Updated Appendix A.1: Block consistency, A.2: Block inter-
dependency and A.3: One block = one peripheral mode.

Appendix A.4: Block remapping (STM32F 10x only): updated Section :
Example.

Appendix A.6: Block shifting (only for STM32F10x and when “Keep
Current Signals placement” is unchecked): updated Section :
Example

Updated Appendix A.8: Mapping a function individually.
Updated Appendix B.3.1: Overview.
Updated Appendix D.1.3: STM32L0 Series.

348/363

3

UM1718 Rev 31

UM1718

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

19-Mar-2015

4.7

Section 2.2: Key features: removed Pinout initialization C code
generation for STM32F1 Series from; updated Complete project
generation.

Updated Figure 8: Embedded Software Packages Manager window,
Figure 31: New Project window - Board selector.

Updated IDE list in Section 4.9: Project Manager view and modified
Figure 99: Project Settings window.

Updated Section 4.8.1: Clock tree configuration functions. Updated
Figure 95: STM32F469NIHx clock tree configuration view.

Section 5.1: Power Consumption Calculator view: added transition
checker option. Updated Figure 125: Power Consumption Calculator
default view, Figure 126: Battery selection and Figure 87: Building a
power consumption sequence. Added Figure 129: Enabling the
transition checker option on an already configured sequence - All
transitions valid, Figure 130: Enabling the transition checker option on
an already configured sequence - At least one transition invalid and
Figure 131: Transition checker option - Show log. Updated

Figure 135: Power Consumption Calculator view after sequence
building. Updated Section : Managing sequence steps, Section :
Managing the whole sequence (load, save and compare). Updated
Figure 88: PCC Edit Step window and Figure 138: Description of the
Results area.

Updated Figure 254: Power Consumption Calculation example,
Figure 155: Sequence table, Figure 156: Power Consumption
Calculation results and Figure 158: Power consumption results - IP
consumption chart.

Updated Appendix B.3.1: Overview and B.3.5: FreeRTOS.

28-May-2015

4.8

Added Section 3.2.2: Installing STM32CubeMX from command line
and Section 3.3.2: Running STM32CubeMX in command-line mode.

09-Jul-2015

4.9

Added STLM32F7 and STM32L4 microcontroller Series.

Added Import project feature. Added Import function in Table 13: File
menu functions. Added Section 4.10: Import Project window. Updated
Figure 128: Power consumption sequence: New Step default view,
Figure 88: PCC Edit Step window, Figure 83: Power consumption
sequence: new step configured (STM32F4 example), Figure 134:
Power Consumption Calculator Step configuration window: ADC
enabled using import pinout and Figure 87: Peripheral power
consumption tooltip.

Updated command line to run STM32CubeMX in Section 3.3.2:
Running STM32CubeMX in command-line mode.

Updated note in Section 5.16: Configuration view.

Added new clock tree configuration functions in Section 4.8.1.
Updated Figure 221: Middleware tooltip.

Modified code example in Appendix B.1: STM32CubeMX generated
C code and user sections.

Updated Appendix B.3.1: Overview.

Updated generated .h files in Appendix B.3.4: FatFs.

3

UM1718 Rev 31 349/363

Revision history UM1718

Table 24. Document revision history

Date Revision STM32CubeMX Changes
release number

Replace UM1742 by UM1940 in Section : Introduction.

Updated command line to run STM32CubeMX in command-line
mode in Section 3.3.2: Running STM32CubeMX in command-line
mode. Modified Table 1: Command line summary.

Updated board selection in Section 4.2: New Project window.

Updated Section 5.16: Configuration view overview. Updated
Section 5.14.1: Peripherals and Middleware Configuration window,
Section 4.4.12: GPIO Configuration window and Section 4.4.13: DMA
Configuration window. Added Section 4.4.11: User Constants
configuration window.

27-Aug-2015 10 4.10 Updated Section 4.8: Clock Configuration view and added reserve
path.

Updated Section 11.1: Creating a new STM32CubeMX Project,
Section 11.5: Configuring the MCU clock tree, Section 11.6:
Configuring the MCU initialization parameters, Section 11.7.2:
Downloading firmware package and generating the C code,

Section 11.8: Building and updating the C code project. Added
Section 11.9: Switching to another MCU.

Updated Section 12: Tutorial 2 - Example of FatFs on an SD card
using STM32429I-EVAL evaluation board and replaced STM32F429I-
EVAL by STM32429I-EVAL.

Updated Figure 8: Embedded Software Packages Manager window
and Section 3.4.6: Checking for updates.

Character string constant supported in Section 4.4.11: User
Constants configuration window.

Updated Section 4.8: Clock Configuration view.
16-Oct-2015 11 4.1 Updated Section 5.1: Power Consumption Calculator view.
Modified Figure 254: Power Consumption Calculation example.

Updated Section 13: Tutorial 3 - Using the Power Consumption
Calculator to optimize the embedded application consumption and
more.

Added Eclipse Mars in Section 3.1.3: Software requirements

Code generation options now supported by the Project settings
menu.

Updated Section 3.1.3: Software requirements.

Added project settings in Section 4.10: Import Project window.
Updated Figure 112: Automatic project import, modified Manual
project import step and updated Figure 113: Manual project import
and Figure 114: Import Project menu - Try import with errors; modified
third step of the import sequence.

Updated Figure 83: Clock Tree configuration view with errors.
Added mxconstants.h in Section 6.1: STM32Cube code generation
using only HAL drivers (default mode).

Updated Figure 254: Power Consumption Calculation example to
Figure 263: Step 10 optimization.

Updated Figure 264: Power sequence results after optimizations.

03-Dec-2015 12 4.12

350/363 UM1718 Rev 31 ‘Yl

UM1718

Revision history

Table 24. Document revision history

Date Revision

STM32CubeMX
release number

Changes

03-Feb-2016 13

4.13

Updated Section 2.2: Key features:

— Information related to .ioc files.

