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Traditional Multi-tasking 

-  One CPU
-  Many users, each wishing to use a computer
-  Fast CPU (relatively speaking) so share it

 - Time slice
 - Works well for human interaction
 - Not so well for compute intensive applications

-  Provided by the operating system

-  Referred to as process based
-  A program is the smallest unit of code that can be
   dispatched by the scheduler



  

Example of process based multitasking

-  Running your word processor simultaneous with
   receiving email

-  Printing a document from a word processor and
   simultaneously googling something

-  



  

Multithreading

-  a multithreaded program contains two or more
    parts that can run concurrently
-  each part is called a thread
-  each thread defines a separate path of execution

-  Java handles threads



  

A thread can be in one of several states:

  > running

  > ready to run  (as soon as it gets CPU time)

  > suspended

 -  if suspended, can later be resumed

  > blocked

 -  waiting for resources

  > terminated

  



  

In Java, multithreading is built upon the Thread class
                                    and
a companion interface:  Runnable

Two ways to create a runnable object:
>  implement the Runnable interface
>  extend the Thread class

Both approaches use the Thread class to instantiate,
access, and control the thread.  The difference is
how a thread-enabled class is created.



  

-  The Runnable interface abstracts a unit of code

-  A thread can be constructed on any object that
    implements the Runnable interface

-  Runnable defines only one method called run( )
    which is declared like this:

public void run( ) {
// code that makes up the thread
//   goes here

}



  

Here is what run( ) can do:
- call other methods
- use other classes
- declare variables

The difference, compared with a “regular” program
   is that run( ) establishes the entry point for a concurrent
   thread of execution within a program. 

A thread ends when run( ) returns



  

Methods defined by the Thread class



  

1) create a class that implements Runnable
2) instantiate an object of type Thread on an object

of that class
3) start the thread



  

class MyThread implements Runnable {
  String thrdName;

  MyThread(String name) {
    thrdName = name;
  }

  // Entry point of thread.
  public void run() {
    System.out.println(thrdName + " starting.");
    try {
      for(int count=0; count < 10; count++) {
        Thread.sleep(400);
        System.out.println("In " + thrdName +
                           ", count is " + count);
      }
    }
    catch(InterruptedException exc) {
      System.out.println(thrdName + " interrupted.");
    }
    System.out.println(thrdName + " terminating.");
  }
}



  

class MyThread implements Runnable {
  String thrdName;
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    thrdName = name;
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  // Entry point of thread.
  public void run() {
     System.out.println(thrdName + " starting.");
     try {
        for(int count=0; count < 10; count++) {
          Thread.sleep(400);
          System.out.println("In " + thrdName +
                           ", count is " + count);
        }
     }
     catch(InterruptedException exc) {
        System.out.println(thrdName + " interrupted.");
     }
     System.out.println(thrdName + " terminating.");

  } (end of run( ) method, i.e. the thread)

}      (end of MyThread class)



  

class UseThreads {
  public static void main(String args[]) {
    System.out.println("Main thread starting.");

    // First, construct a MyThread object.
    MyThread mt = new MyThread("Child #1");

    // Next, construct a thread from that object.
    Thread newThrd = new Thread(mt);

    // Finally, start execution of the thread.
    newThrd.start();

    for(int i=0; i<50; i++) {
      System.out.print(".");
      try {
        Thread.sleep(100);
      }
      catch(InterruptedException exc) {
        System.out.println("Main thread interrupted.");
      }
    }

    System.out.println("Main thread ending.");
  }
}
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    for(int i=0; i<50; i++) {
      System.out.print(".");
      try {
        Thread.sleep(100);
      }
      catch(InterruptedException exc) {
        System.out.println("Main thread interrupted.");
      }
    }

    System.out.println("Main thread ending.");
  }
}



  

Main thread starting.
.Child #1 starting.
...In Child #1, count is 0
....In Child #1, count is 1
....In Child #1, count is 2
....In Child #1, count is 3
....In Child #1, count is 4
....In Child #1, count is 5
....In Child #1, count is 6
....In Child #1, count is 7
....In Child #1, count is 8
....In Child #1, count is 9
Child #1 terminating.
..........Main thread ending.



  

// Improved MyThread.

class MyThread implements Runnable {
  Thread thrd;

  // Construct a new thread.
  MyThread(String name) {
    thrd = new Thread(this, name);
    thrd.start(); // start the thread
  }



  

  // Begin execution of new thread.
  public void run() {
    System.out.println(thrd.getName() + " starting.");
    try {
      for(int count=0; count<10; count++) {
        Thread.sleep(400);
        System.out.println("In " + thrd.getName() +
                           ", count is " + count);
      }
    }
    catch(InterruptedException exc) {
      System.out.println(thrd.getName() + "     
interrupted.");
    }
    System.out.println(thrd.getName() + " terminating.");
  }
}



  

class UseThreadsImproved {
  public static void main(String args[]) {
    System.out.println("Main thread starting.");

    MyThread mt = new MyThread("Child #1");

    for(int i=0; i < 50; i++) {
      System.out.print(".");
      try {
        Thread.sleep(100);
      }
      catch(InterruptedException exc) {
        System.out.println("Main thread interrupted.");
      }
    }

    System.out.println("Main thread ending.");
  } 
}



  

A way to determine if a thread has completed:

method   isAlive( )

Another way is method  join( )



  

class UseThreadsImproved {
  public static void main(String args[]) {
    System.out.println("Main thread starting.");

    MyThread mt = new MyThread("Child #1");

    do {
    System.out.print(".");
    try {
    Thread.sleep(100);
    }
    catch(InterruptedException exc) {
    System.out.println("Main thread interrupted.");
    }
    } while (mt.thrd.isAlive());
    
    System.out.println("Main thread ending.");
  }
}



  

.Child #1 starting.

....In Child #1, count is 0

....In Child #1, count is 1

....In Child #1, count is 2

....In Child #1, count is 3

....In Child #1, count is 4

....In Child #1, count is 5

....In Child #1, count is 6

....In Child #1, count is 7

....In Child #1, count is 8

....In Child #1, count is 9
Child #1 terminating.
Main thread ending

Output when using isAlive
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