
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 5

Instructions: Language of the Computer

 More on program creation

 Arrays vs pointers

Chapter 2 — Instructions: Language of the Computer — 2

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 Symbol table: global definitions and external refs
 Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 3

Linking Object Modules
 Produces an executable image

1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs
 Could leave location dependencies for

fixing by a relocating loader
 But with virtual memory, no need to do this
 Program can be loaded into absolute location

in virtual memory space

Chapter 2 — Instructions: Language of the Computer — 4

Loading a Program
 Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine
 Copies arguments to $a0, … and calls main
 When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 5

Dynamic Linking
 Only link/load library procedure when it is

called
 Requires procedure code to be relocatable
 Avoids image bloat caused by static linking of

all (transitively) referenced libraries
 Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 6

Lazy Linkage

Indirection table

Stub: Loads routine ID,
Jump to linker/loader

Linker/loader code

Dynamically
mapped code

Chapter 2 — Instructions: Language of the Computer — 7

Starting Java Applications

Simple portable
instruction set for

the JVM

Interprets
bytecodes

Compiles
bytecodes of
“hot” methods

into native
code for host

machine

Chapter 2 — Instructions: Language of the Computer — 9

C Sort Example
 Illustrates use of assembly instructions

for a C bubble sort function
 Swap procedure (leaf)

void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

 v in $a0, k in $a1, temp in $t0

§2.13 A
 C

 S
ort E

xam
p le to P

ut It A
ll T

ogeth er

Chapter 2 — Instructions: Language of the Computer — 10

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1 = k * 4
 add $t1, $a0, $t1 # $t1 = v+(k*4)
 # (address of v[k])
 lw $t0, 0($t1) # $t0 (temp) = v[k]
 lw $t2, 4($t1) # $t2 = v[k+1]
 sw $t2, 0($t1) # v[k] = $t2 (v[k+1])
 sw $t0, 4($t1) # v[k+1] = $t0 (temp)
 jr $ra # return to calling routine

Chapter 2 — Instructions: Language of the Computer — 11

The Sort Procedure in C
 Non-leaf (calls swap)

void sort (int v[], int n)
{
 int i, j;
 for (i = 0; i < n; i += 1) {
 for (j = i – 1;
 j >= 0 && v[j] > v[j + 1];
 j -= 1) {
 swap(v,j);
 }
 }
}

 v in $a0, k in $a1, i in $s0, j in $s1

Chapter 2 — Instructions: Language of the Computer — 12

The Procedure Body
 move $s2, $a0 # save $a0 into $s2
 move $s3, $a1 # save $a1 into $s3
 move $s0, $zero # i = 0
for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
 beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
 addi $s1, $s0, –1 # j = i – 1
for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2 # $t1 = j * 4
 add $t2, $s2, $t1 # $t2 = v + (j * 4)
 lw $t3, 0($t2) # $t3 = v[j]
 lw $t4, 4($t2) # $t4 = v[j + 1]
 slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
 beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
 move $a0, $s2 # 1st param of swap is v (old $a0)
 move $a1, $s1 # 2nd param of swap is j
 jal swap # call swap procedure
 addi $s1, $s1, –1 # j –= 1
 j for2tst # jump to test of inner loop
exit2: addi $s0, $s0, 1 # i += 1
 j for1tst # jump to test of outer loop

Pass
params
& call

Move
params

Inner loop

Outer loop

Inner loop

Outer loop

Chapter 2 — Instructions: Language of the Computer — 13

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp) # save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp) # save $s2 on stack
 sw $s1, 4($sp) # save $s1 on stack
 sw $s0, 0($sp) # save $s0 on stack
 … # procedure body
 …
 exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp) # restore $s1 from stack
 lw $s2, 8($sp) # restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer
 jr $ra # return to calling routine

The Full Procedure

Chapter 2 — Instructions: Language of the Computer — 14

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

Chapter 2 — Instructions: Language of the Computer — 15

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/ none C/ O1 C/ O2 C/ O3 Java/ int J ava/ J IT

Quicksort vs. Bubblesort Speedup

Chapter 2 — Instructions: Language of the Computer — 16

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size
 Adding to array base address

 Pointers correspond directly to memory
addresses
 Can avoid indexing complexity

§2.14 A
rrays v ersus P

ointers

Chapter 2 — Instructions: Language of the Computer — 17

Lessons Learnt
 Instruction count and CPI are not good

performance indicators in isolation
 Compiler optimizations are sensitive to the

algorithm
 Java/JIT compiled code is significantly

faster than JVM interpreted
 Comparable to optimized C in some cases

 Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 18

Example: Clearing and Array

clear1(int array[], int size) {
 int i;
 for (i = 0; i < size; i += 1)
 array[i] = 0;
}

clear2(int *array, int size) {
 int *p;
 for (p = &array[0]; p < &array[size];
 p = p + 1)
 *p = 0;
}

 move $t0,$zero # i = 0
loop1: sll $t1,$t0,2 # $t1 = i * 4
 add $t2,$a0,$t1 # $t2 =
 # &array[i]
 sw $zero, 0($t2) # array[i] = 0
 addi $t0,$t0,1 # i = i + 1
 slt $t3,$t0,$a1 # $t3 =
 # (i < size)
 bne $t3,$zero,loop1 # if (…)
 # goto loop1

 move $t0,$a0 # p = & array[0]
 sll $t1,$a1,2 # $t1 = size * 4
 add $t2,$a0,$t1 # $t2 =
 # &array[size]
loop2: sw $zero,0($t0) # Memory[p] = 0
 addi $t0,$t0,4 # p = p + 4
 slt $t3,$t0,$t2 # $t3 =
 #(p<&array[size])
 bne $t3,$zero,loop2 # if (…)
 # goto loop2

Chapter 2 — Instructions: Language of the Computer — 19

Comparison of Array vs. Ptr
 Multiply “strength reduced” to shift
 Array version requires shift to be inside

loop
 Part of index calculation for incremented i
 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers
 Induction variable elimination
 Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 20

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tu ff: A
R

M
v7 (32- bit) Ins truction s

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

Chapter 2 — Instructions: Language of the Computer — 21

Compare and Branch in ARM
 Uses condition codes for result of an

arithmetic/logical instruction
 Negative, zero, carry, overflow
 Compare instructions to set condition codes

without keeping the result
 Each instruction can be conditional

 Top 4 bits of instruction word: condition value
 Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 22

Instruction Encoding

Chapter 2 — Instructions: Language of the Computer — 23

Pitfalls
 Sequential words are not at sequential

addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument
 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 24

Concluding Remarks
 Design principles

1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.22 C
onclud ing R

em
arks

