PUTER ORGANIZATION AND DE ¢+ N

The Hardware/Software Interface Edition

Chapter 3 - part 2

Arithmetic for Computers
- Multiplication (comment on)
- Division

Multiplication

Start with long-multiplication approach

multiplicand \ - Itl' —
. - 1000 e Shift left |-e—
multiplier ? 1001 ——
1000 v l
0000 N 4 Multiplier

@ 0 @ 0 64-bit ALU Shift right
1 @ 0 0 32 bits
product | T 1001000 Product Wﬁ A—|
Control test

Write
64 bits

Length of product is
the sum of operand
lengths

Chapter 3 — Arithmetic for Computers — 2

Multiplication Hardware

Start

A

Y B

Multiplier0 = 1 1. Test Multiplier0 = 0 Multiplicand
Multiplier0 Shift left [-e—
! 64 bits
1a. Add multiplicand to product and Y
place the result in Product register \/ e
| _ Multiplier
64-bit ALU Shift right
Y Y
|2. Shift the Multiplicand register Ieft1bit| 32 bits
Y
| 3. sniftthe Muttipter register right 1 it | Product Control test
Write
64 bits
No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

Initially O

% M(Chapter 3 — Arithmetic for Computers — 3

MORGAN KAUFMANN

Optimized Multiplier

Perform steps in parallel: add/shift

Multiplicand

_l 132 bits

\/

3o-bit ALU

_’..

Product Shift rlqht
Write

64 bits

One cycle per partial-product addition
That's ok, If frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 4

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions

mult rs, rt / multu rs, rt
64-bit product in HI/LO

mfhi rd / mflo rd
Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt (pseudo instruction)
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 5

Division

guotient
dividend \\
1001

1000)1001010

-1000

divisor

10

101

1010
-1000

— 10

remainder

n-bit operands yield n-bit
guotient and remainder

Check for O divisor

Long division approach

If divisor < dividend bits
1 bit in quotient, subtract

Otherwise

0 bit in quotient, bring down next
dividend bit

Restoring division

Do the subtract, and if remainder
goes < 0, add divisor back

Signed division
Divide using absolute values

Adjust sign of quotient and remainder
as required

Chapter 3 — Arithmetic for Computers — 6

Division Hardware

(Start '

-
-%

Y Initially divisor
1. Subtract the Divisor register from the .
Remainder register and place the In Ieft half
result in the Remainder register

_’.
Divisor
Remainder = 0 Remainder <0 ift ri <
Test Remainder Shift right |
64 bits
/
‘, ‘ l
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding \/
setting the new rightmost bit to 1 the Divisor register to the Remainder . Quotient
register and placing the sum in the 64-bit ALU Shift left
Remainder register. Also shift the -
Quotient register to the left, setting the v 32 bits
new least significant bit to 0
| Remainder Control
Write test
\ Y 64 bits

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Initially dividend

Yes: 33 repetitions

M<

Chapter 3 — Arithmetic for Computers — 7

MORGAN KAUFMANN

Division Hardware

Initially divisor
in left half

_b.

Divisor
Shift right |-e—

l64 bits
-

Quotient
64-bit ALU Shift left

32 bits
Remainder Cm

Write test

64 bits '\
N\

Initially dividend

Chapter 3 — Arithmetic for Computers — 8

Remainder =0

Test Remainder

Remainder <0

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

3. Shift the Divisor register right 1 bit |

1

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

(' pone)

(Start '

—
-

\

y

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder = 0

Y

Test Remainder

Remainder < 0

Y

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

Y

2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

A\

3. Shift the Divisor register right 1 bit

33rd repetition?

No: < 33 repetitions

Yes: 33 repetitions

Chapter 3 — Arithmetic for Computers — 12

Division Hardware

(Start '

-
-%

Y Initially divisor
1. Subtract the Divisor register from the .
Remainder register and place the In Ieft half
result in the Remainder register

_’.
Divisor
Remainder = 0 Remainder <0 ift ri <
Test Remainder Shift right |
64 bits
/
‘, ‘ l
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding \/
setting the new rightmost bit to 1 the Divisor register to the Remainder . Quotient
register and placing the sum in the 64-bit ALU Shift left
Remainder register. Also shift the -
Quotient register to the left, setting the v 32 bits
new least significant bit to 0
| Remainder Control
Write test
\ Y 64 bits

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

33rd repetition?

Initially dividend

Yes: 33 repetitions

M<

Chapter 3 — Arithmetic for Computers — 13

MORGAN KAUFMANN

Optimized Divider

Divisor

32 bits
l \

\/

32-bit ALU

~¢

T

' Shift right
Remainder Shift left
Write

64 bits

One cycle per partial-remainder subtraction

Looks a lot like a multiplier!
Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 14

Faster Division

Can’t use parallel hardware as in multiplier
Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step

Still require multiple steps

Chapter 3 — Arithmetic for Computers — 15

MIPS Division

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mfhi, mflo to access result

Chapter 3 — Arithmetic for Computers — 16

Next time: Floating point arithmetic

