Getting started with SPIM or QtSPIM

The first step for using SPIM or QtSPIM MIPS simulator program is to download and install the
program on your own machine or use a machine on campus that already has the program loaded.
Computers in the Linux lab and computers in the Digital lab have QtSPIM installed. Those in
the KRH MSWindows labs are suppose to have it loaded (needs to be confirmed).

In this document, mentioning SPIM will refer to both SPIM and QtSPIM unless specifically noted.

Writing a MIPS assembly program

The SPIM program contains a MIPS assembler and simulator. It does not have an integrated text
editor. Thus the first step in creating a MIPS program for SPIM is to write the program using a
programming oriented editor (i.e. a plain text editor, not MS Word or other word processor).

Here is an example MIPS assembly program Note that I expect programs written for this class,
including assembly programs, to have a header as shown below.

The C code for the program below is:
for (i=0; i<x; i++)
array[i] = 1;

A R R R R R R A

A simple MIPS demo program
Filename: mipsdemol.s
Author: L.Aamodt
Version: 1/23/22
Processor: MIPS
Notes: for execution using the SPIM simulator
iZES s EEE A EEE R
.data
arrayD: .space 100 # 100 bytes (25 words) reserved for arrayD
varX: .word 6 # varX contains the desired loop count
.text
t0 is index variable i
tl is a temporary, frequently changing
t2 is loop count & # of words put in array
t3 contains the address of arrayD
t4 is address of X
main: ori $t0, $0, O # set t0 to zero
la $t3, arrayD # get address of arrayD
la $t4, varX # place the address of X into register t4
1w $t2, 0(st4) # get the loop count from varX
loopl: slt Stl, $t0, $t2 # check to see if 1 is in range
beq Stl, $0, exit
s1ll $tl, $to, 2 # calculate byte index i x 4
add S$tl, $tl, $t3 # calculate actual word address
sw S$t0, 0(Stl) # store index value in array
addi $t0, $t0, 1 # i++
3 loopl
exit: addi $v0, $0, 10 # terminate the program with system call #10
syscall

Note that in the example above an array and a word size variable are defined to show how it is
done.

QtSPIM window before a program is loaded (see following page for a more readable copy)

| QtSpim -

File Simulator Registers Text Segment Data Segment Window Help

2 d a8 2 # »p ou @ I @

FP Regs nt Regs [16] Data Text
Int Regs [16] B Text
PC [i] User Text Segment [00400000]..[00440000]
EEC =i [00400000] 8£a40000 1w $4, 0($29) ; 183: 1w $a0 0(§sp) # argc
cause =0 [o0400004] 27230004 addiu $5. $29, 4 ; 184: addiu §al §sp 4 # argv
Badvaddr = 0 [o0400008] 24a60004 addiu $6., $5, 4 ; 185: addiu $az §al 4 # emvp
status = 3000EE10 [o040000c] 00041080 811 42, $4, 2 ; 186: 211 §v0 §ald 2
[00400010] 00c23021 addu $6, $6, $2 ; 187: addu §a2 §a2 §vo
HI a [00400014] 0c000000 jal Ox00000000 [main] ; 188: jal main
LO a [00400018] 00000000 nop ; 18%: nop
[0040001c] 34020002 ori $2, $0, 10 ; 181: 1i §vo 10
rO [r0] = [00400020] 0000000c syscall ; 1%82: syscall # syscall 10 (exit))
Rl [at] = User program will be
r2 [v0] = Kernel Text Begment [80000000]..[80010000] here after loading
r3 [v1]l = [80000160] 00014321 addu $27. $0, #1 ; 80: move Fk1 Fat # Save fat
R4 [a0] = [80000184] 3c015000 1lui #$1, -28672 ; 92: sw §v0 51 # Not re-entrant and we can't trust §sp
rS [al] = [80000188] ac220200 sw $2, 512 ($1)
R6 [az2] = [8000018c] 3c015000 1lui $1, -28672 ; 83: sw $a0 52 # But we need to use these registers
r7 [a3] = [80000190] ac240204 sw $4, 516 (§1)
r8 [t0] =0 [80000194] 401a6800 mfcO $26, $13 ; 95: mrfco §k0 §13 # Cause register
r9 [t1] =0 [800001%8] 00la2082 srl $4, $26, 2 ; 96: srl §a0 $k0 2 # Extract ExcCode Field
r10 [t2] =0 [800001%c] 30B4001f andi $4, #4, 31 ; 87: andi Fad §a0 OxIf
R11 [t3] =0 [800001a0] 34020004 ori #$2, $0, 4 ; 101: 11 §v0 4 # syscall 4 (print_str)
r12 [td] =0 [800001a4] 3c049000 lui #$4, -28672 [ml] ; 102: la Fad _ mi
R13 [t5] =0 [800001a8] 0000000c sysecall ; 103: syscall
rR14 [t6] = 0 [800001ac] 34020001 ori #$2, $0, 1 ; 105: 11 v 1 # syscall 1 (print_int)
R15 [t7] =0 [80000100] 001a2082 s8rl %4, $26, 2 ; 106: srl §ac §ko 2 # Extract ExcCode Field
16 [80] = O [800001b4] 30B4001f andi $4, $4, 31 ; 107: andi $a0 §a0 Oxif
rR17 [s1] = 0 [50000106] 0000000c syscall ; 108: syscall
R18 [82] =0 [800001kc] 34020004 ori #$2, $0, 4 ; 110: 11 §v0 4 # syscall 4 (print_str)
rR19 [s3] =0 [800001c0] 3344003c andi #$4, $26, 60 ; 111: andi $a0d Fko Ox3c
®20 [s4] =0 [800001c4] 3c019000 1lui $1, -2B672 ; 112: 1w $a0 _ excpifal)
rR21 [s5] = 0 [800001c8] 00240821 addu #1, $1, $4
R22 [86] =0 [800001cc] B8c240180 1w $4, 384 ($1)
r23 [87] =0 [800001d0] 00000000 nop ; 113: nop
r24 [cB8] = 0 [s00001d4] 0000000c syscall ; 114: syscall
R25 [t9] =0 [800001d8] 34010018 ori $1, $0, 24 ; 116: bne §k0 0x18 ok pc # Bad PC exception regquires special
rR26 [k0] = 0 checks
rR27 [k1] =0 [800001de] 143a0008 bne $1, $26, 32 [ok pc-0x800001de]
Rr28 [gp] = 10008000 [800001e0] 00000000 nop ; 117: nop
R29 [Bp] = 7ffff7co [800001e4] 40047000 mfe0 $4, $14 ; 119: mfc0 §a0 §14 # EPC
R30 [s8] =0 [800001e8] 30840003 andi $4, $4, 3 ; 120: andi §a0 $a0 0x3 # Is EPC word-aligned?
®31 [ral = 0 [800001ec] 10040004 beg $0, $4, 16 [ok pc-0x80000lec]
[800001£0] 00000000 nop ; 122: nop

