
Getting started with SPIM or QtSPIM

The first step for using SPIM or QtSPIM MIPS simulator program is to download and install the
program on your own machine or use a machine on campus that already has the program loaded.
Computers in the Linux lab and computers in the Digital lab have QtSPIM installed. Those in
the KRH MSWindows labs are suppose to have it loaded (needs to be confirmed).

In this document, mentioning SPIM will refer to both SPIM and QtSPIM unless specifically noted.

Writing a MIPS assembly program
The SPIM program contains a MIPS assembler and simulator. It does not have an integrated text
editor. Thus the first step in creating a MIPS program for SPIM is to write the program using a
programming oriented editor (i.e. a plain text editor, not MS Word or other word processor).

Here is an example MIPS assembly program Note that I expect programs written for this class,
including assembly programs, to have a header as shown below.

The C code for the program below is:
for (i=0; i<x; i++)

array[i] = i;

##
A simple MIPS demo program
Filename: mipsdemo1.s
Author: L.Aamodt
Version: 1/23/22
Processor: MIPS
Notes: for execution using the SPIM simulator
##

 .data
arrayD: .space 100 # 100 bytes (25 words) reserved for arrayD
varX: .word 6 # varX contains the desired loop count

 .text
 # t0 is index variable i
 # t1 is a temporary, frequently changing
 # t2 is loop count & # of words put in array
 # t3 contains the address of arrayD
 # t4 is address of X
main: ori $t0, $0, 0 # set t0 to zero
 la $t3, arrayD # get address of arrayD
 la $t4, varX # place the address of X into register t4

 lw $t2, 0($t4) # get the loop count from varX

loop1: slt $t1, $t0, $t2 # check to see if i is in range
 beq $t1, $0, exit
 sll $t1, $t0, 2 # calculate byte index i x 4
 add $t1, $t1, $t3 # calculate actual word address
 sw $t0, 0($t1) # store index value in array
 addi $t0, $t0, 1 # i++
 j loop1
exit: addi $v0, $0, 10 # terminate the program with system call #10
 syscall

Note that in the example above an array and a word size variable are defined to show how it is
done.

QtSPIM window before a program is loaded (see following page for a more readable copy)

To load an assembly program click File on the tool bar and select file. The program will be
loaded right after the syscall in the user text segment.

Then click the single step icon on the tool bar or the run icon (arrow).

Note that integer register contents are displayed by default at the left.
On the lower part of the tool bar clicking Data will display the portion of memory where
variables are stored. Memory addresses are shown but variable names are not. Look in the text
section and registers to figure out memory addresses for the variables.

SPIM and QtSPIM assembler directives

The SPIM simulator provides some simple Input and Output routines that can be called using
syscall.

The SPIM assembler info above comes from Appendix A of the Patterson and Hennessey
computer organization text where the SPIM information is written by the author of SPIM, James
Larus.

