MATH 423, Complex Analysis, Spring, 2006

INSTRUCTOR: Dr. Kenneth L. Wiggins, Office: 338 KRH , Office Hours: $3 \mathrm{M} ; 2 \mathrm{Tu}, \mathrm{W}$, Th; 11 F , Other office hours by appointment, Phone: (509) 527-2088, E-mail: wiggke@wwc.edu

BULLETIN DESCRIPTION: Study of functions of a complex variable, the geometry of elementary functions, integration, power series, calculus of residues, and conformal mapping. Prerequisite: MATH 283. Offered odd years only.

OBJECTIVES: It is expected that, after finishing this course, the student will understand the basic ideas of complex analysis including analytic functions, infinite series, and residue theory.

TEXT: Complex Analysis for Mathematics and Engineering, 5th edition, by Mathews and Howell, Jones and Bartlett, 2006

Assessment: All assessment will be based on both the correctness and quality of your work, including the quality of your presentation.

Assessment Category	Weights
Homework \& quizzes	15%
Three tests	50%
Final examination	35%

Grade	Percent	Grade	Percent	Grade	Percent	Grade	Percent
A	$91-100 \%$	B	$83-85 \%$	C	$70-74 \%$	D	$58-61 \%$
A-	$89-90 \%$	B-	$80-82 \%$	C-	$65-69 \%$	D-	$55-57 \%$
B+	$86-88 \%$	C+	$75-79 \%$	D+	$62-64 \%$	F	$0-54 \%$

HOMEWORK: Homework will be collected regularly. Papers will be due at the beginning of class the day after they are assigned. However, they may be turned in the following day with a 10% penalty. Papers more than one day late will not be accepted.

TESTS: Three 50-minute tests will be given.

FINAL EXAMINATION: This test is scheduled for Wednesday, June 7, at 8 AM. Attendance is required, so make your travel plans early with this appointment in mind.

DISABILITIES: If you have a physical and/or learning disability and require accommodations, please contact your instructor or the Special Services office at 527-2090.
This syllabus is available in alternative print formats upon request. Please ask your instructor.

TENTATIVE SCHEDULE:

Week	Topic	Assignment
1	Complex numbers	$\begin{aligned} & \text { 1.1 \#3a } \\ & 1.2 \text { \#1afh, } 4 \text { (1-13,1-14, 1-15 only),6ab } \\ & 1.3 \text { \#1c, 2a, 6d, } 8 \\ & 1.4 \text { \#1d, 2a, 3f, 5f, 7, } 9 \\ & 1.5 \# 1 \mathrm{c}, 5 \mathrm{~d}, 15 \end{aligned}$
2	Topology Functions and mappings $W=z^{n} \text { and } W=z^{1 / n}$	$\begin{aligned} & 1.6 \# 1 \mathrm{~d}, 2 \mathrm{a}, 5,9 \text { (i, ii, iii, iv, vii only } \\ & \text { - be brief, formal proofs not required), } 10 \\ & 2.1 \# 1 \mathrm{a}, 4 \mathrm{a}, 6 \mathrm{~b}, 7 \mathrm{c}, 12 \mathrm{a} \\ & 2.2 \# 1 \mathrm{abf}, 5,9 \end{aligned}$
3	Limits and Continuity Branches of functions Differentiable functions Cauchy-Riemann equations	$\begin{aligned} & 2.3 \text { \#1ce, 2ab, 5a, 7, 9, } 17 \\ & 2.4 \text { \#1a, 6, 9a } \\ & 3.1 \text { \#1bc, 3bdf, 7a, } 8 \\ & 3.2 \text { \#1abc, 3, 7a, 9a, } 14 \end{aligned}$
4	Harmonic Functions Sequences and Series	$\begin{aligned} & 3.3 \text { \#1ab, } 5 \mathrm{~b}, 10 \\ & 4.1 \text { \#1ac, } 2,10,11,12,17 \end{aligned}$
5	Geometric Series Power Series Exponential function Logarithmic function	$\begin{aligned} & 4.3 \# 1 \mathrm{a}, 3 \\ & 4.4 \# 3 \mathrm{dg}, 4,5,6,8,12 \\ & 5.1 \# 1,4 \mathrm{~b}, 5 \mathrm{~b}, 9 \mathrm{~b}, 14 \mathrm{a}, 17 \\ & 5.2 \# 1 \mathrm{~b}, 2 \mathrm{a}, 3 \mathrm{a}, 5 \mathrm{a}, 10 \mathrm{a} \end{aligned}$
6	Complex exponents Trigonometry \& hyperbolic functions	5.3 \#2d (indicate principal value), $3,7,8$ $5.4 \# 5 \mathrm{~b}, 6 \mathrm{a}, 8 \mathrm{ab}, 9 \mathrm{a}, 11,16 \mathrm{f}$
7	Complex integrals Contour integrals	$\begin{aligned} & 6.1 \text { \#1a, 2, } \\ & 6.2 \text { \#1a, 2a, 5, 8, 9a, } 18 \end{aligned}$
8	The Cauchy-Gorsat Theorem Fundamental Theorems of Integration Cauchy Integral Formula Theorems of Morera and Liouville	$\begin{aligned} & 6.3 \# 1 \mathrm{bd}, 3,4,10,11 \\ & 6.4 \# 9,11,13,15,19 \\ & 6.5 \# 5,9,17,19 \\ & 6.6 \# 2,4 \mathrm{a}, 7 \mathrm{a}, 10 \end{aligned}$
9	Uniform convergence Taylor series Laurent series TEST \#2	$\begin{aligned} & 7.1 \# 9 \\ & 7.2 \# 1 \mathrm{c}, 3 \mathrm{a}, 7 \mathrm{a}, 15,17 \\ & 7.3 \# 3,5,8,9,12 \end{aligned}$
10	Singularities (quick coverage without proofs) The Residue Theorem Trigonometric Integrals (if time permits)	$\begin{aligned} & 7.4 \# 2 \mathrm{~b}, 3 \mathrm{a} \\ & 8.1 \# 1 \mathrm{~d}, 3 \mathrm{c}, 9 \mathrm{c} \\ & 8.2 \# 5 \end{aligned}$

