
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2 – part 2

Instructions: Language of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 3

Representing Instructions
 Instructions are encoded in binary

 Called machine code
 MIPS instructions

 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
e presen ting Ins truction s in the C

om
p uter

Chapter 2 — Instructions: Language of the Computer — 4

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)
 rs: first source register number
 rt: second source register number
 rd: destination register number
 shamt: shift amount (00000 for now)
 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 5

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 6

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination or source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands good
compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 7

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

Chapter 2 — Instructions: Language of the Computer — 8

Logical Operations
 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Lo gical O
peration s

Chapter 2 — Instructions: Language of the Computer — 9

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 10

AND Operations
 Useful to mask bits in a word

 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 11

OR Operations
 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 12

NOT Operations
 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0
 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 13

Conditional Operations
 Branch to a labeled instruction if a

condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Ins truction s for M
aking D

ecision s

Chapter 2 — Instructions: Language of the Computer — 14

Compiling If Statements
 C code:

if (i==j) f = g+h;
else f = g-h;
 f, g, … in $s0, $s1, …

 Compiled MIPS code:

 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 15

Compiling Loop Statements
 C code:

while (save[i] == k) i += 1;
 i in $s3, k in $s5, address of save in $s6

 Compiled MIPS code:

Loop: sll $t1, $s3, 2
 add $t1, $t1, $s6
 lw $t0, 0($t1)
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

Chapter 2 — Instructions: Language of the Computer — 16

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 17

More Conditional Operations
 Set result to 1 if a condition is true

 Otherwise, set to 0
 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;
 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;
 Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 18

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 19

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111
 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1
 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 20

Procedure Calling
 Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§2.8 S
u pportin g P

roce dures i n C
om

p uter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 21

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 22

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel
 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
jr $ra
 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

This slide set by Patterson & Hennessy from their Computer Organization text, Morgan Kaufmann pub.

