Chapter 1 - continued

Computer Technology And

Performance

Abstractions

Abstraction helps us deal with complexity

- Hide lower-level detail

Instruction set architecture (ISA)

- The hardware/software interface

Application binary interface

- The ISA plus system software interface
- Implementation
- The details underlying and interface

Technology Trends

Electronics technology continues to evolve

- Increased capacity and performance
- Reduced cost

Year of introduction
DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	$2,400,000$
2013	Ultra large scale IC	$250,000,000,000$

Semiconductor Technology

- Silicon: semiconductor

Add materials to transform properties:

- Conductors
- Insulators
- Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel $®$ Core $10^{\text {th }}$ Gen

- 300mm wafer, 506 chips, 10 nm technology
- Each chip is $11.4 \times 10.7 \mathrm{~mm}$

Integrated Circuit Cost

$$
\begin{aligned}
& \text { Cost per die }=\frac{\text { Cost per wafer }}{\text { Dies per wafer } \times \text { Yield }} \\
& \text { Dies per wafer } \approx \text { Wafer area/Die area } \\
& \text { Yield }=\frac{1}{(1+(\text { Defects per area } \times \text { Die area } / 2))^{2}}
\end{aligned}
$$

Nonlinear relation to area and defect rate

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design

Defining Performance

- Which airplane has the best performance?

Chapter 1 - Computer Abstractions and Technology - 8

Response Time and Throughput

- Response time
- How long it takes to do a task
- Throughput
- Total work done per unit time
" e.g., tasks/transactions/... per hour
How are response time and throughput affected by
- Replacing the processor with a faster version?
- Adding more processors?
- We'll focus on response time for now...

Relative Performance

Define Performance $=1 /$ Execution Time
" X is n time faster than Y "
Performance ${ }_{X} /$ Performance $_{Y}$
$=$ Execution ime $_{\mathrm{Y}} /$ Execution $^{\text {time }}{ }_{\mathrm{X}}=n$
Example: time taken to run a program

- 10s on A, 15s on B
- Execution Time ${ }_{B}$ / Execution Time ${ }_{A}$
$=15 \mathrm{~s} / 10 \mathrm{~s}=1.5$
- So A is 1.5 times faster than B

Measuring Execution Time

- Elapsed time
- Total response time, including all aspects

Processing, I/O, OS overhead, idle time

- Determines system performance

CPU time

- Time spent processing a given job

Discounts I/O time, other jobs' shares

- Comprises user CPU time and system CPU time
- Different programs are affected differently by CPU and system performance

CPU Clocking

Operation of digital hardware governed by a constant-rate clock

Clock period: duration of a clock cycle

- e.g., 250ps $=0.25 \mathrm{~ns}=250 \times 10-12 \mathrm{~s}$

Clock frequency (rate): cycles per second

- e.g., $4.0 \mathrm{GHz}=4000 \mathrm{MHz}=4.0 \times 109 \mathrm{~Hz}$

CPU Time

CPU Time $=$ CPU Clock Cycles \times Clock Cycle Time
$=\frac{\text { CPU Clock Cycles }}{\text { Clock Rate }}$
Performance improved by

- Reducing number of clock cycles
- Increasing clock rate
- Hardware designer must often trade off clock rate against cycle count

CPU Time Example

Computer A: 2GHz clock, 10s CPU time
Designing Computer B

- Aim for 6s CPU time
- Can do faster clock, but causes $1.2 \times$ clock cycles How fast must Computer B clock be?
${\text { Clock } \text { Rate }_{B}}=\frac{\text { Clock Cycles }_{B}}{\text { CPU Time }_{B}}=\frac{1.2 \times{\text { Clock } \text { Cycles }_{A}}_{6 s}^{6 s}}{}$
Clock Cycles $_{\mathrm{A}}=$ CPU Time ${ }_{\mathrm{A}} \times$ Clock Rate $_{\mathrm{A}}$
$=10 \mathrm{~s} \times 2 \mathrm{GHz}=20 \times 10^{9}$
Clock Rate $_{\mathrm{B}}=\frac{1.2 \times 20 \times 10^{9}}{6 \mathrm{~s}}=\frac{24 \times 10^{9}}{6 \mathrm{~s}}=4 \mathrm{GHz}$

Instruction Count and CPI

Clock Cycles $=$ Instruction Count \times Cycles per Instruction
CPU Time $=$ Instruction Count \times CPI \times Clock Cycle Time

Instruction Count \times CPI
 Clock Rate

Instruction Count for a program

- Determined by program, ISA and compiler

Average cycles per instruction

- Determined by CPU hardware
- If different instructions have different CPI

Average CPI affected by instruction mix

CPI Example

Computer A: Cycle Time $=250 \mathrm{ps}, \mathrm{CPI}=2.0$
Computer B: Cycle Time $=500 \mathrm{ps}, \mathrm{CPI}=1.2$
Same ISA
Which is faster, and by how much?
CPUTime $_{A}=$ Instruction Count \times CPI $_{A} \times$ Cycle Time $_{A}$

$$
=I \times 2.0 \times 250 \mathrm{ps}=\mathrm{I} \times 500 \mathrm{ps} \longleftarrow \quad \mathrm{~A} \text { is faster... }
$$

CPUTime $_{B}=$ Instruction Count \times CPI $_{B} \times$ Cycle Time $_{B}$

$$
=I \times 1.2 \times 500 \mathrm{ps}=I \times 600 \mathrm{ps}
$$

$\frac{\text { CPUTime }_{B}}{\text { CPUTime }_{A}}=\frac{I \times 600 \mathrm{ps}}{I \times 500 \mathrm{ps}}=1.2$. .by this much

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles $=\sum_{i=1}^{n}\left(\right.$ CPI $_{i} \backslash$ nstruction Count $\left.{ }_{i}\right)$

- Weighted average CPI
$\mathrm{CPI}=\frac{\text { Clock Cycles }}{\text { Instruction Count }}=\sum_{i=1}^{n} \square \mathrm{CPI}_{\mathrm{i}} \times \underbrace{}_{\text {Relative frequency }} \times \frac{\text { Instruction Count }}{\text { Instruction Count }} \|$

CPI Example

Alternative compiled code sequences using instructions in classes A, B, C

Class	A	B	C
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

Sequence 1: IC = 5

- Clock Cycles
$=2 \times 1+1 \times 2+2 \times 3$
$=10$
- Avg. $\mathrm{CPI}=10 / 5=2.0$

Sequence 2: IC = 6

- Clock Cycles
$=4 \times 1+1 \times 2+1 \times 3$
$=9$
- Avg. CPI $=9 / 6=1.5$

Performance Summary

\square
CPU Time $=\frac{\text { Instructions }}{\text { Program }} \times \frac{\text { Clock cycles }}{\text { Instruction }} \times \frac{\text { Seconds }}{\text { Clock cycle }}$
Performance depends on

- Algorithm: affects IC, possibly CPI
- Programming language: affects IC, CPI
- Compiler: affects IC, CPI
- Instruction set architecture: affects IC, CPI, $\mathrm{T}_{\text {c }}$

