

Chapter 2

Instructions: Language of the Computer

Instruction Set

- The repertoire of instructions of a computer
- Different computers have different instruction sets
 - But with many aspects in common
- Early computers had very simple instruction sets
 - Simplified implementation
- Many modern computers also have simple instruction sets

The MIPS Instruction Set

- Used as the example throughout the book
- Stanford MIPS commercialized by MIPS Technologies (www.mips.com)
- Typical of many modern ISAs
 - See MIPS Reference Data tear-out card, and Appendixes B and E
- Similar ISAs have a large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...

Arithmetic Operations

- Add and subtract, three operands
 - Two sources and one destination
 - add a, b, c # a gets b + c
 - All arithmetic operations have this form
- Design Principle 1: Simplicity favors regularity
 - Regularity makes implementation simpler
 - Simplicity enables higher performance at lower cost

Arithmetic Example

C code:

f = (g + h) - (i + j);

Compiled MIPS code: add t0, g, h # temp t0 = g + h add t1, i, j # temp t1 = i + j sub f, t0, t1 # f = t0 - t1

Register Operands

- Arithmetic instructions use register operands
- MIPS has a 32 × 32-bit register file
 - Use for frequently accessed data
 - Numbered 0 to 31
 - 32-bit data called a "word"
- Assembler names
 - \$t0, \$t1, ..., \$t9 for temporary values
 - \$\$0, \$\$1, ..., \$\$7 for saved variables
- Design Principle 2: Smaller is faster
 - c.f. main memory: millions of locations

Register Operand Example

C code:

f = (g + h) - (i + j);

- f, ..., j in \$s0, ..., \$s4
- Compiled MIPS code: add \$t0, \$s1, \$s2 add \$t1, \$s3, \$s4 sub \$s0, \$t0, \$t1

Memory Operands

- Main memory used for composite data
 - Arrays, structures, dynamic data
- To apply arithmetic operations
 - Load values from memory into registers
 - Store result from register to memory
- Memory is byte addressed
 - Each address identifies an 8-bit byte
- Words are aligned in memory
 - Address must be a multiple of 4
- MIPS is Big Endian
 - Most-significant byte at least address of a word
 - *c.f.* Little Endian: least-significant byte at least address

Memory Operand Example 1

- C code:
 - g = h + A[8];
 - g in \$\$1, h in \$\$2, base address of A in \$\$3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - 4 bytes per word

Memory Operand Example 2

- C code:
 - A[12] = h + A[8];
 - h in \$s2, base address of A in \$s3
- Compiled MIPS code:
 - Index 8 requires offset of 32
 - lw \$t0, 32(\$s3) # load word
 - add \$t0, \$s2, \$t0
 - sw \$t0, 48(\$s3) # store word

Registers vs. Memory

- Registers are faster to access than memory
- Operating on memory data requires loads and stores
 - More instructions to be executed
- Compiler must use registers for variables as much as possible
 - Only spill to memory for less frequently used variables
 - Register optimization is important!

Immediate Operands

- Constant data specified in an instruction addi \$s3, \$s3, 4
- No subtract immediate instruction
 - Just use a negative constant addi \$s2, \$s1, -1
- Design Principle 3: Make the common case fast
 - Small constants are common
 - Immediate operand avoids a load instruction

The Constant Zero

- MIPS register 0 (\$zero) is the constant 0
 - Cannot be overwritten
- Useful for common operations
 - E.g., move between registers add \$t2, \$s1, \$zero

4-bit signed number example

Signed Number Representations

.

	Signed		2's	1's
_Decimal	Magnitude		Complement	Complement
				n
7	0 111		0 111	0 111
6	0 110		0 110	0 110
5	0 101		0 101	0 101
4	0 100	172	0 100	0 100
3	0 011		0 011	0 011
2	0 010		0 010	0 010
1	0 001		0 001	0 001
0	0 000		0 000	0 000
(-0)	1 000			1 111
-1	1 001		1 111	1 110
-2	1 010		1 110	1 101
-3	1 011		1 101	1 100
-4	1 100		1 100	1 011
-5	1 101		1 011	1 010
-6	1 110		1 010	1 001
-7	1 111		1 001	1 000
-8			1 000	

The most significant bit is the sign: 0 = positive, 1 = negative

Note that the representation of positive numbers is the same in all 3 formats.

Unsigned Binary Integers

Given an n-bit number

$$x = x_{n-1}^{2^{n-1}} + x_{n-2}^{2^{n-2}} + \dots + x_1^{2^1} + x_0^{2^0}$$

- Range: 0 to +2ⁿ 1
- Example
 - 0000 0000 0000 0000 0000 0000 0000 1011₂
 - $= 0 + \dots + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$
 - $= 0 + \ldots + 8 + 0 + 2 + 1 = 11_{10}$
- Using 32 bits
 - 0 to +4,294,967,295

2s-Complement Signed Integers

Given an n-bit number

$$x = -x_{n-1}^{2^{n-1}} + x_{n-2}^{2^{n-2}} + \dots + x_1^{2^1} + x_0^{2^0}$$

- Range: -2^{n-1} to $+2^{n-1} 1$
- Example
 - - $= -2,147,483,648 + 2,147,483,644 = -4_{10}$
- Using 32 bits
 - -2,147,483,648 to +2,147,483,647

2s-Complement Signed Integers

- Bit 31 is sign bit
 - I for negative numbers
 - O for non-negative numbers
- -(-2^{n-1}) can't be represented
- Non-negative numbers have the same unsigned and 2s-complement representation
- Some specific numbers
 - 0: 0000 0000 ... 0000
 - -1: 1111 1111 ... 1111
 - Most-negative: 1000 0000 ... 0000
 - Most-positive: 0111 1111 ... 1111

Signed Negation

- Complement and add 1
 - Complement means $1 \rightarrow 0, 0 \rightarrow 1$

$$x + \overline{x} = 1111...111_{2} = -1$$

 $\overline{x} + 1 = -x$

- Example: negate +2
 - +2 = 0000 0000 ... 0010₂
 - $-2 = 1111 \ 1111 \ \dots \ 1101_2 + 1$ $= 1111 \ 1111 \ \dots \ 1110_2$

Sign Extension

- Representing a number using more bits
 - Preserve the numeric value
- In MIPS instruction set
 - addi: extend immediate value
 - Ib, lh: extend loaded byte/halfword
 - beq, bne: extend the displacement
- Replicate the sign bit to the left
 - c.f. unsigned values: extend with 0s
- Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Representing Instructions

- Instructions are encoded in binary
 - Called machine code
- MIPS instructions
 - Encoded as 32-bit instruction words
 - Small number of formats encoding operation code (opcode), register numbers, ...
 - Regularity!
 - Register numbers
 - \$t0 \$t7 are reg's 8 15
 - \$t8 \$t9 are reg's 24 25
 - \$s0 \$s7 are reg's 16 23

Hexadecimal

- Base 16
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	d	1101
2	0010	6	0110	a	1010	е	1110
3	0011	7	0111	b	1011	f	1111

Example: eca8 6420

1110 1100 1010 1000 0110 0100 0010 0000