
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th
Edition

Chapter 5
Large and Fast:
Exploiting Memory Hierarchy

Part 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Cache Memory
 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.3 T
h e B

asic s of C
a ches

 How do we know if
the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Tags and Valid Bits
 How do we know which particular block is

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality
 But in a fixed-sized cache

 Larger blocks  fewer of them
 More competition  increased miss rate

 Larger blocks  pollution
 Larger miss penalty

 Can override benefit of reduced miss rate
 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch
 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Write-Through
 On data-write hit, could just update the block in

cache
 But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer

 e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles

 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Write-Back
 Alternative: On data-write hit, just update

the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through

 Allocate on miss: fetch the block
 Write around: don’t fetch the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back
 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

	Chapter 5
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Slide 14
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Slide 20
	Main Memory Supporting Caches
	Slide 22