— Clock tree configuration

— Automatic updates of STM32CubeMX and STM32Cube.

Updated limitation related to STM32CubeMX C code generation in
Section 2.3: Rules and limitations.

Added Linux in Section 3.1.1: Supported operating systems and
architectures. Updated Java Run Time Environment release number
in Section 3.1.3: Software requirements.

Updated Section 3.2.1: Installing STM32CubeMX standalone version,
Section 3.2.3: Uninstalling STM32CubeMX standalone version and
Section 3.3.1: Downloading STM32CubeMX plug-in installation
package.

Updated Section 3.3.1: Running STM32CubeMX as standalone
application.

Updated Section 4.9: Project Manager view and Section 4.12: Update
Manager windows.

Updated Section 5.15.1: Pinning and labeling signals on pins.
Added Section 4.4.16: Setting HAL timebase source

Updated Figure 143: Configuration window tabs for GPIO, DMA and
NVIC settings (STM32F4 Series).

Added note related to GPIO configuration in output mode in
Section 4.4.12: GPIO Configuration window; updated Figure 61:
GPIO Configuration window - GPIO selection.

Modified Figure 125: Power Consumption Calculator default view,
Figure 86: Building a power consumption sequence, Figure 127: Step
management functions, Figure 129: Enabling the transition checker
option on an already configured sequence - All transitions valid,
Figure 130: Enabling the transition checker option on an already
configured sequence - At least one transition invalid.

Added import pinout button icon in Section : Importing pinout.
Added Section : Selecting/deselecting all peripherals. Modified
Figure 135: Power Consumption Calculator view after sequence
building. Updated Section : Managing the whole sequence (load,
save and compare). Updated Figure 138: Description of the Results
area and Figure 100: Peripheral power consumption tooltip.

Updated Figure 254: Power Consumption Calculation example and
Figure 256: Sequence table.

Updated Section 6.3: Custom code generation.

Updated Figure 200: Pinout view with MCUs selection and
Figure 201: Pinout view without MCUs selection window in
Section 11.1: Creating a new STM32CubeMX Project.

Updated Section 11.6.2: Configuring the peripherals.

Updated Figure 226: Project Settings and toolchain selection and
Figure 227: Project Manager menu - Code Generator tab in

Section 11.7.1: Setting project options, and Figure 228: Missing
firmware package warning message in Section 11.7.2: Downloading
firmware package and generating the C code.

3

UM1718 Rev 31 351/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

15-Mar-2016

14

4.14

Upgraded STM32CubeMX released number to 4.14.0.

Added import of previously saved projects and generation of user files
from templates in Section 2.2: Key features.

Added MacOS in Section 3.1.1: Supported operating systems and
architectures, Section 3.2.1: Installing STM32CubeMX standalone
version, Section 3.2.3: Uninstalling STM32CubeMX standalone
version and Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added command lines allowing the generation of user files from
templates in Section 3.3.2: Running STM32CubeMX in command-line
mode.

Updated new library installation sequence in Section 3.4.1: Updater
configuration.

Updated Figure 107: Pinout menus (Pinout tab selected) and

Figure 108: Pinout menus (Pinout tab not selected) in Section 5.7.3:
Pinout menu.

Modified Table 16: Window menu.

Updated Section 5.7: Output windows.

Updated Figure 99: Project Settings window and Section 4.9.1:
Project tab.

Updated Figure 79: NVIC settings when using SysTick as HAL
timebase, no FreeRTOS and Figure 80: NVIC settings when using
FreeRTOS and SysTick as HAL timebase in Section 4.4.16: Setting
HAL timebase source.

Updated Figure 52: User Constants tab and Figure 53: Extract of the
generated main.h file in Section 4.4.11: User Constants configuration
window.

Section 4.4.12: GPIO Configuration window: updated Figure 61:
GPIO Configuration window - GPIO selection, Figure 62: GPIO
configuration grouped by peripheral and Figure 63: Multiple Pins
Configuration.

Updated Section 4.4.14: NVIC Configuration window.

18-May-2016

15

4.15

Import project function is no more limited to MCUs of the same Series
(see Section 2.2: Key features, Section 5.7.1: File menu and
Section 4.10: Import Project window).

Updated command lines in Section 3.3.2: Running STM32CubeMX in
command-line mode.

Table 1: Command line summary: modified all examples related to
config comands as well as set dest_path <path> example.

Added caution note for Load Project menu in Table 13: File menu
functions.

Updated Generate Code menu description in Table 14: Project menu.
Updated Set unused GPIOs menu in Table 15: Pinout menu.

Added case where FreeRTOS in enabled in Section : Enabling
interruptions using the NVIC tab view.

Added Section 4.4.15: FreeRTOS configuration panel.
Updated Appendix B.3.5: FreeRTOS and B.3.6: LwiP.

352/363

3

UM1718 Rev 31

UM1718

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

23-Sep-2016

16

Replaced mxconstants.h by main.h in the whole document.
Updated Introduction, Section 3.1.1: Supported operating systems
and architectures and Section 3.1.3: Software requirements.
Added Section 3.4.3: Installing STM32 MCU package patches.
Updated Load project description in Table 2: Home page shortcuts.
Updated Clear Pinouts function in Table 15: Pinout menu.

Updated Section 4.9.3: Advanced Settings tab to add Low Layer
driver.

Added No check and Decimal and hexadecimal check options in
Table 17: Peripheral and Middleware Configuration window buttons
and tooltips.

Updated Section : Tasks and Queues Tab and Figure 76: FreeRTOS
Heap usage.

Updated Figure 61: GPIO Configuration window - GPIO selection.
Replaced PCC by Power Consumption Calculator in the whole
document.

Added Section 6.2: STM32Cube code generation using Low Layer
drivers; updated Table 20: LL versus HAL: STM32CubeMX generated
source files and Table 21: LL versus HAL: STM32CubeMX generated
functions and function calls.

Updated Figure 305: Pinout view - Enabling the RTC.

