
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 2

Instructions: Language of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 3

Representing Instructions
 Instructions are encoded in binary

 Called machine code
 MIPS instructions

 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
e presen ting Ins truction s in the C

om
p uter

Chapter 2 — Instructions: Language of the Computer — 4

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)
 rs: first source register number
 rt: second source register number
 rd: destination register number
 shamt: shift amount (00000 for now)
 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 5

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 6

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 7

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 8

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Lo gical O
peration s

Chapter 2 — Instructions: Language of the Computer — 9

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 10

AND Operations
 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 11

OR Operations
 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 12

NOT Operations
 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 13

Conditional Operations
 Branch to a labeled instruction if a

condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Ins truction s for M
aking D

ecision s

Chapter 2 — Instructions: Language of the Computer — 14

Compiling If Statements
 C code:

if (i==j) f = g+h;
else f = g-h;
 f, g, … in $s0, $s1, …

 Compiled MIPS code:

 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 15

Compiling Loop Statements
 C code:

while (save[i] == k) i += 1;
 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 16

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 17

More Conditional Operations
 Set result to 1 if a condition is true

 Otherwise, set to 0
 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;
 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;
 Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 18

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 19

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1
 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 20

Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
u pportin g P

roce dures i n C
om

p uter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 21

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 22

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel
 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
jr $ra
 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

This slide set by Patterson & Hennessy from their Computer Organization text, Morgan Kaufmann pub.

