PUTER ORGANIZATION AND DE ¢+ N

The Hardware/Software Interface Edition

Chapter 2 - part 5

Instructions: Language of the Computer
More on program creation
Arrays vs pointers

Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces
Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 2

Linking Object Modules

Produces an executable image
Merges segments
Resolve labels (determine their addresses)
Patch location-dependent and external refs
Could leave location dependencies for
fixing by a relocating loader
But with virtual memory, no need to do this

Program can be loaded into absolute location
In virtual memory space

Chapter 2 — Instructions: Language of the Computer — 3

Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes

Create virtual address space

Copy text and initialized data into memory
Or set page table entries so they can be faulted in

Set up arguments on stack
Initialize registers (including $sp, $fp, $gp)

Jump to startup routine
Copies arguments to $a0, ... and calls main
When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 4

Dynamic Linking

Only link/load library procedure when it is

callec
Requires procedure code to be relocatable

Avoids image bloat caused by static linking of
all (transitively) referenced libraries

Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 5

Lazy Linkage

Text Text
o [=
=M A
=) v e
. . Data Data
Indirection table
Stub: Loads routine 1D, Text|
Jump to linker/loader N
Text
Linkerlloader COde ~| Dynamic linker/loader
Remap DLL routine
.. [eHh
. \‘Data/Text Text
Dynamlca”y DLL routine ~| DLL routine
mapped code i e i e
a. First call to DLL routine b. Subsequent calls to DLL routine

Chapter 2 — Instructions: Language of the Computer — 6

Starting Java Applications

Simple portable
instruction set for

w the JVM

Class files (Java bytecodes) Java library routines (machine language)

Java program

Compiles
bytecodes of
“hot” methods
Into native
code for host
machine

JustIn Time Java Virtual Machine
compiler
Interprets

Compiled Java methods (machine language) bytecodes

Chapter 2 — Instructions: Language of the Computer — 7

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)
vold swap(int v[], 1int k)

{

int temp;
temp = v[K];
vik] = v[k+1];
vik+1l] = temp;
}
vin $a0, k in $al, temp in $t0

Chapter 2 — Instructions: Language of the Computer — 9

The Procedure Swap

swap: sll $t1, %$al, 2 # $t1 = k * 4
add $tl, %$a0, $tl # $tl1 = v+(k*4)
(address of v[Kk])
lw $t0, 0(%$tl) # $t0 (temp) = v[Kk]
lw $t2, 4(%$tl) # $t2 = v[k+1]
sw $t2, 0($tl) # v[k] = $t2 (v[k+1])
sw $t0, 4($tl) # v[ik+l] = $t0 (temp)
jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 10

The Sort Procedure in C

Non-leaf (calls swap)
vold sort (int v[], 1nt n)

{
int 1, J;
for (1 =0; i <n; 1+=1) {
for (3 =1 - 1;
J'>—0&& vijl > v[j + 1];
] 1) {
swap(v),
}
}
}

vin $a0, kin $al, iin $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 11

The Procedure Body

Move
params

Outer loop

Inner loop

Pass
params
& call

Inner loop

move $s2, $%$a0 # save $a0 into $s2
move $s3, $al # save $al into $s3
move $s0, $zero #1=0
forltst: slt $tO, $s0O, $s3 # $t0 = 0 1if $sO0 = $s3 (1 = n)
beq $t0, $zero, exitl # go to exitl if $sO = $s3 (i = n)
addi $s1, $s0, -1 #j=1-1
for2tst: slti $tO, $s1, O # $t0 =1 if $s1 < 0 (j < O)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
sll $t1, $s1, 2 # $tl =3 * 4
add $t2, $s2, $tl # $t2 =v + (j * 4)
lw $t3, 0(%$t2) # $t3 = v[jl
lw $t4, 4($t2) # $t4 = v[j + 1]
slt $t0, $t4, $t3 # $t0 = 0 if $t4 = $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 = $t3
move %$al, $S52 # ISt param of swap 1S vV (old %a0)
move $al, $sl # 2nd param of swap 1is]
jal swap # call swap procedure
addi $51, %51, =1 # i —=1
] for2tst # jump to test of inner loop
exitZ: addl $50, $50, 1 # 1 =1
] forltst # jump to test of outer loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 12

The Full Procedure

sort:

addi $sp, $sp, —20
sw $ra, 16($sp)
sw $s3,12(%sp)
sw $s2, 8(%$sp)
sw $s1, 4($sp)
sw $s0, 0($sp)

make room on stack for 5 registers
save $ra on stack
save $s3 on stack
save $s2 on stack
save $sl1 on stack
save $s0 on stack