Added Section 14: Tutorial 4 - Example of UART communications
with an STM32L053xx Nucleo board.

Added correspondence between STM32CubeMX release number
and document revision.

21-Nov-2016

17

4.18

Removed Windows XP and added Windows 10 in Section 3.1.3:
Software requirements.

Updated Section 3.2.3: Uninstalling STM32CubeMX standalone
version.

Added setDriver command line in Table 1: Command line summary.
Added List pinout compatible MCUs feature:
— Updated Table 15: Pinout menu.

— Added Section 15: Tutorial 5: Exporting current project
configuration to a compatible MCU

Added Firmware location selection option in Section 4.9.1: Project tab

and Figure 99: Project Settings window.

Added Restore Default feature:

— Updated Table 8: Peripheral and Middleware Configuration window
buttons and tooltips

— Updated Figure 54: Using constants for peripheral parameter
settings.

3

UM1718 Rev 31 353/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

12-Jan-2017

18

4.19

Project import no more limited to microcontrollers belonging to the
same Series: updated Introduction, Figure 112: Automatic project
import, Figure 113: Manual project import, Figure 114: Import Project
menu - Try import with errors and Figure 115: Import Project menu -
Successful import after adjustments.

Modified Appendix B.3.4: FatFs, B.3.5: FreeRTOS and B.3.6: LwiIP.
Added Appendix B.3.7: Libjpeg.

02-Mar-2017

19

4.20

Table 17: STM32CubeMX Chip view - Icons and color scheme:

— Updated list of alternate function example.

— Updated example and description corresponding to function
mapping on a pin.

— Added example and description for analog signals sharing the
same pin.

Updated Figure 87: Peripheral Configuration window (STM32F4

Series), Figure 52: User Constants tab, Figure 58: Deleting a user

constant used for peripheral configuration - Consequence on

peripheral configuration, Figure 59: Searching for a name in a user

constant list and Figure 60: Searching for a value in a user constant

list.

Added Section 5.1.6: SMPS feature.

Added Section 6.4: Additional settings for C project generation.

Added STM32CubeF4 to the list of packages that include Libjpeg in

Appendix B.3.7: Libjpeg.

05-May-2017

20

4.21

Minor modifications in Section 1: STM32Cube overview.

Updated Figure 26: New Project window - MCU selector and
Figure 99: Project Settings window.

Updated description of Project settings in Section 4.9.1: Project tab.
Updated Figure 110: Advanced Settings window.

In Appendix B.3.7: Libjpeg, added STM32CubeF2 and
STM32CubeH?7 in the list of software packages in which Libjpeg is
embedded.

Modified Figure 339: STM32Cube Embedded Software package look-
and-feel.

354/363

3

UM1718 Rev 31

UM1718

Revision history

Table 24. Document revision history

Date Revision

STM32CubeMX
release number

Changes

06-Jul-2017 21

4.22

Added STM32H7 to the list of supported STM32 Series.

Added MCU data and documentation refresh capability in Section 3.4:
Getting updates using STM32CubeMX and updated Figure 6:
Updater Settings window.

Added capability to identify close MCUs in Section 4.2: New Project
window, updated Figure 26: New Project window - MCU selector,
added Figure 29: New Project window - MCU list with close function
and Figure 30: New Project window - List showing close MCUs.,
updated Figure 199: MCU selection.

Updated Figure 37: STM32CubeMX Main window upon MCU
selection.

Added Rotate clockwise/Counter clockwise and Top/Bottom view in
Table 15: Pinout menu.

Added Section 4.1.4: Social links.

Updated Figure 146: Configuring the SMPS mode for each step.
Updated Section 6.2: STM32Cube code generation using Low Layer
drivers.

Updated Figure 226: Project Settings and toolchain selection.

05-Sep-2017 22

4.221

Added STM32L4+ Series in Introduction, Section 5.1: Power
Consumption Calculator view and Section 6.2: STM32Cube code
generation using Low Layer drivers.

Added guidelines to run STM32CubeMX on MacOS in Section 3.3.1:
Running STM32CubeMX as standalone application. Removed
MacOS from Section 3.4.3: Running STM32CubeMX plug-in from
Eclipse IDE.

Added Section 18.8: Ethernet configuration: why cannot | specify
DP83848 or LAN8742A in some cases?

18-Oct-2017 23

4.23

Added Section 1: General information.

Renamed Display close button into Display similar items in
Section 4.2: New Project window.

Added Refresh Data and Docs & Resources menus in

Section 5.7.5: Help menu.

Added STM32F2, STM32F4 and STM32F7 Series in Section 6.2:
STM32Cube code generation using Low Layer drivers.

Added Appendix B.3.8: Mbed TLS.

Updated STM32CubeMX release number corresponding to user
manual revision 22.

3

UM1718 Rev 31 355/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

16-Jan-2018

24

4.24

Replaced “STM32Cube firmware package” by “STM32Cube MCU

package”.

Updated Section 1: STM32Cube overview.

Updated MacOS in Section 3.1.1: Supported operating systems and

architectures. Updated Eclipse requirements in Section 3.1.3:

Software requirements.

Section 3.4: Getting updates using STM32CubeMX:

— updated section introduction

— updated Figure 13: Connection Parameters tab - No proxy

— Section 3.4.2 renamed into “Installing STM32 MCU packages” and
updated.

— renamed Section 3.4.3 into “Installing STM32 MCU package
patches”

— added Section 3.4.4: Installing embedded software packs

— updated Section 3.4.6: Checking for updates

Updated Figure 31: New Project window - Board selector.

Updated Figure 38: STM32CubeMX Main window upon board

selection (peripherals not initialized) and introductory sentence.

Updated Figure 39: STM32CubeMX Main window upon board

selection (peripherals initialized with default configuration) and

introductory sentence.

Added “Select additional software components” menu in Table 14:

Project menu.

