SPIM (and QtSPIM) assembler directives.

Assembler Syntax

Comments in assembler files begin with a sharp sign (#). Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots
(.) that do not begin with a number. Instruction opcodes are reserved words that
cannot be used as identifiers. Labels are declared by putting them at the beginning
of a line followed by a colon, for example:

.data
item: .word 1

text

.globl main # Must be global
main: Iw $t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in doublequotes ("). Special characters in strings follow the
C convention:

B newline \n
W tab \t
B quote \"
SPIM supports a subset of the MIPS assembler directives:

.align n Align the next datum on a 2" byte boundary. For
example, .align 2 aligns the next value on a
word boundary. .align 0 turns off automatic
alignment of .half, .word, .float, and
.double directives until the next .data or
.kdata directive.

o U Store the string str in memory, but do not null-
terminate it.

.asciiz str

.data <addr>

.double dl, ..., dn

.extern sym size

Floal Fl.eos; fn
.globl sym
.half hl, ..., hn

.kdata <addr>

.ktext <addr>

.set noatand .set at

.space n

Store the string str in memory and null-termi-
nate it.

Store the n values in successive bytes of memory.

Subsequent items are stored in the data segment.
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

Store the n floating-point double precision num-
bers in successive memory locations.

Declare that the datum stored at sym is size bytes
large and is a global label. This directive enables
the assembler to store the datum in a portion of
the data segment that is efficiently accessed via
register $gp.

Store the n floating-point single precision num-
bers in successive memory locations.

Declare that label sym is global and can be refer-
enced from other files.

Store the n 16-bit quantities in successive mem-

ory halfwords.

Subsequent data items are stored in the kernel
data segment. If the optional argument addr is
present, subsequent items are stored starting at

address addr.

Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below).
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

The first directive prevents SPIM from complain-
ing about subsequent instructions that use regis-
ter $at. The second directive reenables the
warning. Since pseudoinstructions expand into
code that uses register $at, programmers must be
very careful about leaving values in this register.

Allocate n bytes of space in the current segment
(which must be the data segment in SPIM).

.text <addr> Subsequent items are put in the user text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below).
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.word wl,..., wn Store the n 32-bit quantities in successive mem-
ory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata,
and .sdata).

