Recursion
Understanding “static”

Recursion

A method can call itself, that is recursion

Ex: find factorial of N
where factorial is the product of integers 1 to N
For N =3, factorial of 3=1x2x3=6

Factorial can be calculated without recursion
using an iterative approach based on a for loop

An alternative Is to use recursion

class Factorial { /[A recursive function
Int factR(int n) {
Int result;

If(n==1) return 1,
result = factR(n-1) * n;
return result;

}
}

class Recursion {
public static void main(String args[]) {
Factorial f = new Factorial();

System.out.printin("Factorial of 4 is " + f.factR(4));

}
}

n=4 result
4 134
n n*r
Nn=
n-1 r
3 ‘Tb
n n*r
n=3
n-1 r
2 ’Té
n n*r
nN=
n-1 r
lj 1}
n=1 1

r = result

If(n==1) return 1,
result = factR(n-1) * n;
return result;

If(n==1) return 1;
result = factR(n-1) * n;
return result;

=
|
=

result

4 134
n n*r
Nn=
n-1 r
3 ‘Tb
n n*r
nN=
n-1 r
2 ’Té
n n*r
n=2
n-1 r
J: 1
n=1 1

r = result

Stack grows

class Factorial {
Int factR(int n) {

}

}

INt result;

If(n==1) return 1,
result = factR(n-1) * n;
return result;

static members

Placing the keyword static ahead of a variable
or method basically creates a global member
of a class.

The static member is shared among all objects
that belong to its class, i.e. only one copy
exists even though there may be many objects

The static member can be used or called before
any objects of its class are created

Note that main is declared static. It is called by
the Java virtual machine when a program begins

Consider a class with two variables, one static
and one not static. One method Is defined
that adds these two variables and returns sum:

class StaticDemo {
Int X; /I a normal instance variable

static inty; // a static variable

Int sum() {
return X +;

}
}

(keep this class definition in mind)

class SDemo {
public static void main(String args[]) {
StaticDemo.y = 5; /l'y 1s referenced before
/| object creation
StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x =10;
ob2.x = 20:

System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
public static void main(String args[]) {
StaticDemo.y = 5; /l'y 1s referenced before
/| object creation
StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;

ob2.x = 20;

System.out.printin(ob1.sum,” and “, ob2.sum);
resulting in ?
15 and 25

class SDemo {
public static void main(String argsl]) {

StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;
ob2.x = 20;
obl.y = 25; /['y assigned value via obl

/I (for demo only)
System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
public static void main(String args|]) {

StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;
ob2.x = 20;
obl.y = 25; /['y assigned value via obl

/I (for demo only)
System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?
35 and 45

class SDemo {
public static void main(String args|]) {

StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;
ob2.x = 20;
ob2.y = 25; /['y assigned value via ob?2

/I (for demo only)
System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
public static void main(String args|]) {

StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;
ob2.x = 20;
ob2.y = 25; /['y assigned value via ob?2

/I (for demo only)
System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?
35 and 45

class SDemo {
public static void main(String args|]) {

StaticDemo ob1 = new StaticDemo();
StaticDemo ob2 = new StaticDemo();

obl.x = 10;
ob2.x = 20;
ob2.y = 25; /['y assigned value via ob?2

/I (for demo only)
System.out.printin(ob1.sum,” and “, ob2.sum);

resulting in ?
35 and 45

Same result assigning to either obl.y or ob2.y

Note: In the prior slides a value was assigned

to y using obl.y or ob2.y which means y was

being accessed via an object. Since y was declared
static normally it should be accessed via the

class name, i.e. StaticDemo.y as was done in

the first slide where a value was assigned to .

Static Blocks
- A static block can be defined in a class
- The static block is executed when the
class is first loaded, prior to when

constructors or methods are executed

- Can be thought of as initialization code

class StaticBlock {
static double rootOf2;
static double rootOf3;

static { /| executes when class is loaded
System.out.printin("Inside static block.");
rootOf2 = Math.sqrt(2.0);
rootOf3 = Math.sqgrt(3.0);

}

StaticBlock(String msg) {
System.out.printin(msg);
}

}

class SDemo3 {
public static void main(String args[]) {
StaticBlock ob = new StaticBlock(“Inside Constructor”),

System.out.printin(*Square root of 2 is “ +
StaticBlock.rootOf2);
System.out.printin(*Square root of 3 is “ +
StaticBlock.rootOf3);

class SDemo3 {
public static void main(String args[]) {
StaticBlock ob = new StaticBlock(“Inside Constructor”),

System.out.printin(*Square root of 2 is “ +
StaticBlock.rootOf2);
System.out.printin(*Square root of 3 is “ +
StaticBlock.rootOf3);

(Note that since the two variables were declared static
they are being referred to using the name of the class)

class SDemo3 {
public static void main(String args[]) {
StaticBlock ob = new StaticBlock(“Inside Constructor”),

System.out.printin(“*Square root of 2 is “ +
StaticBlock.rootOf2);

System.out.printin(*Square root of 3 is “ +
StaticBlock.rootOf3);

}
}

Output is:

Inside static block. = Printed before object was constructed
Inside Constructor.< Printed when object was constructed
Square root of 2 is 1.4142135623730951
Square root of 3is 1.7320508077688772

Operating on Strings

The String class contains several methods that operate on strings. Here are the general forms

for a few:

boolean equals(str)

int length{)

sequence as sfr.

Returns true if the invoking string contains the same character

Obtains the length of o string.

chor charAt{index)

int compareTo(str)

g EXOHSH S

int lastindexOH str)

Ob’rclins "ﬂj_a _clh_-::lrmcter ot the Indexspemﬁedb}f mdexw

' Returns less than zero if the invoking string is less than sfr, greater

than zero if the invoking string is greater than str, and zero if the
strings are equall.

Searches the invoking strlngfc:rﬂ‘ne subsfriﬁg 5pe-:|ﬁed b)f str. Returns
the index of the first match or —1 on failure.

11111

Searches the invoking string for the substring specified by str. Returns
the index of the last match or —1 on failure.

string substring(int startindex, int stoplndex)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