“Install new libraries” menu renamed “Manage embedded software

packages” and corresponding description updated in Table 17: Help

menu.

Updated Section 3.4.5: Removing already installed embedded

software packages.

Updated Section 4.12: Update Manager windows

Added Section 4.13: Additional software component selection

window.

Added pin stacking function in Table 17: STM32CubeMX Chip view -

Icons and color scheme.

Section 6.2: STM32Cube code generation using Low Layer drivers:

added STM32F0, STM32F3, STM32LO0 in the list of product Series

supporting low-level drivers.

Section 12: Tutorial 2 - Example of FatFs on an SD card using

STM32429I-EVAL evaluation board: updated Figure 246: Board

selection and modified step 6 of the sequence for generating a project

and running tutorial 2.

Section 14: Tutorial 4 - Example of UART communications with an

STM32L053xx Nucleo board: updated Figure 265: Selecting

NUCLEO_L053R8 board.

Added Section 16: Tutorial 6 — Adding embedded software packs to

user projects.

356/363

3

UM1718 Rev 31

UM1718

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

16-Jan-2018

24
(cont'd)

4.24

Added Appendix B.3.9: TouchSensing and B.3.10: PDM2PCM.
Section 4.4.14: NVIC Configuration window/Default initialization
sequence of interrupts: changed color corresponding to interrupt
enabling code from green to black bold.

07-Mar-2018

25

4.25

Updated Introduction, Section 1: STM32Cube overview, Section 2.3:
Rules and limitations, Section 3.2.1: Installing STM32CubeMX
standalone version, Section 4: STM32CubeMX user interface,
Section 4.9.1: Project tab and Section 5.13.1: Peripheral and
Middleware tree panel.

Minor text edits across the whole document.

Updated Table 13: File menu functions and Table 12: Relations
between power over-drive and HCLK frequency.

Updated Figure 26: New Project window - MCU selector, Figure 27:
Enabling graphics choice in MCU selector, Figure 99: Project Settings
window, Figure 104: Selecting a different firmware location,

Figure 77: Enabling STemWin framework, Figure 116: Configuration
view for Graphics, Figure 306: Pinout view - Enabling LSE and HSE
clocks and Figure 307: Pinout view - Setting LSE/HSE clock
frequency.

Added Export to Excel feature, Show favorite MCUs feature and
Section 4.4.16: Graphics frameworks and simulator.

Added Section 17: Tutorial 8 — Using STemWin Graphics framework,
Section 18: Tutorial 9: Using STM32CubeMX Graphics simulator and
their subsections.

Added Section B.3.11: Graphics.

3

UM1718 Rev 31 357/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

05-Sep-2018

26

4.27

Updated STM32Cube logo on cover page.

Replaced STMCube™ by STM32Cube™ in the whole document.
Updated Section 1: STM32Cube overview.

Updated Figure 1: Overview of STM32CubeMX C code generation
flow.

Updated Section 2.2: Key features to add new features: graphic
simulator feature, Support of embedded software packages in
CMSIS-Pack format and Contextual Help.

Changed Section 3.4 title into “Getting updates using
STM32CubeMX”. Suppressed figures Connection Parameters tab -
No proxy and Connection Parameters tab - Use System proxy
parameters. Updated Figure 9: Managing embedded software
packages - Help menu.

In Section 3.4.4: Installing embedded software packs, updated step 3f

of the embedded software pack installation sequence and added

Figure 14: License agreement acceptance.

Section 4.2: New Project window: updated Figure 26: New Project

window - MCU selector, Figure 28: Marking an MCU as favorite and

Figure 31: New Project window - Board selector.

Section 5.7.1: File menu: added caution note for New Project in

Table 13: File menu functions. Updated Figure 107: Pinout menus

(Pinout tab selected) and Figure 108: Pinout menus (Pinout tab not

selected).

Section 4.9: Project Manager view:

— Added note related to project saving (step 3).

— Updated Figure 99: Project Settings window

— Updated Section 4.9.1: Project tab and Figure 104: Selecting a
different firmware location.

Added Section 4.13.4: Component dependencies panel, Contextual

help, Section 10: Support of additional software components using

CMSIS-Pack standard and Section 17: Tutorial 7 — Using the X-Cube-

BLE1 software pack.

12-Nov-2018

27

4.28

Updated Section 3.4.2: Installing STM32 MCU packages,

Section 3.4.4: Installing embedded software packs, Section 3.4.5:
Removing already installed embedded software packages,
Section 3.4.6: Checking for updates and the figures in it.

Updated Section 4: STM32CubeMX user interface, its subsections
and the figures and the tables in them.

Updated Section 10: Support of additional software components
using CMSIS-Pack standard, sections 11.6.71 to 11.6.5,

Section 11.7.1: Setting project options, Section 11.7.2: Downloading
firmware package and generating the C code, Section 11.8: Building
and updating the C code project, Section 11.9: Switching to another
MCU, Section 12: Tutorial 2 - Example of FatFs on an SD card using
STM32429I-EVAL evaluation board and the figures in it, Section 15:
Tutorial 5: Exporting current project configuration to a compatible
MCU and the figures in it, Section 16: Tutorial 6 — Adding embedded
software packs to user projects and Section 17: Tutorial 7 — Using the
X-Cube-BLE1 software pack.

358/363

UM1718 Rev 31 ‘Yl

UM1718

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

12-Nov-2018

27
(cont'd)

5.0

Added Section 19: Tutorial 10: Using ST-TouchGFX framework and
its subsections.

Updated Table 21: LL versus HAL: STM32CubeMX generated
functions and function calls.

Removed former Figure 164: Enabling and configuring a CMSIS-
Pack software component, Figure 192: FatFs peripheral instances,
Figure 213: Project Import status, Figure 254: Saving software
component selection as user preferences and Figure 268:
Configuring X-Cube-BLE1.

