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Procedure Calling

Steps required
Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations
Place result in register for caller
Return to place of call
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Register Usage

$a0 — $a3: arguments (reg’'s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)
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Procedure Call Instructions

Procedure call: jump and link

jal ProcedurelLabel
Address of following instruction put in $ra
Jumps to target address

Procedure return: jump register
jr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements
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Leaf Procedure Example

C code:
int leaf example (int g, h, 1, J)
{ int T;

f=1(g+h) - (1+3]);

return f:

}
Arguments g, ..., jin $a0, ..., $a3

fin $s0 (hence, need to save $s0 on stack)
Result in $v0
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Leaf Procedure Example

MIPS code:

leaf example:

addi $sp, $sp, -4
SwW $SO, 0($Sp) Save $s0 on stack
add $t0, $a0, $al
add $tl, %$a2, %$a3 Procedure body
sub $s0, $t0, $tl
add $v0O, $s0, $zero | Result
Lw $SO' @($Sp) Restore $s0
addi $sp, $sp, 4

j I $ra Return
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Non-Leaf Procedures

Procedures that call other procedures

For nested call, caller needs to save on the
stack:
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call
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Non-Leaf Procedure Example

C code:
int fact (int n)

{

if (n < 1) return f;
else return n * fact(n - 1):

}

Argument n in $a0
Result in $v0
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Non-Leaf Procedure Example

MIPS code:

fact:
addi $sp, $sp, -8
SW $ra, 4(%$sp)
sw $a0, 0($sp)
slti $tO, $a0, 1
beqg $t0, $zero, L1

adjust stack for 2 items
save return address

save argument

test for n <1

H*H B H

addi $v0O, $zero, 1 # 1f so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4(%$sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0O, $a0, $vO # multiply to get result
jr $ra # and return
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Local Data on the Stack

High address

bfp— $fp—

$sp— $sp—
$fp—

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a b C.

Local data allocated by callee
e.g., C automatic variables

Procedure frame (activation record)
Used by some compilers to manage stack storage
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Memory Layout

Text: program code
Static data: global

Vanables $sp— /fff fffcyey StTCk
e.g., static variables in C,
constant arrays and strings Dynanfic »
$gp Inltla“zed to addreSS $gp— 1000 8000,y Static data
allowing zoffsets into this 1000 0000, —
segment pc— 0040 0000,,, - y
Dynamic data: heap :
E.g., malloc in C, new in
Java

Stack: automatic storage
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Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings
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Byte/Halfword Operations

Could use bitwise operations

MIPS byte/halfword load/store

String processing Is a common case
b rt, offset(rs) Lh rt, offset(rs)

Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)
Store just rightmost byte/halfword
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This slide set by Patterson & Hennessy from their Computer Organization text, Morgan Kaufmann pub.