H|H O H HH R

procedure body

exitl: lw $s0, 0($sp)

lw $s1, 4(%$sp)
lw $s2, 8($sp)
lw $s3,12(%$sp)
lw $ra,16($sp)
addi $sp, $sp, 20

restore $s0 from stack
restore $s1 from stack
restore $s2 from stack
restore $s3 from stack
restore $ra from stack
restore stack pointer

jr $ra

H(H O HH H R

return to calling routine

Chapter 2 — Instructions: Language of the Computer — 13

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

3 O Relative Performance 140000 Hnstruction-count
25 120000
2 100000
80000
15
60000
1 40000
0.5 20000
0 T T T 0 T T T
none (o)} 02 03 none (02 } 02 03
180000 O-Clock-Cyeles 2 O.CPl
160000
140000 15
120000
100000 1
80000
60000 —
40000 I 0.5
20000]
0 T T T 0 T T T
none 0ol 02 03 none (o)1 02 03

Chapter 2 — Instructions: Language of the Computer — 14

Effect of Language and Algorithm

2.5

15

0.5

——1

2.5

C/ none

c/0o1 C/ 02 C/ 03 Java/int

0 Quich Relative Perf

Java/)IT

1.5

0.5

]

3000
2500
2000
1500
1000

500

C/ none

c/0o1 C/ 02 C/ 03 Java/int

O-Quicksort vs. Bubblesort Speedup

Java/)IT

]

C/ none

C/ 01 C/ 02 C/ 03 Java/int

Chapter 2 — Instructions: Language of the Computer — 15

Java/JIT

Arrays vs. Pointers

Array indexing involves
Multiplying index by element size
Adding to array base address

Pointers correspond directly to memory
addresses

Can avoid indexing complexity

Chapter 2 — Instructions: Language of the Computer — 16

Lessons Learnt

Instruction count and CPI are not good
performance indicators in isolation

Compiler optimizations are sensitive to the
algorithm

Java/JIT compiled code is significantly
faster than JVM Interpreted
Comparable to optimized C in some cases

Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 17

Example: Clearing and Array

clearl(int array[], int size) {

clear2(int *array, int size) {

int 1i; int *p;
for (1 =0; i < size; i += 1) for (p = &array[0]; p < &array[size];
array[i] = 0; p=p+1)
} *p = 0;
}
move $t0,%$zero #1 =0 move $t0,
loopl: sll $t1,$t0,2 # $tl =1 * 4 sll $t1, ,2 # $tl = * 4
add $t2,%$a0,%$t1 # $t2 = add $t2,%a0,$tl # $t2 =

&array[i]
array[i] = 0
#1=1+1

$t3 =

(1 < size)

bne $t3,$zero,loopl # if (..)
goto loopl

sw $zero, 0(%$t2)
addi $t0,$t0,1
slt $t3,$t0, $al

&array|]
sw $zero, 0O) # =0
addi $t0,s$to, #
slt $t3,$t0, # $t3 =

#()
bne $t3,$zero, loop2 # if (..)

goto loop2

Chapter 2 — Instructions: Language of the Computer — 18

Comparison of Array vs. Ptr

Multiply “strength reduced” to shift
Array version requires shift to be inside
loop
Part of index calculation for incremented |
c.f. Incrementing pointer

Compiler can achieve same effect as
manual use of pointers

Induction variable elimination

Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 19

ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-hbit 31 x 32-bit
Input/output Memory Memory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 20

Compare and Branch in ARM

Uses condition codes for result of an
arithmetic/logical instruction

Negative, zero, carry, overflow

Compare instructions to set condition codes
without keeping the result

Each instruction can be conditional
Top 4 bits of instruction word: condition value
Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 21

nstruction Encoding

Register-register

Data transfer

Branch

Jump/Call

ARM

MIPS

ARM

MIPS

ARM

MIPS

ARM

MIPS

31 28 27 20 19 16 15 12 11 4 3 0
| opx* | op® Rs1* ‘ Rd"* Opx® | Rs2' |
31 26 25 21 20 16 15 11 10 6 5 0
op® Rs1® Rs2° Rd® Const® Opx®
31 28 27 20 19 16 15 12 11 0
Opx* op® Rs1* | Rd* ‘ Const'™
31 26 25 21 20 16 15 0
op® Rs1® Rd® Const'®
31 28 27 24 23 0
Opx* op* Const?
31 26 25 21 20 16 15 0
op® Rs1® Opx°/Rs2° Const'®
31 28 27 24 23 0
Opx* op* Const®
31 26 25 0
op® Const®™®

| O Opcode [0 Register [Constant |

Chapter 2 — Instructions: Language of the Computer — 22

Pitfalls

Sequential words are not at sequential
addresses

Increment by 4, not by 1!

Keeping a pointer to an automatic variable
after procedure returns
e.g., passing pointer back via an argument
Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 23

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller Is faster
Make the common case fast
Good design demands good compromises

Layers of software/hardware
Compiler, assembler, hardware

MIPS: typical of RISC ISAs
c.f. x86

Chapter 2 — Instructions: Language of the Computer — 24

