
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th
Edition

Chapter 5
Large and Fast:
Exploiting Memory Hierarchy

Part 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Cache Memory
 Cache memory

 The level of the memory hierarchy closest to
the CPU

 Given accesses X1, …, Xn–1, Xn

§5.3 T
h e B

asic s of C
a ches

 How do we know if
the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Direct Mapped Cache
 Location determined by address
 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a
power of 2

 Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Tags and Valid Bits
 How do we know which particular block is

stored in a cache location?
 Store block address as well as the data
 Actually, only need the high-order bits
 Called the tag

 What if there is no data in a location?
 Valid bit: 1 = present, 0 = not present
 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Example
 8-blocks, 1 word/block, direct mapped
 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Example: Larger Block Size
 64 blocks, 16 bytes/block

 To what block number does address 1200
map?

 Block address = 1200/16 = 75
 Block number = 75 modulo 64 = 11

Tag Index Offset
03491031

4 bits6 bits22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Block Size Considerations
 Larger blocks should reduce miss rate

 Due to spatial locality
 But in a fixed-sized cache

 Larger blocks fewer of them
 More competition increased miss rate

 Larger blocks pollution
 Larger miss penalty

 Can override benefit of reduced miss rate
 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Cache Misses
 On cache hit, CPU proceeds normally
 On cache miss

 Stall the CPU pipeline
 Fetch block from next level of hierarchy
 Instruction cache miss

 Restart instruction fetch
 Data cache miss

 Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Write-Through
 On data-write hit, could just update the block in

cache
 But then cache and memory would be inconsistent

 Write through: also update memory
 But makes writes take longer

 e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles

 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory
 CPU continues immediately

 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Write-Back
 Alternative: On data-write hit, just update

the block in cache
 Keep track of whether each block is dirty

 When a dirty block is replaced
 Write it back to memory
 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write Allocation
 What should happen on a write miss?
 Alternatives for write-through

 Allocate on miss: fetch the block
 Write around: don’t fetch the block

 Since programs often write a whole block before
reading it (e.g., initialization)

 For write-back
 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Example: Intrinsity FastMATH
 Embedded MIPS processor

 12-stage pipeline
 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache
 Each 16KB: 256 blocks × 16 words/block
 D-cache: write-through or write-back

 SPEC2000 miss rates
 I-cache: 0.4%
 D-cache: 11.4%
 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Main Memory Supporting Caches
 Use DRAMs for main memory

 Fixed width (e.g., 1 word)
 Connected by fixed-width clocked bus

 Bus clock is typically slower than CPU clock

 Example cache block read
 1 bus cycle for address transfer
 15 bus cycles per DRAM access
 1 bus cycle per data transfer

 For 4-word block, 1-word-wide DRAM
 Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
 Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

	Chapter 5
	Cache Memory
	Direct Mapped Cache
	Tags and Valid Bits
	Cache Example
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Address Subdivision
	Example: Larger Block Size
	Block Size Considerations
	Slide 14
	Cache Misses
	Write-Through
	Write-Back
	Write Allocation
	Example: Intrinsity FastMATH
	Slide 20
	Main Memory Supporting Caches
	Slide 22