Updated Figure 1: Overview of STM32CubeMX C code generation
flow, Figure 3: STM32Cube Installation Wizard, Figure 7: Closing
STM32CubeMX perspective, Figure 9: Opening Eclipse plug-in,
Figure 10: STM32CubeMX perspective, Figure 139: Overall
peripheral consumption, Figure 170: User constant generating define
statements, Figure 196: Selecting a CMSIS-Pack software
component, Figure 197: Enabling and configuring a CMSIS-Pack
software component, Figure 198: Project generated with CMSIS-
Pack software component, Figure 199: MCU selection, Figure 200:
Pinout view with MCUs selection, Figure 201: Pinout view without
MCUs selection window, Figure 203: Timer configuration, Figure 204:
Simple pinout configuration, Figure 205: Save Project As window,
Figure 206: Generate Project Report - New project creation,

Figure 207: Generate Project Report - Project successfully created,
Figure 208: Clock tree view, Figure 213: Pinout & Configuration view,
Figure 214: Case of Peripheral and Middleware without configuration
parameters, Figure 215: Timer 3 configuration window, Figure 216:
Timer 3 configuration, Figure 217: Enabling Timer 3 interrupt,

Figure 218: GPIO configuration color scheme and tooltip, Figure 219:
GPIO mode configuration, Figure 220: DMA parameters configuration
window, Figure 221: Middleware tooltip, Figure 222: USB Host
configuration, Figure 222: USB Host configuration, Figure 223: FatFs
over USB mode enabled, Figure 224: System view with FatFs and
USB enabled, Figure 225: FatFs define statements, Figure 226:
Project Settings and toolchain selection, Figure 227: Project Manager
menu - Code Generator tab, Figure 228: Missing firmware package
warning message, Figure 230: Updater settings for download,

Figure 231: Updater settings with connection, Figure 232:
Downloading the firmware package, Figure 233: Unzipping the
firmware package, Figure 234: C code generation completion
message, Figure 244: Import Project menu, Figure 274: Project
Settings menu, Figure 284: Additional software components enabled
for the current project, Figure 285: Pack software components - no
configurable parameters, Figure 286: Pack tutorial - project settings,
Figure 289: Embedded software packages, Figure 291: Installing
Embedded software packages, Figure 292: Starting a new project -
selecting the NUCLEO-LO53R8 board, Figure 293: Starting a new
project - initializing all peripherals, Figure 294: Selecting X-Cube-
BLE1 components, Figure 295: Configuring peripherals and GPIOs,
Figure 296: Configuring NVIC interrupts, Figure 297: Enabling X-
Cube-BLE1, Figure 297: Enabling X-Cube-BLE1, Figure 298:
Configuring the SensorDemo project and Figure 312: Graphics
simulator user interface.

3

UM1718 Rev 31 359/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

19-Feb-2019

28

5.0

Updated Introduction, Section 1: STM32Cube overview, Section 2.2:
Key features, Section 3.1.3: Software requirements, Section 3.4.2:
Installing STM32 MCU packages, Section 4: STM32CubeMX user
interface, Resolving pin conflicts, Section 4.4.10: Component
Configuration panel, Section 4.8: Clock Configuration view,

Section 4.9: Project Manager view, Section 4.9.1: Project tab,
Section 4.9.3: Advanced Settings tab, Using the transition checker,
Section 9.2: STM32CubeMX Device tree generation, Section 6.3.2:
Saving and selecting user templates, .extSettings file example and
generated outcomes and Section 11.6.4: Configuring the DMASs.

Added Section 4.5: Pinout & Configuration view for STM32MP1
Series, Section 4.5.2: Boot stages configuration, Section 5:
STM32CubeMX tools, Section 9: Device tree generation (STM32MP1
Series only), Section B.3.11: STM32WPAN BLE/Thread (STM32WB
Series only), Section B.3.12: OpenAmp and RESMGR_UTILITY
(STM32MP1 Series and STM32H7 dual-core product lines) and their
subsections.

Removed former Section 1: General information.

Updated Table 2: Home page shortcuts, Table 5: Component list,
mode icons and color schemes, Table 6: Pinout menu and shortcuts
and title of Table 9: Clock configuration view widgets.

Updated Figure 99: Project Settings window, Figure 100: Project
folder, Figure 104: Selecting a different firmware location, Figure 112:
Automatic project import, Figure 113: Manual project import,

Figure 114: Import Project menu - Try import with errors, Figure 115:
Import Project menu - Successful import after adjustments,

Figure 116: Set unused pins window, Figure 117: Reset used pins
window, Figure 124: About window, Figure 191: STM32CubeMX
generated DTS — Extract 3, Figure 196: Selecting a CMSIS-Pack
software component, Figure 197: Enabling and configuring a CMSIS-
Pack software component, Figure 251: FATFS tutorial - Project
settings and Figure 252: C code generation completion message.

16-Apr-2019

29

5.1

Updated Introduction. Section 3.1.3: Software requirements,

Section 4.2: New Project window, MCU close selector feature,
External clock sources, Importing pinout, Selecting/deselecting all
peripherals, Section 4.5: Pinout & Configuration view for STM32MP1
Series, Section 4.13: Additional software component selection
window, Section 5.2.1: DDR configuration, Section 6.2: STM32Cube
code generation using Low Layer drivers, BLE configuration and
Section B.3.12: OpenAmp and RESMGR_UTILITY (STM32MP1
Series and STM32H7 dual-core product lines).

Added Section 4.2.1: MCU selector, Section 4.2.2: Board selector,
Section 4.2.3: Cross selector, Section 4.6: Pinout & Configuration
view for STM32H7 dual-core product lines, Section 5.1.8: Example
feature (STM32MP1 and STM32H7 dual-core only) and Section 7:
Code generation for dual-core MCUs (STM32H7 dual-core product
lines only).

Removed former Section 3.3: Installing STM32CubeMX plug-in
version and its subsections, and former Section 3.4.3: Running
STM32CubeMX plug-in from Eclipse IDE.

