

 Recursion
 Understanding “static”

 Recursion

- A method can call itself, that is recursion
- Ex: find factorial of N
 where factorial is the product of integers 1 to N
 For N = 3, factorial of 3 = 1 x 2 x 3 = 6

- Factorial can be calculated without recursion
 using an iterative approach based on a for loop

- An alternative is to use recursion

class Factorial { // A recursive function
 int factR(int n) {
 int result;

 if(n==1) return 1;
 result = factR(n-1) * n;
 return result;
 }
}
class Recursion {
 public static void main(String args[]) {
 Factorial f = new Factorial();

 System.out.println("Factorial of 4 is " + f.factR(4));
 }
}

 if(n==1) return 1;
 result = factR(n-1) * n;
 return result;

 if(n==1) return 1;
 result = factR(n-1) * n;
 return result;

class Factorial {
 int factR(int n) {
 int result;

 if(n==1) return 1;
 result = factR(n-1) * n;
 return result;
 }
}

Stack grows

static members

- Placing the keyword static ahead of a variable
 or method basically creates a global member
 of a class.

- The static member is shared among all objects
 that belong to its class, i.e. only one copy
 exists even though there may be many objects

- The static member can be used or called before
 any objects of its class are created

- Note that main is declared static. It is called by
 the Java virtual machine when a program begins

class StaticDemo {
 int x; // a normal instance variable
 static int y; // a static variable

 int sum() {
 return x + y;
 }
}

(keep this class definition in mind)

Consider a class with two variables, one static
 and one not static. One method is defined
 that adds these two variables and returns sum:

class SDemo {
 public static void main(String args[]) {

StaticDemo.y = 5; // y is referenced before
// object creation

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
 public static void main(String args[]) {

StaticDemo.y = 5; // y is referenced before
// object creation

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

15 and 25

class SDemo {
 public static void main(String args[]) {

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;
 ob1.y = 25; // y assigned value via ob1

// (for demo only)

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
 public static void main(String args[]) {

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;
 ob1.y = 25; // y assigned value via ob1

// (for demo only)

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

35 and 45

class SDemo {
 public static void main(String args[]) {

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;
 ob2.y = 25; // y assigned value via ob2

// (for demo only)

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

class SDemo {
 public static void main(String args[]) {

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;
 ob2.y = 25; // y assigned value via ob2

// (for demo only)

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

35 and 45

class SDemo {
 public static void main(String args[]) {

 StaticDemo ob1 = new StaticDemo();
 StaticDemo ob2 = new StaticDemo();

 ob1.x = 10;
 ob2.x = 20;
 ob2.y = 25; // y assigned value via ob2

// (for demo only)

System.out.println(ob1.sum,” and “, ob2.sum);

resulting in ?

35 and 45

Same result assigning to either ob1.y or ob2.y

Note: In the prior slides a value was assigned
to y using ob1.y or ob2.y which means y was
being accessed via an object. Since y was declared
static normally it should be accessed via the
class name, i.e. StaticDemo.y as was done in
the first slide where a value was assigned to y.

 Static Blocks

- A static block can be defined in a class

- The static block is executed when the
 class is first loaded, prior to when
 constructors or methods are executed

- Can be thought of as initialization code

class StaticBlock {
 static double rootOf2;
 static double rootOf3;

 static { // executes when class is loaded
 System.out.println("Inside static block.");
 rootOf2 = Math.sqrt(2.0);
 rootOf3 = Math.sqrt(3.0);
 }

 StaticBlock(String msg) {
 System.out.println(msg);
 }
}

class SDemo3 {
public static void main(String args[]) {

StaticBlock ob = new StaticBlock(“Inside Constructor”);

System.out.println(“Square root of 2 is “ +
StaticBlock.rootOf2);

System.out.println(“Square root of 3 is “ +
StaticBlock.rootOf3);

}
}

class SDemo3 {
public static void main(String args[]) {

StaticBlock ob = new StaticBlock(“Inside Constructor”);

System.out.println(“Square root of 2 is “ +
StaticBlock.rootOf2);

System.out.println(“Square root of 3 is “ +
StaticBlock.rootOf3);

}
}

(Note that since the two variables were declared static
 they are being referred to using the name of the class)

class SDemo3 {
public static void main(String args[]) {

StaticBlock ob = new StaticBlock(“Inside Constructor”);

System.out.println(“Square root of 2 is “ +
StaticBlock.rootOf2);

System.out.println(“Square root of 3 is “ +
StaticBlock.rootOf3);

}
}

Output is:

Inside static block. Printed before object was constructed
Inside Constructor. Printed when object was constructed
Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508077688772

string substring(int startIndex, int stopIndex)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

