
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th
Edition

Chapter 5
Large and Fast: 
Exploiting Memory Hierarchy

Part 4



Chapter 6 — Storage and Other I/O Topics — 2

Dependability

 Fault: failure of a 
component
 May or may not lead 

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
e pendab le M

em
ory H

ie rarchy



Chapter 6 — Storage and Other I/O Topics — 3

Dependability Measures
 Reliability: mean time to failure (MTTF)
 Service interruption: mean time to repair (MTTR)
 Mean time between failures

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR)
 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault 
forecasting

 Reduce MTTR: improved tools and processes for 
diagnosis and repair



The Hamming SEC Code
 Hamming distance

 Number of bits that are different between two 
bit patterns

 Minimum distance = 2 provides single bit 
error detection
 E.g. parity code

 Minimum distance = 3 provides single 
error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4



Encoding SEC
 To calculate Hamming code:

 Number bits from 1 on the left
 All bit positions that are a power 2 are parity 

bits
 Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5



Decoding SEC
 Value of parity bits indicates which bits are 

in error
 Use numbering from encoding procedure
 E.g.

 Parity bits = 0000 indicates no error
 Parity bits = 1010 indicates bit 10 was flipped

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6



SEC/DEC Code
 Add an additional parity bit for the whole word 

(pn)
 Make Hamming distance = 4
 Decoding:

 Let H = SEC parity bits
 H even, pn even, no error

 H odd, pn odd, correctable single bit error

 H even, pn odd, error in pn bit

 H odd, pn even, double error occurred

 Note:  ECC DRAM uses SEC/DEC with 8 bits 
protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Virtual Machines
 Host computer emulates guest operating system 

and machine resources
 Improved isolation of multiple guests
 Avoids security and reliability problems
 Aids sharing of resources

 Virtualization has some performance impact
 Feasible with modern high-performance comptuers

 Examples
 IBM VM/370 (1970s technology!)
 VMWare
 Microsoft Virtual PC

§5.6 V
ir tual M

a chines



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Virtual Machine Monitor
 Maps virtual resources to physical 

resources
 Memory, I/O devices, CPUs

 Guest code runs on native machine in 
user mode
 Traps to VMM on privileged instructions and 

access to protected resources
 Guest OS may be different from host OS
 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Example: Timer Virtualization
 In native machine, on timer interrupt

 OS suspends current process, handles 
interrupt, selects and resumes next process

 With Virtual Machine Monitor
 VMM suspends current VM, handles interrupt, 

selects and resumes next VM
 If a VM requires timer interrupts

 VMM emulates a virtual timer
 Emulates interrupt for VM when physical timer 

interrupt occurs



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Instruction Set Support
 User and System modes
 Privileged instructions only available in 

system mode
 Trap to system if executed in user mode

 All physical resources only accessible 
using privileged instructions
 Including page tables, interrupt controls, I/O 

registers
 Renaissance of virtualization support

 Current ISAs (e.g., x86) adapting





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Virtual Memory
 Use main memory as a “cache” for 

secondary (disk) storage
 Managed jointly by CPU hardware and the 

operating system (OS)
 Programs share main memory

 Each gets a private virtual address space 
holding its frequently used code and data

 Protected from other programs
 CPU and OS translate virtual addresses to 

physical addresses
 VM “block” is called a page
 VM translation “miss” is called a page fault

§5.7 V
ir tual M

e m
ory



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Address Translation
 Fixed-size pages (e.g., 4K)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Page Fault Penalty
 On page fault, the page must be fetched 

from disk
 Takes millions of clock cycles
 Handled by OS code

 Try to minimize page fault rate
 Fully associative placement
 Smart replacement algorithms



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Page Tables
 Stores placement information

 Array of page table entries(PTE), indexed by 
virtual page number

 Page table register in CPU points to page 
table in physical memory

 If page is present in memory
 PTE stores the physical page number
 Plus other status bits (referenced, dirty, …)

 If page is not present
 PTE can refer to location in swap space on 

disk



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Translation Using a Page Table



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Mapping Pages to Storage



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Replacement and Writes
 To reduce page fault rate, prefer least-

recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on 

access to page
 Periodically cleared to 0 by OS
 A page with reference bit = 0 has not been 

used recently
 Disk writes take millions of cycles

 Block at once, not individual locations
 Write through is impractical
 Use write-back
 Dirty bit in PTE set when page is written



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Fast Translation Using a TLB
 Address translation would appear to require 

extra memory references
 One to access the PTE
 Then the actual memory access

 But access to page tables has good locality
 So use a fast cache of PTEs within the CPU
 Called a Translation Look-aside Buffer (TLB)
 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
 Misses could be handled by hardware or software



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Fast Translation Using a TLB