360/363

UM1718 Rev 31 ‘Yl

UM1718

Revision history

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

16-Apr-2019

29
(cont'd)

5.1

Updated Table 3: Window menu.

Updated figures 27 to 31, Figure 110: Advanced Settings window,
figures 125to 132, 134 to 137 and 139 to 148, Figure 226: Project
Settings and toolchain selection and figures 254 to 264,

Added Figure 24: New Project window shortcuts, Figure 83:
STM32MP1 Series: assignment options for GPIOs, Figure 337:
Resource Manager: peripheral assignment view and Figure 339:
STM32Cube Embedded Software package.

01-Oct-2019

30

5.2

Updated Introduction. Section 2.2: Key features, Section 3.3.2:
Running STM32CubeMX in command-line mode, Part number
selection, Section 4.13: Additional software component selection
window, Section 4.13.1: Introduction on software components,
Section 4.13.2: Filter panel, Section 4.13.3: Packs panel,

Section 4.13.4: Component dependencies panel, Section 4.13.6:
Updating the tree view for additional software components,

Section 5.1: Power Consumption Calculator view and Section 6.2:
STM32Cube code generation using Low Layer drivers.

Updated Table 1: Command line summary, Table 6: Pinout menu and
shortcuts, Table 16: Additional Software window — Packs panel icons
and Table 17: Component dependencies panel contextual help.
Updated Figure 20: STM32CubeMX Home page, Figure 122:
Selection of additional software components, Figure 123: Additional
software components - Updated tree view, Figure 196: Selecting a
CMSIS-Pack software component and Figure 294: Selecting X-Cube-
BLE1 components.

Added Section 4.4.8: Pinout for multi-bonding packages and
Section 4.13.5: Details and Warnings panel.

Added Table 15: Additional Software window — Packs panel columns

3

UM1718 Rev 31 361/363

Revision history

UM1718

Table 24. Document revision history

Date

Revision

STM32CubeMX
release number

Changes

13-Dec-2019

31

5.4

Updated Introduction, Section 1: STM32Cube overview, Section 4.2:
New Project window, MCU/MPU selection for a new project and
Section 11.7.1: Setting project options.

Added Section 4.7: Enabling security in Pinout & Configuration view
(STM32L5 Series only) with its subsections, Section 4.8.2: Securing
clock resources (STM32L5 Series only) and Section 8: Code
generation with Trustzone enabled (STM32L5 Series only).

Removed former Section 4.4.16: Graphics frameworks and simulator,
Section 17: Tutorial 8 — Using STemWin Graphics framework,
Section 18: Tutorial 9: Using STM32CubeMX Graphics simulator,
Section 19: Tutorial 10: Using ST-TouchGFX framework and

Section B.3.11: Graphics.

Minor text edits across the whole document.

Updated Table 1: Command line summary.

Updated Figure 46: Pinout view: MCUs with multi-bonding, Figure 47:
Pinout view: multi-bonding with extended mode, Figure 83:
STM32MP1 Series: assignment options for GPIOs, Figure 99: Project
Settings window, Figure 1565: DDR Suite - Connection to target,
Figure 156: DDR Suite - Target connected, Figure 157: DDR activity
logs, Figure 158: DDR interactive logs, Figure 159: DDR register
loading, Figure 160: DDR test list from U-Boot SPL, Figure 161: DDR
test suite results, Figure 162: DDR tests history, Figure 163: DDR
tuning pre-requisites, Figure 164: DDR tuning process, Figure 165:
Bit deskew, Figure 166: Eye training (centering) panel, Figure 167:
DDR Tuning - saving to configuration, Figure 188: Project settings for
STM32CubelDE toolchain and Figure 226: Project Settings and
toolchain selection.

Added Figure 25: Enabling Trust-zone for STM32L5 Series.

362/363

3

UM1718 Rev 31

UM1718

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

3

UM1718 Rev 31 363/363

	1 STM32Cube overview
	2 Getting started with STM32CubeMX
	2.1 Principles
	2.2 Key features
	2.3 Rules and limitations

	3 Installing and running STM32CubeMX
	3.1 System requirements
	3.1.1 Supported operating systems and architectures
	3.1.2 Memory prerequisites
	3.1.3 Software requirements

	3.2 Installing/uninstalling STM32CubeMX standalone version
	3.2.1 Installing STM32CubeMX standalone version
	3.2.2 Installing STM32CubeMX from command line
	Interactive mode
	Auto-install mode

	3.2.3 Uninstalling STM32CubeMX standalone version
	Uninstalling STM32CubeMX on macOS®
	Uninstalling STM32CubeMX on Linux®
	Uninstalling STM32CubeMX on Windows®

	3.3 Launching STM32CubeMX
	3.3.1 Running STM32CubeMX as standalone application
	3.3.2 Running STM32CubeMX in command-line mode
	Table 1. Command line summary

	3.4 Getting updates using STM32CubeMX
	3.4.1 Updater configuration
	3.4.2 Installing STM32 MCU packages
	3.4.3 Installing STM32 MCU package patches
	3.4.4 Installing embedded software packs
	3.4.5 Removing already installed embedded software packages
	3.4.6 Checking for updates

	4 STM32CubeMX user interface
	4.1 Home page
	4.1.1 File menu
	Table 2. Home page shortcuts

	4.1.2 Window menu and Outputs tabs
	Table 3. Window menu

	4.1.3 Help menu
	Table 4. Help menu shortcuts

	4.1.4 Social links

	4.2 New Project window
	4.2.1 MCU selector
	MCU selection
	MCU selection based on graphics criteria
	Export to Excel feature
	Show favorite MCUs feature
	MCU close selector feature

	4.2.2 Board selector
	4.2.3 Cross selector
	Part number selection
	Compare cart
	MCU/MPU selection for a new project

	4.3 Project page
	4.4 Pinout & Configuration view
	Tips
	4.4.1 Component list
	Contextual help
	Icons and color schemes
	Table 5. Component list, mode icons and color schemes

