

Multithreaded Programming

http://www.motifake.com/multi-tasking-baby-dishes-bath-wash-demotivational-posters-118837.html

http://thechive.com/2014/01/15/champions-of-multitasking-35-photos/

www.funscrape.com/Meme/62260

Traditional Multi-tasking

- One CPU
- Many users, each wishing to use a computer
- Fast CPU (relatively speaking) so share it

 - Time slice
 - Works well for human interaction
 - Not so well for compute intensive applications

- Provided by the operating system

- Referred to as process based
- A program is the smallest unit of code that can be
 dispatched by the scheduler

Example of process based multitasking

- Running your word processor simultaneous with
 receiving email

- Printing a document from a word processor and
 simultaneously googling something

-

Multithreading

- a multithreaded program contains two or more
 parts that can run concurrently
- each part is called a thread
- each thread defines a separate path of execution

- Java handles threads

A thread can be in one of several states:

 > running

 > ready to run (as soon as it gets CPU time)

 > suspended

 - if suspended, can later be resumed

 > blocked

 - waiting for resources

 > terminated

In Java, multithreading is built upon the Thread class
 and
a companion interface: Runnable

Two ways to create a runnable object:
> implement the Runnable interface
> extend the Thread class

Both approaches use the Thread class to instantiate,
access, and control the thread. The difference is
how a thread-enabled class is created.

- The Runnable interface abstracts a unit of code

- A thread can be constructed on any object that
 implements the Runnable interface

- Runnable defines only one method called run()
 which is declared like this:

public void run() {
// code that makes up the thread
// goes here

}

Here is what run() can do:
- call other methods
- use other classes
- declare variables

The difference, compared with a “regular” program
 is that run() establishes the entry point for a concurrent
 thread of execution within a program.

A thread ends when run() returns

Methods defined by the Thread class

1) create a class that implements Runnable
2) instantiate an object of type Thread on an object

of that class
3) start the thread

class MyThread implements Runnable {
 String thrdName;

 MyThread(String name) {
 thrdName = name;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrdName + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrdName +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrdName + " interrupted.");
 }
 System.out.println(thrdName + " terminating.");
 }
}

class MyThread implements Runnable {
 String thrdName;

 MyThread(String name) {
 thrdName = name;
 }

 // Entry point of thread.
 public void run() {
 System.out.println(thrdName + " starting.");
 try {
 for(int count=0; count < 10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrdName +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrdName + " interrupted.");
 }
 System.out.println(thrdName + " terminating.");

 } (end of run() method, i.e. the thread)

} (end of MyThread class)

class UseThreads {
 public static void main(String args[]) {
 System.out.println("Main thread starting.");

 // First, construct a MyThread object.
 MyThread mt = new MyThread("Child #1");

 // Next, construct a thread from that object.
 Thread newThrd = new Thread(mt);

 // Finally, start execution of the thread.
 newThrd.start();

 for(int i=0; i<50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

class UseThreads {
 public static void main(String args[]) {
 System.out.println("Main thread starting.");

 // First, construct a MyThread object.
 MyThread mt = new MyThread("Child #1");

 // Next, construct a thread from that object.
 Thread newThrd = new Thread(mt);

 // Finally, start execution of the thread.
 newThrd.start();

 for(int i=0; i<50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

Main thread starting.
.Child #1 starting.
...In Child #1, count is 0
....In Child #1, count is 1
....In Child #1, count is 2
....In Child #1, count is 3
....In Child #1, count is 4
....In Child #1, count is 5
....In Child #1, count is 6
....In Child #1, count is 7
....In Child #1, count is 8
....In Child #1, count is 9
Child #1 terminating.
..........Main thread ending.

// Improved MyThread.

class MyThread implements Runnable {
 Thread thrd;

 // Construct a new thread.
 MyThread(String name) {
 thrd = new Thread(this, name);
 thrd.start(); // start the thread
 }

 // Begin execution of new thread.
 public void run() {
 System.out.println(thrd.getName() + " starting.");
 try {
 for(int count=0; count<10; count++) {
 Thread.sleep(400);
 System.out.println("In " + thrd.getName() +
 ", count is " + count);
 }
 }
 catch(InterruptedException exc) {
 System.out.println(thrd.getName() + "
interrupted.");
 }
 System.out.println(thrd.getName() + " terminating.");
 }
}

class UseThreadsImproved {
 public static void main(String args[]) {
 System.out.println("Main thread starting.");

 MyThread mt = new MyThread("Child #1");

 for(int i=0; i < 50; i++) {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 }

 System.out.println("Main thread ending.");
 }
}

A way to determine if a thread has completed:

method isAlive()

Another way is method join()

class UseThreadsImproved {
 public static void main(String args[]) {
 System.out.println("Main thread starting.");

 MyThread mt = new MyThread("Child #1");

 do {
 System.out.print(".");
 try {
 Thread.sleep(100);
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 }
 } while (mt.thrd.isAlive());

 System.out.println("Main thread ending.");
 }
}

.Child #1 starting.

....In Child #1, count is 0

....In Child #1, count is 1

....In Child #1, count is 2

....In Child #1, count is 3

....In Child #1, count is 4

....In Child #1, count is 5

....In Child #1, count is 6

....In Child #1, count is 7

....In Child #1, count is 8

....In Child #1, count is 9
Child #1 terminating.
Main thread ending

Output when using isAlive

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

