
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 3

Instructions: Language of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
u pportin g P

roce dures i n C
om

p uter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 3

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 4

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel
 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
jr $ra
 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 5

Leaf Procedure Example
 C code:
int leaf_example (int g, h, i, j)
{ int f;
 f = (g + h) - (i + j);
 return f;
}
 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 6

Leaf Procedure Example
 MIPS code:
leaf_example:
 addi $sp, $sp, -4
 sw $s0, 0($sp)
 add $t0, $a0, $a1
 add $t1, $a2, $a3
 sub $s0, $t0, $t1
 add $v0, $s0, $zero
 lw $s0, 0($sp)
 addi $sp, $sp, 4
 jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 7

Non-Leaf Procedures
 Procedures that call other procedures
 For nested call, caller needs to save on the

stack:
 Its return address
 Any arguments and temporaries needed after

the call
 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 8

Non-Leaf Procedure Example
 C code:
int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n - 1);
}
 Argument n in $a0
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 9

Non-Leaf Procedure Example
 MIPS code:

fact:
 addi $sp, $sp, -8 # adjust stack for 2 items
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save argument
 slti $t0, $a0, 1 # test for n < 1
 beq $t0, $zero, L1
 addi $v0, $zero, 1 # if so, result is 1
 addi $sp, $sp, 8 # pop 2 items from stack
 jr $ra # and return
L1: addi $a0, $a0, -1 # else decrement n
 jal fact # recursive call
 lw $a0, 0($sp) # restore original n
 lw $ra, 4($sp) # and return address
 addi $sp, $sp, 8 # pop 2 items from stack
 mul $v0, $a0, $v0 # multiply to get result
 jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 10

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 11

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 $gp initialized to address

allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java
 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 12

Character Data
 Byte-encoded character sets

 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

§2.9 C
o m

m
uni cating w

ith P
eo ple

Chapter 2 — Instructions: Language of the Computer — 13

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

This slide set by Patterson & Hennessy from their Computer Organization text, Morgan Kaufmann pub.

