
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th
Edition

Chapter 5
Large and Fast:
Exploiting Memory Hierarchy

Part 3

Type Room
#

Notes

Laptop Room Fishbowl 20
Bring your laptop

The "Big" Room KRH 205 20

Awards Room KRH 210 20
Dr. Roth broadcasting
live

Secret room CSP 163 12
Secret2 room CSP 165 12
Highest Room KRH 326 12

Engineering Week Watch Parties With
• Friends
• FOOD
• Colloquium Credit
• Networking

• Watch your email for
 more information

7:00 pm via Zoom
Get link to event: tinyurl.com/2p8jcpcj

file:///media/aamola/tmp/mozilla_larry.aamodt0/tinyurl.com/2p8jcpcj

Goals today:
 - Cache performance measurement
 - Reduce cache misses via flexible block placement

- Direct mapped placement
- Set associative placement
- Fully associative placement

 - Where to place a block in the cache
 - Replacement policy
 - Multi-level caches to reduce miss penalty
 - Software optimization using blocking

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time
 Memory stall cycles

 Mainly from cache misses
 With simplifying assumptions:

§5.4 M
e asuring and Im

provin g C
ach e P

erfo rm
ance

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Performance Example
 Given

 I-cache miss rate = 2%
 D-cache miss rate = 4%
 Miss penalty = 100 cycles
 Base CPI (ideal cache) = 2
 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2
 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Average Access Time
 Hit time is also important for performance
 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty
 Example

 CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns
 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Performance Summary
 When CPU performance increased

 Miss penalty becomes more significant
 Decreasing base CPI

 Greater proportion of time spent on memory
stalls

 Increasing clock rate
 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Associative Caches
 Fully associative

 Allow a given block to go in any cache entry
 Requires all entries to be searched at once
 Comparator per entry (expensive)

 n-way set associative
 Each set contains n entries
 Block number determines which set

 (Block number) modulo (#Sets in cache)
 Search all entries in a given set at once
 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Spectrum of Associativity
 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Associativity Example
 Compare 4-block caches

 Direct mapped, 2-way set associative,
fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Associativity Example
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

How Much Associativity
 Increased associativity decreases miss

rate
 But with diminishing returns

 Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
 1-way: 10.3%
 2-way: 8.6%
 4-way: 8.3%
 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Replacement Policy
 Direct mapped: no choice
 Set associative

 Prefer non-valid entry, if there is one
 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Multilevel Caches
 Primary cache attached to CPU

 Small, but fast
 Level-2 cache services misses from

primary cache
 Larger, slower, but still faster than main

memory
 Main memory services L-2 cache misses
 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Multilevel Cache Example
 Given

 CPU base CPI = 1, clock rate = 4GHz
 Miss rate/instruction = 2%
 Main memory access time = 100ns

 With just primary cache
 Miss penalty = 100ns/0.25ns = 400 cycles
 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Example (cont.)
 Now add L-2 cache

 Access time = 5ns
 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit
 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss
 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
 Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Multilevel Cache Considerations

 Primary cache
 Focus on minimal hit time

 L-2 cache
 Focus on low miss rate to avoid main memory

access
 Hit time has less overall impact

 Results
 L-1 cache usually smaller than a single cache
 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Interactions with Advanced CPUs

 Out-of-order CPUs can execute
instructions during cache miss
 Pending store stays in load/store unit
 Dependent instructions wait in reservation

stations
 Independent instructions continue

 Effect of miss depends on program data
flow
 Much harder to analyse
 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Interactions with Software
 Misses depend on

memory access
patterns
 Algorithm behavior
 Compiler

optimization for
memory access

Software Optimization via Blocking

 Goal: maximize accesses to data before it
is replaced

 Consider inner loops of DGEMM:

 for (int j = 0; j < n; ++j)

 {

 double cij = C[i+j*n];

 for(int k = 0; k < n; k++)

 cij += A[i+k*n] * B[k+j*n];

 C[i+j*n] = cij;

 }

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

DGEMM Access Pattern
 C, A, and B arrays

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

older accesses

new accesses

Cache Blocked DGEMM
1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5 for (int i = si; i < si+BLOCKSIZE; ++i)

6 for (int j = sj; j < sj+BLOCKSIZE; ++j)

7 {

8 double cij = C[i+j*n];/* cij = C[i][j] */

9 for(int k = sk; k < sk+BLOCKSIZE; k++)

10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11 C[i+j*n] = cij;/* C[i][j] = cij */

12 }

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16 for (int sj = 0; sj < n; sj += BLOCKSIZE)

17 for (int si = 0; si < n; si += BLOCKSIZE)

18 for (int sk = 0; sk < n; sk += BLOCKSIZE)

19 do_block(n, si, sj, sk, A, B, C);

20 }

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Blocked DGEMM Access Pattern

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Unoptimized Blocked

	Chapter 5
	Engineering Week Watch Parties With
	Slide 3
	Measuring Cache Performance
	Cache Performance Example
	Average Access Time
	Performance Summary
	Associative Caches
	Associative Cache Example
	Spectrum of Associativity
	Associativity Example
	Slide 12
	How Much Associativity
	Set Associative Cache Organization
	Replacement Policy
	Multilevel Caches
	Multilevel Cache Example
	Example (cont.)
	Multilevel Cache Considerations
	Interactions with Advanced CPUs
	Interactions with Software
	Software Optimization via Blocking
	DGEMM Access Pattern
	Cache Blocked DGEMM
	Blocked DGEMM Access Pattern
	Slide 26