	4.4.2 Component Mode panel
	4.4.3 Pinout view
	Tips and tricks

	4.4.4 Pinout menu and shortcuts
	Table 6. Pinout menu and shortcuts

	4.4.5 Pinout view advanced actions
	Manually modifying pin assignments
	Manually remapping a function to another pin
	Manual remapping with destination pin ambiguity
	Resolving pin conflicts

	4.4.6 Keep Current Signals Placement
	Keep Current Signals Placement is unchecked
	Keep Current Signals Placement is checked
	Tip

	4.4.7 Pinning and labeling signals on pins
	4.4.8 Pinout for multi-bonding packages
	4.4.9 System view
	Table 7. Configuration states

	4.4.10 Component Configuration panel
	Table 8. Peripheral and Middleware Configuration window buttons and tooltips
	No check option

	4.4.11 User Constants configuration window
	Creating/editing user constants
	Deleting user constants
	Searching for user constants

	4.4.12 GPIO Configuration window
	4.4.13 DMA Configuration window
	4.4.14 NVIC Configuration window
	Enabling interruptions using the NVIC tab view
	Code generation options for interrupt handling

	4.4.15 FreeRTOS configuration panel
	Tasks and Queues Tab
	Timers, Mutexes and Semaphores
	FreeRTOS heap usage

	4.4.16 Setting HAL timebase source
	Example of configuration using SysTick without FreeRTOS
	Example of configuration using SysTick and FreeRTOS
	Example of configuration using TIM2 as HAL timebase source

	4.5 Pinout & Configuration view for STM32MP1 Series
	4.5.1 Run time configuration
	4.5.2 Boot stages configuration
	Boot ROM peripherals selection
	Boot loader (A7BL) peripherals selection

	4.6 Pinout & Configuration view for STM32H7 dual-core product lines
	4.7 Enabling security in Pinout & Configuration view (STM32L5 Series only)
	4.7.1 Privilege access for peripherals, GPIO EXTIs and DMA requests
	4.7.2 Secure/non-secure context assignment for GPIO/Peripherals/Middleware
	4.7.3 NVIC and context assignment for peripherals interrupts
	4.7.4 DMA (context assignment and privilege access settings)
	4.7.5 GTZC
	4.7.6 OTFDEC

	4.8 Clock Configuration view
	4.8.1 Clock tree configuration functions
	External clock sources
	Peripheral clock configuration options
	Table 9. Clock configuration view widgets

	4.8.2 Securing clock resources (STM32L5 Series only)
	Table 10. Clock Configuration security settings

	4.8.3 Recommendations
	4.8.4 STM32F43x/42x power-over drive feature
	Table 11. Voltage scaling versus power over-drive and HCLK frequency
	Table 12. Relations between power over-drive and HCLK frequency

	4.8.5 Clock tree glossary
	Table 13. Glossary

	4.9 Project Manager view
	4.9.1 Project tab
	4.9.2 Code Generator tab
	STM32Cube Firmware Library Package option
	Generated files options
	HAL settings options
	Custom code template options

	4.9.3 Advanced Settings tab
	Ordering initialization function calls
	Disabling calls to initialization functions
	Choosing between HAL and LL based code generation for a given peripheral instance

	4.10 Import Project window
	4.11 Set unused / Reset used GPIOs windows
	4.12 Update Manager windows
	4.13 Additional software component selection window
	4.13.1 Introduction on software components
	4.13.2 Filter panel
	Table 14. Additional software window - Filter icons

	4.13.3 Packs panel
	Table 15. Additional Software window – Packs panel columns
	Table 16. Additional Software window – Packs panel icons

	4.13.4 Component dependencies panel
	Table 17. Component dependencies panel contextual help

	4.13.5 Details and Warnings panel
	4.13.6 Updating the tree view for additional software components

	4.14 About window

	5 STM32CubeMX tools
	5.1 Power Consumption Calculator view
	5.1.1 Building a power consumption sequence
	Selecting a VDD value
	Selecting a battery model (optional)
	Power sequence default view
	Managing sequence steps
	Adding a step
	Editing a step
	Moving a step
	Deleting a step
	Using the transition checker

	5.1.2 Configuring a step in the power sequence
	Using interpolation
	Importing pinout
	Selecting/deselecting all peripherals

	5.1.3 Managing user-defined power sequence and reviewing results
	Managing the whole sequence (load, save and compare)
	Managing the results charts and display options
	Overview of the Results summary area

	5.1.4 Power sequence step parameters glossary
	5.1.5 Battery glossary
	5.1.6 SMPS feature
	5.1.7 BLE support (STM32WB Series only)
	5.1.8 Example feature (STM32MP1 and STM32H7 dual-core only)

	5.2 DDR Suite (for STM32MP1 Series only)
	5.2.1 DDR configuration
	DDR type, width and density
	DDR configuration
	DDR3 configuration
	DDR tuning tab (read-only)

	5.2.2 Connection to the target and DDR register loading
	Prerequisites
	Connection to the target
	Output/Log messages
	DDR register loading (optional)

	5.2.3 DDR testing
	Prerequisites
	DDR test list
	DDR test results

	5.2.4 DDR tuning
	Prerequisites
	Tunable signals
	Tuning process
	Bit deskew
	Eye training (centering)
	Propagating tuning results

	6 STM32CubeMX C Code generation overview
	6.1 STM32Cube code generation using only HAL drivers (default mode)
	6.2 STM32Cube code generation using Low Layer drivers
	Table 18. LL versus HAL code generation: drivers included in STM32CubeMX projects
	Table 19. LL versus HAL code generation: STM32CubeMX generated header files
	Table 20. LL versus HAL: STM32CubeMX generated source files
	Table 21. LL versus HAL: STM32CubeMX generated functions and function calls

	6.3 Custom code generation
	6.3.1 STM32CubeMX data model for FreeMarker user templates
	6.3.2 Saving and selecting user templates
	6.3.3 Custom code generation

