PUTER ORGANIZATION AND DE ¢+ N

The Hardware/Software Interface Edition

Chapter 2 - part 3

Instructions: Language of the Computer

Procedure Calling

Steps required
Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations
Place result in register for caller
Return to place of call

Chapter 2 — Instructions: Language of the Computer — 2

Register Usage

$a0 — $a3: arguments (reg’'s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 3

Procedure Call Instructions

Procedure call: jump and link

jal ProcedurelLabel
Address of following instruction put in $ra
Jumps to target address

Procedure return: jump register
jr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 4

Leaf Procedure Example

C code:
int leaf example (int g, h, 1, J)
{ int T;

f=1(g+h) - (1+3]);

return f:

}
Arguments g, ..., jin $a0, ..., $a3

fin $s0 (hence, need to save $s0 on stack)
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 5

Leaf Procedure Example

MIPS code:

leaf example:

addi $sp, $sp, -4
SwW $SO, 0($Sp) Save $s0 on stack
add $t0, $a0, $al
add $tl, %$a2, %$a3 Procedure body
sub $s0, $t0, $tl
add $v0O, $s0, $zero | Result
Lw $SO' @($Sp) Restore $s0
addi $sp, $sp, 4

j I $ra Return

Chapter 2 — Instructions: Language of the Computer — 6

Non-Leaf Procedures

Procedures that call other procedures

For nested call, caller needs to save on the
stack:
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 7

Non-Leaf Procedure Example

C code:
int fact (int n)

{

if (n < 1) return f;
else return n * fact(n - 1):

}

Argument n in $a0
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 8

Non-Leaf Procedure Example

MIPS code:

fact:
addi $sp, $sp, -8
SW $ra, 4(%$sp)
sw $a0, 0($sp)
slti $tO, $a0, 1
beqg $t0, $zero, L1

adjust stack for 2 items
save return address

save argument

test for n <1

H*H B H

addi $v0O, $zero, 1 # 1f so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4(%$sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0O, $a0, $vO # multiply to get result
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 9

Local Data on the Stack

High address

bfp— $fp—

$sp— $sp—
$fp—

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a b C.

Local data allocated by callee
e.g., C automatic variables

Procedure frame (activation record)
Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 10

Memory Layout

Text: program code
Static data: global

Vanables $sp— /fff fffcyey StTCk
e.g., static variables in C,
constant arrays and strings Dynanfic »
$gp Inltla“zed to addreSS $gp— 1000 8000,y Static data
allowing zoffsets into this 1000 0000, —
segment pc— 0040 0000,,, - y
Dynamic data: heap :
E.g., malloc in C, new in
Java

Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 11

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 12

Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store

String processing Is a common case
b rt, offset(rs) Lh rt, offset(rs)

Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)
Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 13

This slide set by Patterson & Hennessy from their Computer Organization text, Morgan Kaufmann pub.

