Chapter 3 - part 1

Arithmetic for Computers

- Addition
- Subtraction
- Multiplication

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

Integer Addition

Example: 7 + 6

Overflow if result out of range
" Adding "+" and "-" operands, no overflow
" Adding two " + " operands
" Overflow if result sign is 1
" Adding two "-" operands

- Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: $7-6=7+(-6)$
+7: $00000000 \ldots 00000111$
$\frac{-6:}{+1:} \frac{11111111 \ldots 11111010}{00000000 \ldots 00000001}$
Overflow if result out of range
" Subtracting two "+" or two "-" operands, no overflow
" Subtracting "+" from "-" operand
" Overflow if result sign is 0

- Subtracting "-" from "-" operand
- Overflow if result sign is 1

Dealing with Overflow

Some languages (e.g., C) ignore overflow - Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler

Save PC in exception program counter (EPC) register
Jump to predefined handler address mfc 0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit and 16 -bit data

- Use 64-bit adder, with partitioned carry chain

Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

- SIMD (single-instruction, multiple-data)

Saturating operations

- On overflow, result is largest representable value
c.f. 2s-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication is vexation, Division is as bad; The rule of three doth puzzle me, And practice drives me mad.

Anonymous,
Elizabethan manuscript, 1570

Long hand multiplication of two binary numbers.

note that at each addition location a one bit full binary adder will work.

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition
" That's ok, if frequency of multiplications is low

Chapter 3 - Arithmetic for Computers - 11

Faster Multiplier

Uses multiple adders

" Cost/performance tradeoff

- Can be pipelined
- Several multiplication performed in parallel

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits
- Instructions
" mult rs, rt / multu rs, rt
- 64-bit product in HI/LO
- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
" Least-significant 32 bits of product $->$ rd