Memory and registers cleared

stributed under the GNU Lesser General Public Lic version 2.1.

To load an assembly program click File on the tool bar and select file. The program will be
loaded right after the syscall in the user text segment.

Then click the single step icon on the tool bar or the run icon (arrow).

Note that integer register contents are displayed by default at the left.

On the lower part of the tool bar clicking Data will display the portion of memory where
variables are stored. Memory addresses are shown but variable names are not. Look in the text
section and registers to figure out memory addresses for the variables.

*I°g UOTBIaA DUW §

uUcTsIas SEUSSTT OTT4Nd

[eIauso

I@a8a7 OND 941

I=pun paingrIISIp

BT yoTym "Azvrqrl 3D oyl o031 pajUT] ST WIISID
rzoT30u 3ybrifdoo TIN3 v Icy SWOYEY 213 2yl =28
"38UaoT] OSH W ISPUn PRIngTI1STpP BT WIAS

rpaazzesy =Saubta 1T
TE0T-066T

=

"ETNIRT Bawer Aq aybtaddoo

TIZ0Z 'p I=QWsoa3d IO £F° "6 UCTSIaA WILS
paIvaTs siejlstbea pur fiowsi
= dou :ggT ¢ dou QOOOOOOD [0ITOOOOE
[oeTo0008%X0-od o] 9T ‘%% ‘0% bea F000%00T [D2T0O000E] 0 = [ex] TfH
SpPUbITE-pIoM OdF SI # £x0 ge§ oed rpue :0zT ! € 'F$ ‘F$ TPU®R £000FB0E [82T0O0008] 0 = [88] ofH
odd # 7§ oe$ goFw i§TT ¢ PT§ ‘BH 00FW QO0LFO0F [¥2T00008] 0203317L = [de] ezH
dou .77 ¢ dou Qooo0O00 [0STO000S] 00080007 = [dB] gz
[opTOOOOSX0-od o] g '9Z8§ ‘T4 auq JO00BEFT [SPTOOO0E] 0= [1¥] Lg¥
gyoays 0 = [0¥] 9g¥
Teroeds sairnbag uorideoxe o4 ped # od yo §TX0 0X§ Sug 97T ¢ ¥Z ‘08 ‘T$ TAC JTOOTORFE [BPTO000E] 0 = [63] sEH
TTeOsis PFTT Tre2sis 20000000 [FRPTO000E] 0 = [83] weEH
dou :gyp ¢ dou QooD0O00 [OPTOOOOE] 0 = [Le] €g¥
(T#)¥8E "P& MT 08TOFE2E [22T0000E] 0 = [98] gg¥
7§ ‘T4 ‘T# mppe TZS0FZO0 [B2TO000E] 0 = [58] TEH
foeg)ldoxa™ peg M7 :ZTT ¢ ZL98E- ‘T# TRT 0006TOSE [H2T00008] 0 = [¥8] og¥
2£X0 0¥$ oe$ TPUP ITT ¢ 09 ‘9z4 ‘F§ TPUBR ODE00FFEE [02TO0008] 0 = [£8] 6TH
(138 qurad) p [Te28fie # § paAf TT 07T ¢ ¥ ‘0§ 'z¢ TIO FOOOEZOFE [29T00008] 0 = [ge] 8T¥
ITEDEAE 80T ! TTe28A8 20000000 [8ATO0008] 0 = [T8] LTH
IT*0 pe§ oeg rpue :i07 ¢ 1€ ‘¥4 ‘¥$ TPU®R ITOOFS0E [FITO000E] 0 = [08] 8TH
pI31d 2poDpoxy JoeIdXE # £ 0§ oef TIs5 907 ¢ T '9¢§ 'F$ TIS [ROZETOO0 [0ITO000E] 0 = [L3] &TH
{3ur—3urad) [TTE28fle # T pgag TT 60T / T ‘0% 'z§ TIO TOODEOFE [22®TO0008] 0 = [93] ¥TH
TTeosfis ig0T Tre2sis 20000000 [82T00008] 0 = [g3] €TH
TTw geg BT g0l ¢ [tw] £L98E- ‘%% TOT 0Q006%02F [¥=2T00008] 0= [¥3] ETH
