
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 5

Instructions: Language of the Computer

 More on program creation

 Arrays vs pointers

Chapter 2 — Instructions: Language of the Computer — 2

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 3

Linking Object Modules
 Produces an executable image

1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs
 Could leave location dependencies for

fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 4

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine
 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 5

Dynamic Linking
 Only link/load library procedure when it is

called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of

all (transitively) referenced libraries
 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 6

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Chapter 2 — Instructions: Language of the Computer — 7

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

Chapter 2 — Instructions: Language of the Computer — 9

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§2.13 A
 C

 S
ort E

xam
p le to P

ut It A
ll T

ogeth er

Chapter 2 — Instructions: Language of the Computer — 10

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4
 add $t1, $a0, $t1 # $t1 = v+(k*4)
 # (address of v[k])
 lw $t0, 0($t1) # $t0 (temp) = v[k]
 lw $t2, 4($t1) # $t2 = v[k+1]
 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])
 sw $t0, 4($t1) # v[k+1] = $t0 (temp)
 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 11

The Sort Procedure in C
 Non-leaf (calls swap)

void sort (int v[], int n)
{
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
}

 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 12

The Procedure Body
 move $s2, $a0 # save $a0 into $s2
 move $s3, $a1 # save $a1 into $s3
 move $s0, $zero # i = 0
for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
 addi $s1, $s0, –1 # j = i – 1
for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2 # $t1 = j * 4
 add $t2, $s2, $t1 # $t2 = v + (j * 4)
 lw $t3, 0($t2) # $t3 = v[j]
 lw $t4, 4($t2) # $t4 = v[j + 1]
 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
 move $a0, $s2 # 1st param of swap is v (old $a0)
 move $a1, $s1 # 2nd param of swap is j
 jal swap # call swap procedure
 addi $s1, $s1, –1 # j –= 1
 j for2tst # jump to test of inner loop
exit2: addi $s0, $s0, 1 # i += 1
 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 13

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp) # save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp) # save $s2 on stack
 sw $s1, 4($sp) # save $s1 on stack
 sw $s0, 0($sp) # save $s0 on stack
 … # procedure body
 …
 exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp) # restore $s1 from stack
 lw $s2, 8($sp) # restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer
 jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 14

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 15

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Quicksort vs. Bubblesort Speedup

Chapter 2 — Instructions: Language of the Computer — 16

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size
 Adding to array base address

 Pointers correspond directly to memory
addresses
 Can avoid indexing complexity

§2.14 A
rrays v ersus P

ointers

Chapter 2 — Instructions: Language of the Computer — 17

Lessons Learnt
 Instruction count and CPI are not good

performance indicators in isolation
 Compiler optimizations are sensitive to the

algorithm
 Java/JIT compiled code is significantly

faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 18

Example: Clearing and Array

clear1(int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

clear2(int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size];
 p = p + 1)
 *p = 0;
}

 move $t0,$zero # i = 0
loop1: sll $t1,$t0,2 # $t1 = i * 4
 add $t2,$a0,$t1 # $t2 =
 # &array[i]
 sw $zero, 0($t2) # array[i] = 0
 addi $t0,$t0,1 # i = i + 1
 slt $t3,$t0,$a1 # $t3 =
 # (i < size)
 bne $t3,$zero,loop1 # if (…)
 # goto loop1

 move $t0,$a0 # p = & array[0]
 sll $t1,$a1,2 # $t1 = size * 4
 add $t2,$a0,$t1 # $t2 =
 # &array[size]
loop2: sw $zero,0($t0) # Memory[p] = 0
 addi $t0,$t0,4 # p = p + 4
 slt $t3,$t0,$t2 # $t3 =
 #(p<&array[size])
 bne $t3,$zero,loop2 # if (…)
 # goto loop2

Chapter 2 — Instructions: Language of the Computer — 19

Comparison of Array vs. Ptr
 Multiply “strength reduced” to shift
 Array version requires shift to be inside

loop
 Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination
 Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 20

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tu ff: A
R

M
v7 (32- bit) Ins truction s

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

Chapter 2 — Instructions: Language of the Computer — 21

Compare and Branch in ARM
 Uses condition codes for result of an

arithmetic/logical instruction
 Negative, zero, carry, overflow
 Compare instructions to set condition codes

without keeping the result
 Each instruction can be conditional

 Top 4 bits of instruction word: condition value
 Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 22

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 23

Pitfalls
 Sequential words are not at sequential

addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 24

Concluding Remarks
 Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.22 C
onclud ing R

em
arks

