PUTER ORGANIZATION AND DE ¢+ N

The Hardware/Software Interface Edition

Chapter 2 - part 4

Instructions: Language of the Computer
Addressing modes
Synchronization
Program creation

Register Usage

$a0 — $a3: arguments (reg’'s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 2

Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store

String processing Is a common case
b rt, offset(rs) Lh rt, offset(rs)

Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)
Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 3

32-bit Constants

Most constants are small
16-bit iImmediate i1s sufficient

For the occasional 32-bit constant
lul rt, constant

Coplies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to O

lhi $s0, 61 0000 0000 0111 1101/ 0000 0000 OOO0 0000

ori $s0, $sO, 2304 [0000 00000111 11010000 1001 0000 0000

Chapter 2 — Instructions: Language of the Computer — 4

Branch Addressing

Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset x 4
PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 5

Jump Addressing

Jump (3 and jal) targets could be
anywhere In text segment

Encode full address In instruction

op address
6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC;; ,5 : (address x 4)

Chapter 2 — Instructions: Language of the Computer — 6

Target Addressing Example

Loop code from earlier example
Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 | O 0 19 9 4 0
add $tl, $tl, $s6 80004 |- 0 9 22 9 0 32
lw $t0, 0(%$tl) 80008 | 35 9 8 o)
bne $t0, $s5, Exit 80012 | 5 8. | 21 2
addi $s3, $s3, 1 80016 | 8 | 19 | 15 1
] Loop 80020 | 2 | 20000

Exit: .. 80024

Chapter 2 — Instructions: Language of the Computer — 7

Branching Far Away

If branch target is too far to encode with
16-bit offset, assembler rewrites the code

Example
beq $s50,%$s1, L1
!
bne $s0,%s1, L2
j L1
L2: ..

Chapter 2 — Instructions: Language of the Computer — 8

Addressing Mode Summary

1. Immediate addressing

op|rs | rt Immediate

2. Register addressing

op|rs | rt|rd|...][funct Registers

| Register

3. Base addressing

op|rs|rt Address Memory
Register [Byte | Ha;l_fw,ord| Word
|
4. PC-relative addressing
op|rs |t Address Memory
PC Word

5. Pseudodirect addressing

op Address Memory

PC Word

?

Chapter 2 — Instructions: Language of the Computer — 9

Synchronization

Two processors sharing an area of memory
P1 writes, then P2 reads

Data race if P1 and P2 don’t synchronize
Result depends of order of accesses

Hardware support required
Atomic read/write memory operation

Atomic — No other access to the location allowed
between the read and write

Could be a single instruction
E.g., atomic swap of register -~ memory
Or an atomic pair of instructions

Chapter 2 — Instructions: Language of the Computer — 10

Synchronization in MIPS

Load linked: Ll rt, offset(rs)

Store conditional: sc rt, offset(rs)

Succeeds if location not changed since the 11
Returns 1 in rt

Fails if location is changed
Returns O in rt
Example: atomic swap (to test/set lock variable)

try: add $t0,$zero,$s4 ;copy exchange value
L $t1,0(%$s1) ; load linked
sc $t0,0(%s1) ;store conditional
beq $t0,%$zero,try ;branch store fails
add $s4,%zero,$%$tl ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 11

Translation and Startup

C program

w Many compilers produce
object modules directly
Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

(_Linker > Static linking

Executable: Machine language program

Memory

Chapter 2 — Instructions: Language of the Computer — 12

Assembler Pseudoinstructions

Most assembler instructions represent
machine instructions one-to-one

Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $tl — add $t0, $zero, $tl

blt $t0, $t1, L - slt $at, $tO, $t1l
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instructions: Language of the Computer — 13