(x3187qurad) p TTED8AE # p pAf TT TOT ¢ ¥ ‘0% 'Z§ TIO FOOOZOFE [0BTOOOOE] 0 = [£32] TT¥
ITX0 peg gef Tpue iig ! 1€ ‘v# ‘¥$ TPU®R ITOOFS0E [26TO0000E] 0 = [g31] oT¥
pPTeTd 2pODoXd 30BIIXY # £ 0% OPY 13I8 198 ! T ‘9Z§ 'F$ TAS EHOEETOO0 [86T00008] 0= [13] 6"
a238Tbe1 ssned # £1§ 0§ 0oFw :igs €T4 "9g4 02IW QOB9ETOF [F6TO000E] 0 = [03] s
(T$)9TS 'v§ M8 FOZOFEZSE [06TO000E] 0 = [g=] ¥
21835T6ST 25851 258N 0] pS2U M INg # g5 JBF M2 if§ EL98EZ- 'T§ TRT 0Q00ETOZE [28T0O0008] 2243377L = [g2e] 9H
(T#)ETG "g28% M8 (QOZOTETE [88T0000E] ¥OLIIIIL = [1®] gH
deg 38nI] 3,UPD 24 pUP JUBIIUS-2I JON # I8 0A% Mg 26 ! £L982- ‘T4 INT 0006TOSE [$8T00008] T = [oB] %H
8§ 2aBg § 1§ T Sa0w pgs T$ ‘04 ‘LE$ mPpR TZEPTOO0 [0STOOCOE] 0 = [Ta] €¥H
[ooooT008] " ° [00000008] 3Iuswbag IxXal TauI=y 0 = [oa] gu
0= [3"] T¥
(3Tx2) QT ITEISAS # TTEO8AS IZ§T ! TrTeasAs 20000000 [0Z000F00] 0= [0I] 0¥
0T QA% TT ‘T6T ¢ 0T ‘0% ‘g TIO ®BOOOZOFE [DTOODOFOO
dou :g87 ¢ dou (QO0OD0OOO [B8TO0O0F00] 0= o1
urew TeL :g887 ! [utew] oo000000%X0 Tl Q0000020 [FT000F00] 0= I1H
oA zeg ged nppe iLg8T7 g§ ‘94 '9¢ mppe TZOEZO00 [OTOODOFOO
Z pef paf TTE :99T7 ¢ T ‘%% 'ZT§ TTI8 (Q8OTFO0O0 [20000%00] 0T33000f = enieas
daus g § Te$ gB§ nIppe (g8 ¢ ¥ ‘G4 ‘9 nTPP® FO00SEFZ [80000F00] 0 = IPPYAPRE
abze g 5 deg 1eg nippe iFsT ¥ ‘6% ‘G$ NTPP® FOOOCELZ [F0000F00] 0= ssnen
obae # (deg)o geg AT 87 ¢ (6Z$)0 "¥§ MT 000D0F2I8 [000D0D0FOO0] 0= od=
= [0000%%700] " " [00000700] 3uwswbag IXaL I98Q0 0= od
® & ma @@ [91] sBay Jul
3L ejeq | [91] sbay ju] sbay d4
@ = B M 4 ¢ EF A &1
d@H mopuipy swbas ejeg juswbag yxa] susisibay JolEinwis 3|4
X + - widsid [—|

SPIM and QtSPIM assembler directives

Assembler Syntax

Comments in assembler files begin with a sharp sign (#). Everything from the
sharp sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (_), and dots
(.) that do not begin with a number. Instruction opcodes are reserved words that
cannot be used as identifiers. Labels are declared by putting them at the beginning
of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in doublequotes ("). Special characters in strings follow the
C convention:

B newline \n
W tab N
B quote \"
SPIM supports a subset of the MIPS assembler directives:

.align n Align the next datum on a 2" byte boundary. For
example, .align 2 aligns the next value on a
word boundary. .align 0 turns off automatic
alignment of .half, .word, .float, and
.double directives until the next .data or
.kdata directive.

