
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 4

Instructions: Language of the Computer

 Addressing modes

 Synchronization

 Program creation

Chapter 2 — Instructions: Language of the Computer — 2

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 3

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 4

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant

lui rt, constant
 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

d dressin g for 3 2-B
it Im

m
ediat es and A

ddres ses

Chapter 2 — Instructions: Language of the Computer — 5

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 6

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 7

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 8

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

beq $s0,$s1, L1
↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 9

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 10

Synchronization
 Two processors sharing an area of memory

 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation
 Atomic → No other access to the location allowed

between the read and write
 Could be a single instruction

 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

§2.11 P
arallelis m

 and Instruc tions: S
ynchro nization

Chapter 2 — Instructions: Language of the Computer — 11

Synchronization in MIPS
 Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value
 ll $t1,0($s1) ;load linked
 sc $t0,0($s1) ;store conditional
 beq $t0,$zero,try ;branch store fails
 add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 12

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Chapter 2 — Instructions: Language of the Computer — 13

Assembler Pseudoinstructions

 Most assembler instructions represent
machine instructions one-to-one

 Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

 $at (register 1): assembler temporary