	6.4 Additional settings for C project generation
	Possible entries and syntax
	.extSettings file example and generated outcomes
	[Groups]
	[Others]

	7 Code generation for dual-core MCUs (STM32H7 dual-core product lines only)
	Generated initialization code
	Generated startup and linker files
	Generated boot mode code

	8 Code generation with Trustzone enabled (STM32L5 Series only)
	Specificities
	Table 22. Files generated when TrustZone is enabled

	9 Device tree generation (STM32MP1 Series only)
	9.1 Device tree overview
	9.2 STM32CubeMX Device tree generation
	9.2.1 Device tree generation for Linux kernel
	9.2.2 Device tree generation for U-boot
	9.2.3 Device tree generation for TF-A

	10 Support of additional software components using CMSIS-Pack standard
	11 Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series
	11.1 Creating a new STM32CubeMX Project
	11.2 Configuring the MCU pinout
	11.3 Saving the project
	11.4 Generating the report
	11.5 Configuring the MCU clock tree
	11.6 Configuring the MCU initialization parameters
	11.6.1 Initial conditions
	11.6.2 Configuring the peripherals
	11.6.3 Configuring the GPIOs
	11.6.4 Configuring the DMAs
	11.6.5 Configuring the middleware

	11.7 Generating a complete C project
	11.7.1 Setting project options
	11.7.2 Downloading firmware package and generating the C code

	11.8 Building and updating the C code project
	11.9 Switching to another MCU

	12 Tutorial 2 - Example of FatFs on an SD card using STM32429I-EVAL evaluation board
	13 Tutorial 3 - Using the Power Consumption Calculator to optimize the embedded application consumption and more
	13.1 Tutorial overview
	13.2 Application example description
	13.3 Using the Power Consumption Calculator
	13.3.1 Creating a power sequence
	13.3.2 Optimizing application power consumption
	Step 1 (Run)
	Step 4 (Run, RTC)
	Step 5 (Run, ADC, DMA, RTC)
	Step 6 (Sleep, DMA, ADC,RTC)
	Step 7 (Run, DMA, RTC, USART)
	Step 8 (Stop 0, USART)
	Step 10 (RTC, USART)

	14 Tutorial 4 - Example of UART communications with an STM32L053xx Nucleo board
	14.1 Tutorial overview
	14.2 Creating a new STM32CubeMX project and selecting the Nucleo board
	14.3 Selecting the features from the Pinout view
	14.4 Configuring the MCU clock tree from the Clock Configuration view
	14.5 Configuring the peripheral parameters from the Configuration view
	14.6 Configuring the project settings and generating the project
	14.7 Updating the project with the user application code
	14.8 Compiling and running the project
	14.9 Configuring Tera Term software as serial communication client on the PC

	15 Tutorial 5: Exporting current project configuration to a compatible MCU
	16 Tutorial 6 – Adding embedded software packs to user projects
	17 Tutorial 7 – Using the X-Cube-BLE1 software pack
	Table 23. Connection with hardware resources

	18 FAQ
	18.1 On the Pinout configuration panel, why does STM32CubeMX move some functions when I add a new peripheral mode?
	18.2 How can I manually force a function remapping?
	18.3 Why are some pins highlighted in yellow or in light green in the Pinout view? Why cannot I change the function of some pins (when I click some pins, nothing happens)?
	18.4 Why do I get the error “Java 7 update 45” when installing “Java 7 update 45” or a more recent version of the JRE?
	18.5 Why does the RTC multiplexer remain inactive on the Clock tree view?
	18.6 How can I select LSE and HSE as clock source and change the frequency?
	18.7 Why STM32CubeMX does not allow me to configure PC13, PC14, PC15 and PI8 as outputs when one of them is already configured as an output?
	18.8 Ethernet configuration: why cannot I specify DP83848 or LAN8742A in some cases?

	Appendix A STM32CubeMX pin assignment rules
	A.1 Block consistency
	Example of block mapping with a STM32F107x MCU
	Example of block remapping with a STM32F107x MCU

	A.2 Block inter-dependency
	Example of block remapping of SPI in full-duplex master mode with a STM32F107x MCU

	A.3 One block = one peripheral mode
	Example of STM32F107x MCU

	A.4 Block remapping (STM32F10x only)
	Example

	A.5 Function remapping
	Example using STM32F415x

	A.6 Block shifting (only for STM32F10x and when “Keep Current Signals placement” is unchecked)
	Example

	A.7 Setting and clearing a peripheral mode
	A.8 Mapping a function individually
	A.9 GPIO signals mapping

	Appendix B STM32CubeMX C code generation design choices and limitations
	B.1 STM32CubeMX generated C code and user sections
	B.2 STM32CubeMX design choices for peripheral initialization
	B.3 STM32CubeMX design choices and limitations for middleware initialization
	B.3.1 Overview
	B.3.2 USB host
	B.3.3 USB device
	B.3.4 FatFs
	B.3.5 FreeRTOS
	B.3.6 LwIP
	B.3.7 Libjpeg
	B.3.8 Mbed TLS
	B.3.9 TouchSensing
	B.3.10 PDM2PCM
	B.3.11 STM32WPAN BLE/Thread (STM32WB Series only)
	BLE configuration
	Thread configuration

	B.3.12 OpenAmp and RESMGR_UTILITY (STM32MP1 Series and STM32H7 dual-core product lines)

	Appendix C STM32 microcontrollers naming conventions
	Appendix D STM32 microcontrollers power consumption parameters
	D.1 Power modes
	D.1.1 STM32L1 Series
	D.1.2 STM32F4 Series
	D.1.3 STM32L0 Series

	D.2 Power consumption ranges
	D.2.1 STM32L1 Series features three VCORE ranges
	D.2.2 STM32F4 Series features several VCORE scales
	D.2.3 STM32L0 Series features three VCORE ranges

	Appendix E STM32Cube embedded software packages
	19 Revision history
	Table 24. Document revision history

