
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 4

Instructions: Language of the Computer

 Addressing modes

 Synchronization

 Program creation

Chapter 2 — Instructions: Language of the Computer — 2

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 3

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 4

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant

lui rt, constant
 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

d dressin g for 3 2-B
it Im

m
ediat es and A

ddres ses

Chapter 2 — Instructions: Language of the Computer — 5

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 Most branch targets are near branch

 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 6

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 7

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

 add $t1, $t1, $s6 80004 0 9 22 9 0 32

 lw $t0, 0($t1) 80008 35 9 8 0

 bne $t0, $s5, Exit 80012 5 8 21 2

 addi $s3, $s3, 1 80016 8 19 19 1

 j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 8

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

beq $s0,$s1, L1
↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 9

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 10

Synchronization
 Two processors sharing an area of memory

 P1 writes, then P2 reads
 Data race if P1 and P2 don’t synchronize

 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation
 Atomic → No other access to the location allowed

between the read and write
 Could be a single instruction

 E.g., atomic swap of register ↔ memory
 Or an atomic pair of instructions

§2.11 P
arallelis m

 and Instruc tions: S
ynchro nization

Chapter 2 — Instructions: Language of the Computer — 11

Synchronization in MIPS
 Load linked: ll rt, offset(rs)
 Store conditional: sc rt, offset(rs)

 Succeeds if location not changed since the ll
 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value
 ll $t1,0($s1) ;load linked
 sc $t0,0($s1) ;store conditional
 beq $t0,$zero,try ;branch store fails
 add $s4,$zero,$t1 ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 12

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslat ing and S

tartin g a P
ro gram

Chapter 2 — Instructions: Language of the Computer — 13

Assembler Pseudoinstructions

 Most assembler instructions represent
machine instructions one-to-one

 Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1
bne $at, $zero, L

 $at (register 1): assembler temporary

