MATH 423, Complex Analysis, Spring, 2006

INSTRUCTOR: Dr. Kenneth L. Wiggins, Office: 338 KRH, Office Hours: 3 M; 2 Tu,W,Th; 11 F, Other office hours by appointment, Phone: (509) 527-2088, E-mail: wiggke@wwc.edu

BULLETIN DESCRIPTION: Study of functions of a complex variable, the geometry of elementary functions, integration, power series, calculus of residues, and conformal mapping. Prerequisite: MATH 283. Offered odd years only.

OBJECTIVES: It is expected that, after finishing this course, the student will understand the basic ideas of complex analysis including analytic functions, infinite series, and residue theory.

TEXT: Complex Analysis for Mathematics and Engineering, 5th edition, by Mathews and Howell, Jones and Bartlett, 2006

Assessment: All assessment will be based on both the correctness and quality of your work, including the quality of your presentation.

		Assess	Assessment Category			Veights		
		Home	Homework & quizzes			15%		
		Three	Three tests			50%		
		Final	Final examination			35%		
Grade	Percent	Grade	Percent	Grad	le	Percent	Grade	Percent
Α	91-100%	В	83-85%	С		70-74%	D	58-61%
A-	89-90%	B-	80-82%	C-		65-69%	D-	55-57%
B+	86-88%	C+	75-79%	D+		62-64%	F	0-54%

HOMEWORK: Homework will be collected regularly. Papers will be due at the beginning of class the day after they are assigned. However, they may be turned in the following day with a 10% penalty. Papers more than one day late will not be accepted.

TESTS: Three 50-minute tests will be given.

FINAL EXAMINATION: This test is scheduled for Wednesday, June 7, at 8 AM. Attendance is required, so make your travel plans early with this appointment in mind.

DISABILITIES: If you have a physical and/or learning disability and require accommodations, please contact your instructor or the Special Services office at 527-2090.

This syllabus is available in alternative print formats upon request. Please ask your instructor.

TENTATIVE SCHEDULE:

Week	Topic	Assignment
1	Complex numbers	1.1 #3a
		1.2 #1afh, 4 (1-13,1-14, 1-15 only),6ab
		$1.3 \ \#1c, 2a, 6d, 8$
		$1.4 \ \#1d, 2a, 3f, 5f, 7, 9$
		$1.5 \ \#1c, \ 5d, \ 15$
2	Topology	1.6 #1d, 2a, 5, 9 (i, ii, iii, iv, vii only
		– be brief, formal proofs not required), 10
	Functions and mappings	2.1 #1a, 4a, 6b, 7c, 12a
	$W = z^n$ and $W = z^{1/n}$	2.2 #1abf, 5, 9
3	Limits and Continuity	$2.3 \ \#1ce, 2ab, 5a, 7, 9, 17$
	Branches of functions	2.4 #1a, 6, 9a
	Differentiable functions	3.1 #1bc, 3bdf, 7a, 8
	Cauchy-Riemann equations	3.2 #1abc, 3, 7a, 9a, 14
4	Harmonic Functions	3.3 #1ab, 5b, 10
	Sequences and Series	$4.1 \ \#1ac, 2, 10, 11, 12, 17$
5	Geometric Series	4.3 # 1a, 3
	Power Series	$4.4 \ \#3dg, 4, 5, 6, 8, 12$
	Exponential function	5.1 # 1, 4b, 5b, 9b, 14a, 17
	Logarithmic function	$5.2 \ \#1b, 2a, 3a, 5a, 10a$
6	Complex exponents	5.3 # 2d (indicate principal value), 3, 7, 8
	Trigonometry & hyperbolic functions	5.4 # 5b, 6a, 8ab, 9a, 11, 16f
7	Complex integrals	6.1 #1a, 2, 3
	Contour integrals	$6.2 \ \#1a, \ 2a, \ 5, \ 8, \ 9a, \ 18$
8	The Cauchy-Gorsat Theorem	$6.3 \ \#1bd, \ 3, \ 4, \ 10, \ 11$
	Fundamental Theorems of Integration	$6.4 \ \#9, \ 11, \ 13, \ 15, \ 19$
	Cauchy Integral Formula	$6.5 \ \#5, \ 9, \ 17, \ 19$
	Theorems of Morera and Liouville	6.6 #2, 4a, 7a, 10
9	Uniform convergence	$7.1 \ \#9$
	Taylor series	$7.2 \ \#1c, \ 3a, \ 7a, \ 15, \ 17$
	Laurent series	$7.3 \ \#3, 5, 8, 9, 12$
	TEST #2	
10	Singularities (quick coverage without proofs)	7.4 #2b, 3a
	The Residue Theorem	$8.1 \ \text{#1d}, 3c, 9c$
	Trigonometric Integrals (if time permits)	8.2 # 5