
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

6th

Edition

Chapter 2

Instructions: Language of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets

§2.1 Int roductio n

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Typical of many modern ISAs

 See MIPS Reference Data tear-out card, and
Appendixes B and E

 Similar ISAs have a large share of embedded
core market
 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination

add a, b, c # a gets b + c
 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
p eration s of the C

om
p uter H

a rdw
are

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example
 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
p erands of the C

om
pu ter H

ar dw
are

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example
 C code:
f = (g + h) - (i + j);
 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 1
 C code:
g = h + A[8];
 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example 2
 C code:
A[12] = h + A[8];
 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands
 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers

add $t2, $s1, $zero

4-bit signed number example

The most significant bit is the sign: 0 = positive, 1 = negative

Chapter 2 — Instructions: Language of the Computer — 15

Unsigned Binary Integers
 Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx

 Range: 0 to +2n – 1
 Example

 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
ig ned an d U

nsig ned N
um

bers

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1
 Example

 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 17

2s-Complement Signed Integers
 Bit 31 is sign bit

 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 18

Signed Negation
 Complement and add 1

 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
 = 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 19

Sign Extension
 Representing a number using more bits

 Preserve the numeric value
 In MIPS instruction set

 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 20

Representing Instructions
 Instructions are encoded in binary

 Called machine code
 MIPS instructions

 Encoded as 32-bit instruction words
 Small number of formats encoding operation code

(opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

§2.5 R
e presen ting Ins truction s in the C

om
p uter

Chapter 2 — Instructions: Language of the Computer — 21

Hexadecimal
 Base 16

 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

