Chapter 1 - continued

Computer Technology And Performance

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost		
1951	Vacuum tube	1		
1965	Transistor	35		
1975	Integrated circuit (IC)	900		
1995	Very large scale IC (VLSI)	2,400,000		
2013	Ultra large scale IC	250,000,000,000		

Semiconductor Technology

- Silicon: semiconductor
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel® Core 10th Gen

300mm wafer, 506 chips, 10nm technologyEach chip is 11.4 x 10.7 mm

Integrated Circuit Cost

Cost per die =
$$\frac{\text{Cost per wafer}}{\text{Dies per wafer } \times \text{Yield}}$$

Dies per wafer \approx Wafer area/Die area
Yield = $\frac{1}{(1+(\text{Defects per area} \times \text{Die area}/2))^2}$

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design

Defining Performance

Which airplane has the best performance?

Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We'll focus on response time for now...

Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y"

Performance_x/Performance_y =Execution time_y/Execution time_x =n

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

 Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - e.g., 250ps = 0.25ns = 250×10⁻¹²s
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10⁹Hz

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time

CPU Clock Cycles

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles
- How fast must Computer B clock be?

$$Clock Rate_{B} = \frac{Clock Cycles_{B}}{CPU Time_{B}} = \frac{1.2 \times Clock Cycles_{A}}{6s}$$

$$Clock Cycles_{A} = CPU Time_{A} \times Clock Rate_{A}$$

$$= 10s \times 2GHz = 20 \times 10^{9}$$

$$Clock Rate_{B} = \frac{1.2 \times 20 \times 10^{9}}{6s} = \frac{24 \times 10^{9}}{6s} = 4GHz$$

Instruction Count and CPI

Clock Cycles =Instruction Count ×Cycles per Instruction

CPU Time =Instruction Count ×CPI ×Clock Cycle Time

Instruction Count ×CPI

Clock Rate

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

```
\begin{array}{l} \mathsf{CPUTime}_{\mathsf{A}} = \mathsf{Instruction} \, \mathsf{Count} \times \mathsf{CPI}_{\mathsf{A}} \times \mathsf{CycleTime}_{\mathsf{A}} \\ = \mathsf{I} \times 2.0 \times 250 \mathrm{ps} = \mathsf{I} \times 500 \mathrm{ps} \longleftarrow \mathsf{A} \text{ is faster...} \\ \mathsf{CPUTime}_{\mathsf{B}} = \mathsf{Instruction} \, \mathsf{Count} \times \mathsf{CPI}_{\mathsf{B}} \times \mathsf{CycleTime}_{\mathsf{B}} \\ = \mathsf{I} \times 1.2 \times 500 \mathrm{ps} = \mathsf{I} \times 600 \mathrm{ps} \\ \overset{\mathsf{CPUTime}_{\mathsf{B}}}{\mathsf{CPUTime}_{\mathsf{A}}} = \frac{\mathsf{I} \times 600 \mathrm{ps}}{\mathsf{I} \times 500 \mathrm{ps}} = 1.2 \longleftarrow \ldots  by this much
```

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	A	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles
 = 2×1 + 1×2 + 2×3
 = 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles
 = 4×1 + 1×2 + 1×3
 = 9
 - Avg. CPI = 9/6 = 1.5

Performance Summary

The BIG Picture

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c