LAsCii shr Store the string str in memory, but do not null-
terminate it.

.asciiz str

.data <addr>

.double dl, ..., dn

.extern sym size

JFloat F1l,:0: fn
.globl sym
.half hl, ..., hn

.kdata <addr>

.ktext <addr>

.set noatand .set at

.space n

Store the string str in memory and null-termi-
nate it.

Store the n values in successive bytes of memory.

Subsequent items are stored in the data segment.
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

Store the n floating-point double precision num-
bers in successive memory locations.

Declare that the datum stored at sym is size bytes
large and is a global label. This directive enables
the assembler to store the datum in a portion of
the data segment that is efficiently accessed via
register $gp.

Store the n floating-point single precision num-
bers in successive memory locations.

Declare that label sym is global and can be refer-
enced from other files.

Store the n 16-bit quantities in successive mem-

ory halfwords.

Subsequent data items are stored in the kernel
data segment. If the optional argument addr is
present, subsequent items are stored starting at

address addr.

Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below).
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

The first directive prevents SPIM from complain-
ing about subsequent instructions that use regis-
ter $at. The second directive reenables the
warning. Since pseudoinstructions expand into
code that uses register $at, programmers must be
very careful about leaving values in this register.

Allocate n bytes of space in the current segment
(which must be the data segment in SPIM).

.text <addr> Subsequent items are put in the user text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below).
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.word wl,..., wn Store the n 32-bit quantities in successive mem-
ory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata,
and .sdata).

The SPIM simulator provides some simple Input and Output routines that can be called using
syscall.

print_int $a0 = integer

print_float 2 $§712 = float

print_double 3 $f12 = double

print_string & $a0 = string

read_int 5 integer (in $v0)

read_float 6 float (in $T0)

read_double 7 double (in $f0)

read_string 8 $a0 = buffer, $al = length

shrk 9 $a0 = amount address (in $v0)

exit 10

print_char 11 $a0 = char

read_char 12 char (in $a0)

open 13 $a0 = filename (string), $al = |file descriptor (in $a0)
flags, $a2 = mode

read 14 $a0 = file descriptor, $al = num chars read (in
buffer, $aZ = length $a0)

write 15 $a0 = file descriptor, $al = num chars written (in
buffer, $a2 = length $a0)

close 16 $al = file descriptor

exit2 17 $al = result

FIGURE A.9.1 System services.

System Calls

SPIM provides a small set of operating-system-like services through the system
call (syscall) instruction. To request a service, a program loads the system call
code (see Figure A.9.1) into register $v0 and arguments into registers $a0—$a3
(or $f12 for floating-point values). System calls that return values put their
results in register $v0 (or $ 0 for floating-point results). For example, the follow-
ing code prints “the answer = 5™

.data

str:
.asciiz "the answer ="
.text
11 $v0, 4 # system call code for print_str
la $a0, str { address of string to print
syscall # print the string
11 $vo, 1 # system call code for print_int
11 $a0, 5 # integer to print
syscall # print it

The print_int system call is passed an integer and prints it on the console.
print_float prints a single floating-point number; print_double prints a
double precision number; and print_string is passed a pointer to a null-ter-
minated string, which it writes to the console.

The system calls read_int, read_float, and read_doub]le read an entire
line of input up to and including the newline. Characters following the number
are ignored. read_string has the same semantics as the UNIX library routine
fgets. It reads up to n — 1 characters into a buffer and terminates the string with
a null byte. If fewer than n — 1 characters are on the current line, read_string
reads up to and including the newline and again null-terminates the string.

Warning: Programs that use these syscalls to read from the terminal should not
use memory-mapped I/O (see Section A.8).

sbrk returns a pointer to a block of memory containing n additional bytes.
exit stops the program SPIM is running. exit2 terminates the SPIM program,
and the argument to ex i t2 becomes the value returned when the SPIM simulator
itself terminates.

print_char and read_char write and read a single character. open, read,
write,and close are the standard UNIX library calls.

The SPIM assembler info above comes from Appendix A of the Patterson and Hennessey
computer organization text where the SPIM information is written by the author of SPIM, James
Larus.

