PUTER ORGANIZATION AND DE ¢+ N

The Hardware/Software Interface Edition

Chapter 2

Instructions: Language of the Computer

Instruction Set

The repertoire of instructions of a
computer

Different computers have different
Instruction sets

But with many aspects in common

Early computers had very simple
Instruction sets

Simplified implementation

Many modern computers also have simple
Instruction sets

Chapter 2 — Instructions: Language of the Computer — 2

The MIPS Instruction Set

Used as the example throughout the book

Stanford MIPS commercialized by MIPS
Technologies ()

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Similar ISAs have a large share of embedded
core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Chapter 2 — Instructions: Language of the Computer — 3

http://www.mips.com/

Arithmetic Operations

Add and subtract, three operands

Two sources and one destination
add a, b, ¢ # a gets b + C
All arithmetic operations have this form
Design Principle 1: Simplicity favors
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Example

C code:
f=(+h) - (1+7);
Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, 1, j # temp tl = 1 + j
sub f, tO, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 5

Register Operands

Arithmetic instructions use register
operands

MIPS has a 32 x 32-bit register file

Use for frequently accessed data

Numbered O to 31

32-bit data called a “word”
Assembler names

$t0, $t1, ..., $t9 for temporary values

$s0, $s1, ..., $s7 for saved variables

Design Principle 2: Smaller Is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 6

Register Operand Example

C code:

f=1(g+h)-(1+7]);
f, ...,]in$s0, ..., $s4

Compiled MIPS code:

add $t0O, $sl1, $s2
add $tl, $s3, $s4
sub $s0, $t0, $tl

Chapter 2 — Instructions: Language of the Computer — 7

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data

To apply arithmetic operations
Load values from memory into registers
Store result from register to memory

Memory Is byte addressed
Each address identifies an 8-bit byte

Words are aligned in memory
Address must be a multiple of 4

MIPS is Big Endian

Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operand Example 1

C code:
g = h + A[8];

gin $s1, hin $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

lw $t0, 32(%$s3) # load word
add $sl1,/%$s2, |$t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 2

C code:
A[12] = h + A[8];

hin $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32

lw $t0, 32(%$s3) # load word
add $t0Q, $s2, $t0O
sw $t0, 48(%$s3) # store word

Chapter 2 — Instructions: Language of the Computer — 10

Registers vs. Memory

Registers are faster to access than
memory

Operating on memory data requires loads
and stores

More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 11

Immediate Operands

Constant data specified in an instruction
addli $s3, $s3, 4
NoO subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 12

The Constant Zero

MIPS register O ($zero) is the constant O
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $sl1l, $zero

Chapter 2 — Instructions: Language of the Computer — 13

4-bit signed number example

Signed Number Representations

Signed 2's I's
Decimal Maenitude Complement Complement
7 0111 0111 0111
6 0110 0110 0110
5 0101 - 0 101 0 101
4 0 100 ' 0 100 0 100
3 0 011 0 011 0 011
2 0 010 0 010 0 010
1 0 001 0 001 0 001
0 0 000 0 000 0 000
(-0) 1000 e 1111
-1 1 001 1111 1110
-2 1 010 1110 1101
-3 1011 1 101 1 100
-4 1 100 1100 1011
-5 1 101 1011 1010
-6 1110 1 010 1 001
5y 1111 1 001 ’ 1 000
-8 e 100 e

The most significant bit is the sign: O = positive, 1 = negative

Note that the representation of positive numbers is the same in all 3 formats.

Unsigned Binary Integers

Given an n-bit number

— n-1 n-2 1 0
X=X, 2 "+X, ,2 "+ +X,2°+X,2

Range: 0to +2n -1

Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1x23+ 0x22 +1x21 +1x20
=0+...+8+0+2+1=11

Using 32 bits
0 to +4,294,96/7,295

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers

Given an n-bit number

— n-1 n-2 1 0
X ==X, .2 " +X, ,2 "+ +X2 +X,2

Range: —2n-1t0 +2n-1-1

Example

111111111111 111111111111 1111 1100,
= —1x231 + 1x230 + |, + 1x22 +0%21 +0%20
=-2,147,483,648 + 2,147,483,644 = -4,

Using 32 bits
—-2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers

Bit 31 is sign bit
1 for negative numbers
O for non-negative numbers

—(—2n-1) can’t be represented

Non-negative numbers have the same unsigned
and 2s-complement representation

Some specific numbers

0: 0000 0000 ... 0000

-1. 11111111 ... 1111
Most-negative: 1000 0000 ... 0000
Most-positive: 0111 1111 ... 1111

Chapter 2 — Instructions: Language of the Computer — 17

Signed Negation

Complement and add 1
Complementmeans1 - 0,0 - 1

X+x =1111...111 , =-1
X +1=-X

Example: negate +2
+2 = 0000 0000 ... 0010,

-2=11111111 ... 1101, + 1
=1111 1111 ... 1110,

Chapter 2 — Instructions: Language of the Computer — 18

Sign Extension

Representing a number using more bits
Preserve the numeric value

In MIPS Instruction set

addi: extend immediate value
Lb, Lh: extend loaded byte/halfword
beq, bne: extend the displacement

Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2:1111 1110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 19

Representing Instructions

Instructions are encoded In binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’s 8 — 15
$t8 — $t9 are reg’s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 20

Hexadecimal

Base 16

Compact representation of bit strings
4 bits per hex digit

O /0000 (4 0100 |8 |1000 |c 1100
1 /0001 |5 0101 |9 |1001 |d |1101
2 0010 |6 /0110 |a |1010 |e 1110
3 |0011 |7 |01117 |b |1011 |f |1111

Example: eca8 6420
1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 21

