
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th
Edition

Chapter 5
Large and Fast: 
Exploiting Memory Hierarchy

Part 4



Chapter 6 — Storage and Other I/O Topics — 2

Dependability

 Fault: failure of a 
component
 May or may not lead 

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
e pendab le M

em
ory H

ie rarchy



Chapter 6 — Storage and Other I/O Topics — 3

Dependability Measures
 Reliability: mean time to failure (MTTF)
 Service interruption: mean time to repair (MTTR)
 Mean time between failures

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR)
 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault 
forecasting

 Reduce MTTR: improved tools and processes for 
diagnosis and repair



The Hamming SEC Code
 Hamming distance

 Number of bits that are different between two 
bit patterns

 Minimum distance = 2 provides single bit 
error detection
 E.g. parity code

 Minimum distance = 3 provides single 
error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4



Encoding SEC
 To calculate Hamming code:

 Number bits from 1 on the left
 All bit positions that are a power 2 are parity 

bits
 Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5



Decoding SEC
 Value of parity bits indicates which bits are 

in error
 Use numbering from encoding procedure
 E.g.

 Parity bits = 0000 indicates no error
 Parity bits = 1010 indicates bit 10 was flipped

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6



SEC/DEC Code
 Add an additional parity bit for the whole word 

(pn)
 Make Hamming distance = 4
 Decoding:

 Let H = SEC parity bits
 H even, pn even, no error

 H odd, pn odd, correctable single bit error

 H even, pn odd, error in pn bit

 H odd, pn even, double error occurred

 Note:  ECC DRAM uses SEC/DEC with 8 bits 
protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Virtual Machines
 Host computer emulates guest operating system 

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance comptuers

 Examples
 IBM VM/370 (1970s technology!)
 VMWare
 Microsoft Virtual PC

§5.6 V
ir tual M

a chines



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Virtual Machine Monitor
 Maps virtual resources to physical 

resources
 Memory, I/O devices, CPUs

 Guest code runs on native machine in 
user mode
 Traps to VMM on privileged instructions and 

access to protected resources
 Guest OS may be different from host OS
 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles 
interrupt, selects and resumes next process

 With Virtual Machine Monitor
 VMM suspends current VM, handles interrupt, 

selects and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer 

interrupt occurs



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Instruction Set Support
 User and System modes
 Privileged instructions only available in 

system mode
 Trap to system if executed in user mode

 All physical resources only accessible 
using privileged instructions
 Including page tables, interrupt controls, I/O 

registers
 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Virtual Memory
 Use main memory as a “cache” for 

secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)
 Programs share main memory

 Each gets a private virtual address space 
holding its frequently used code and data

 Protected from other programs
 CPU and OS translate virtual addresses to 

physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

§5.7 V
ir tual M

e m
ory



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Address Translation
 Fixed-size pages (e.g., 4K)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Page Fault Penalty
 On page fault, the page must be fetched 

from disk
 Takes millions of clock cycles
 Handled by OS code

 Try to minimize page fault rate
 Fully associative placement
 Smart replacement algorithms



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Page Tables
 Stores placement information

 Array of page table entries(PTE), indexed by 
virtual page number

 Page table register in CPU points to page 
table in physical memory

 If page is present in memory
 PTE stores the physical page number
 Plus other status bits (referenced, dirty, …)

 If page is not present
 PTE can refer to location in swap space on 

disk



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Translation Using a Page Table



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Mapping Pages to Storage



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Replacement and Writes
 To reduce page fault rate, prefer least-

recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on 

access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been 

used recently
 Disk writes take millions of cycles

 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Fast Translation Using a TLB
 Address translation would appear to require 

extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or software



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Fast Translation Using a TLB



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

TLB Misses
 If page is in memory

 Load the PTE from memory and retry
 Could be handled in hardware

 Can get complex for more complicated page table 
structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating 

the page table
 Then restart the faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

TLB Miss Handler
 TLB miss indicates

 Page present, but PTE not in TLB
 Page not preset

 Must recognize TLB miss before 
destination register overwritten
 Raise exception

 Handler copies PTE from memory to TLB
 Then restarts instruction
 If page not present, page fault will occur



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Page Fault Handler
 Use faulting virtual address to find PTE
 Locate page on disk
 Choose page to replace

 If dirty, write to disk first
 Read page into memory and update page 

table
 Make process runnable again

 Restart from faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

TLB and Cache Interaction
 If cache tag uses 

physical address
 Need to translate 

before cache lookup

 Alternative: use virtual 
address tag

 Complications due to 
aliasing

 Different virtual 
addresses for shared 
physical address



Fig 5.12  FastMATH cache  16KiB



Fig 5.29
FastMATH
cpu







Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Memory Protection
 Different tasks can share parts of their 

virtual address spaces
 But need to protect against errant access
 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)
 Privileged instructions
 Page tables and other state information only 

accessible in supervisor mode
 System call exception (e.g., syscall in MIPS)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

The Memory Hierarchy

 Common principles apply at all levels of 
the memory hierarchy
 Based on notions of caching

 At each level in the hierarchy
 Block placement
 Finding a block
 Replacement on a miss
 Write policy

§5.8 A
 C

om
m

o n F
ram

ew
ork f or M

em
ory H

ie rarchie s

The BIG Picture



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 Increases complexity, cost, and access time



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write 

buffer
 Write-back

 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write 

latency 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Sources of Misses
 Compulsory misses (aka cold start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache of 

the same total size



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Pitfalls
 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,
4-byte blocks

 Byte 36 maps to block 1
 Word 36 maps to block 4

 Ignoring memory system effects when 
writing or generating code
 Example: iterating over rows vs. columns of 

arrays
 Large strides result in poor locality

§5.15 F
allacies  and P

itfalls



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Pitfalls
 In multiprocessor with shared L2 or L3 

cache
 Less associativity than cores results in conflict 

misses
 More cores  need to increase associativity

 Using AMAT to evaluate performance of 
out-of-order processors
 Ignores effect of non-blocked accesses
 Instead, evaluate performance by simulation



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Pitfalls
 Extending address range using segments

 E.g., Intel 80286
 But a segment is not always big enough
 Makes address arithmetic complicated

 Implementing a VMM on an ISA not 
designed for virtualization
 E.g., non-privileged instructions accessing 

hardware resources
 Either extend ISA, or require guest OS not to 

use problematic instructions



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Concluding Remarks
 Fast memories are small, large memories are 

slow
 We really want fast, large memories 
 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently
 Memory hierarchy

 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors

§5.16 C
onclud ing R

em
arks


	Chapter 5
	Dependability
	Dependability Measures
	The Hamming SEC Code
	Encoding SEC
	Decoding SEC
	SEC/DEC Code
	Virtual Machines
	Virtual Machine Monitor
	Example: Timer Virtualization
	Instruction Set Support
	Slide 12
	Virtual Memory
	Address Translation
	Page Fault Penalty
	Page Tables
	Translation Using a Page Table
	Mapping Pages to Storage
	Replacement and Writes
	Fast Translation Using a TLB
	Slide 21
	TLB Misses
	TLB Miss Handler
	Page Fault Handler
	TLB and Cache Interaction
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Memory Protection
	The Memory Hierarchy
	Block Placement
	Finding a Block
	Replacement
	Write Policy
	Sources of Misses
	Cache Design Trade-offs
	Slide 38
	Pitfalls
	Slide 40
	Slide 41
	Concluding Remarks

