

Access modifiers
 Argument passing

Method overloading
Constructor overloading

 Java's Access Modifiers

- public
- private
- protected (will cover in chapter 8)

- default is assumed if no modifier present
same as public -

unless program is broken into packages

(packages are a grouping of classes)

When a member of a class is labeled public
it can be accessed by any other code in
your program
 including methods defined
 in other classes.

ex:
class myClass {
 public int varX; data

 public checkBounds(int k) { method
 ….
 }
}

When a member of a class is labeled private
it can only be accessed by methods within
that class.

ex:
class myClass {
 private int varX; data

 private checkBounds(int k) { method
 ….
 }
}

When a member of a class has no access
specification the default is used, which is
the same as public ...
 Unless
the program is broken into packages

(packages are groupings of classes which
help with program organization and also
access control. Chapter 8 will cover this)

 Argument Passing

- call-by-value (pass-by-value)
copies the value of an argument

 the method to which a value is passed
 cannot change the original variable
 in the main

 Argument Passing (continued)

- call-by-reference (pass-by-reference)
a reference to an object is passed

 the location of the object is passed
 to the called method, not the object
 itself.

 When the called method changes the
 contents of a variable in the object, the
 original object is changed.

 Method Overloading

- one way that Java implements polymorphism

- overloading means two or more methods within the
 same class can share the same name ….
 so long as their parameter definitions are different

- For example, a method that adds two private
 variables could have an integer version and
 a real number version (i.e. a double type)

- Constructors in a class can be overloaded as well
 as methods

// Demonstrate method overloading.
class Overload {

 void ovlDemo() {
 System.out.println("No parameters");
 }

 // Overload for one integer parameter.
 void ovlDemo(int a) {
 System.out.println("One parameter: " + a);
 }

 // Overload for two integer parameters.
 int ovlDemo(int a, int b) {
 System.out.println("Two parameters: " + a + " " + b);
 return a + b;
 }
}

class OverloadDemo {
 public static void main(String args[]) {
 Overload ob = new Overload();

 ob.ovlDemo();
 System.out.println();

 ob.ovlDemo(2);
 System.out.println();
 }
}

Constructor overloading works the same as
for method overloading. The data type of and
number of parameters being passed to a constructor
will determine which constructor will be used if there
are multiple constructors.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