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

TLB Misses
 If page is in memory

 Load the PTE from memory and retry
 Could be handled in hardware

 Can get complex for more complicated page table 
structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)
 OS handles fetching the page and updating 

the page table
 Then restart the faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

TLB Miss Handler
 TLB miss indicates

 Page present, but PTE not in TLB
 Page not preset

 Must recognize TLB miss before 
destination register overwritten
 Raise exception

 Handler copies PTE from memory to TLB
 Then restarts instruction
 If page not present, page fault will occur



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Page Fault Handler
 Use faulting virtual address to find PTE
 Locate page on disk
 Choose page to replace

 If dirty, write to disk first
 Read page into memory and update page 

table
 Make process runnable again

 Restart from faulting instruction



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

TLB and Cache Interaction
 If cache tag uses 

physical address
 Need to translate 

before cache lookup

 Alternative: use virtual 
address tag

 Complications due to 
aliasing

 Different virtual 
addresses for shared 
physical address



Fig 5.12  FastMATH cache  16KiB



Fig 5.29
FastMATH
cpu







Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Memory Protection
 Different tasks can share parts of their 

virtual address spaces
 But need to protect against errant access
 Requires OS assistance

 Hardware support for OS protection
 Privileged supervisor mode (aka kernel mode)
 Privileged instructions
 Page tables and other state information only 

accessible in supervisor mode
 System call exception (e.g., syscall in MIPS)



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

The Memory Hierarchy

 Common principles apply at all levels of 
the memory hierarchy
 Based on notions of caching

 At each level in the hierarchy
 Block placement
 Finding a block
 Replacement on a miss
 Write policy

§5.8 A
 C

om
m

o n F
ram

ew
ork f or M

em
ory H

ie rarchie s

The BIG Picture



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Block Placement
 Determined by associativity

 Direct mapped (1-way associative)
 One choice for placement

 n-way set associative
 n choices within a set

 Fully associative
 Any location

 Higher associativity reduces miss rate
 Increases complexity, cost, and access time



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible
 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Replacement
 Choice of entry to replace on a miss

 Least recently used (LRU)
 Complex and costly hardware for high associativity

 Random
 Close to LRU, easier to implement

 Virtual memory
 LRU approximation with hardware support



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Write Policy
 Write-through

 Update both upper and lower levels
 Simplifies replacement, but may require write 

buffer
 Write-back

 Update upper level only
 Update lower level when block is replaced
 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write 

latency 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Sources of Misses
 Compulsory misses (aka cold start misses)

 First access to a block
 Capacity misses

 Due to finite cache size
 A replaced block is later accessed again

 Conflict misses (aka collision misses)
 In a non-fully associative cache
 Due to competition for entries in a set
 Would not occur in a fully associative cache of 

the same total size



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Pitfalls
 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,
4-byte blocks

 Byte 36 maps to block 1
 Word 36 maps to block 4

 Ignoring memory system effects when 
writing or generating code
 Example: iterating over rows vs. columns of 

arrays
 Large strides result in poor locality

§5.15 F
allacies  and P

itfalls



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Pitfalls
 In multiprocessor with shared L2 or L3 

cache
 Less associativity than cores results in conflict 

misses
 More cores  need to increase associativity

 Using AMAT to evaluate performance of 
out-of-order processors
 Ignores effect of non-blocked accesses
 Instead, evaluate performance by simulation



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Pitfalls
 Extending address range using segments

 E.g., Intel 80286
 But a segment is not always big enough
 Makes address arithmetic complicated

 Implementing a VMM on an ISA not 
designed for virtualization
 E.g., non-privileged instructions accessing 

hardware resources
 Either extend ISA, or require guest OS not to 

use problematic instructions



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Concluding Remarks
 Fast memories are small, large memories are 

slow
 We really want fast, large memories 
 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space 

frequently
 Memory hierarchy

 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for 
multiprocessors

§5.16 C
onclud ing R

em
arks


	Chapter 5
	Dependability
	Dependability Measures
	The Hamming SEC Code
	Encoding SEC
	Decoding SEC
	SEC/DEC Code
	Virtual Machines
	Virtual Machine Monitor
	Example: Timer Virtualization
	Instruction Set Support
	Slide 12
	Virtual Memory
	Address Translation
	Page Fault Penalty
	Page Tables
	Translation Using a Page Table
	Mapping Pages to Storage
	Replacement and Writes
	Fast Translation Using a TLB
	Slide 21
	TLB Misses
	TLB Miss Handler
	Page Fault Handler
	TLB and Cache Interaction
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Memory Protection
	The Memory Hierarchy
	Block Placement
	Finding a Block
	Replacement
	Write Policy
	Sources of Misses
	Cache Design Trade-offs
	Slide 38
	Pitfalls
	Slide 40
	Slide 41
	Concluding Remarks

