Lecture 5:
DC &
Transient Response
Outline

- Pass Transistors
- DC Response
- Logic Levels and Noise Margins
- Transient Response
- RC Delay Models
- Delay Estimation
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change

2) If the length of a transistor increases, the current will
 increase decrease not change

3) If the supply voltage of a chip increases, the maximum
 transistor current will
 increase decrease not change

4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change

5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance
 of each transistor will
 increase decrease not change
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change

2) If the length of a transistor increases, the current will
 increase decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will
 increase decrease not change

4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change

5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will
 increase decrease not change
Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}
- $V_g = V_{DD}$
 - If $V_s > V_{DD}-V_t$, $V_{gs} < V_t$
 - Hence transistor would turn itself off
- nMOS pass transistors pull no higher than $V_{DD}-V_{tn}$
 - Called a degraded “1”
 - Approaches degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
- Transmission gates are needed to pass both 0 and 1
Pass Transistor Ckts

\[V_{DD} \]

\[V_{SS} \]

\[V_{DD} \]
DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Example: Inverter
 - When $V_{in} = 0 \rightarrow V_{out} = V_{DD}$
 - When $V_{in} = V_{DD} \rightarrow V_{out} = 0$
 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} <$</td>
<td>$V_{gsn} >$</td>
<td>$V_{gsn} >$</td>
</tr>
<tr>
<td>$V_{dsn} <$</td>
<td></td>
<td>$V_{dsn} >$</td>
</tr>
</tbody>
</table>

![nMOS Circuit Diagram](image-url)
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{gsp} > V_{tp})</td>
<td>(V_{gsp} < V_{tp})</td>
<td>(V_{gsp} < V_{tp})</td>
</tr>
<tr>
<td>(V_{in} > V_{DD} + V_{tp})</td>
<td>(V_{in} < V_{DD} + V_{tp})</td>
<td>(V_{in} < V_{DD} + V_{tp})</td>
</tr>
<tr>
<td>(V_{dsp} > V_{gsp} - V_{tp})</td>
<td>(V_{dsp} < V_{gsp} - V_{tp})</td>
<td>(V_{dsp} < V_{gsp} - V_{tp})</td>
</tr>
<tr>
<td>(V_{out} > V_{in} - V_{tp})</td>
<td>(V_{out} < V_{in} - V_{tp})</td>
<td>(V_{out} < V_{in} - V_{tp})</td>
</tr>
</tbody>
</table>

\[
V_{gsp} = V_{in} - V_{DD} \quad V_{tp} < 0
\]
\[
V_{dsp} = V_{out} - V_{DD}
\]
Make pMOS wider than nMOS such that $\beta_n = \beta_p$
Current vs. $V_{\text{out}}, V_{\text{in}}$

![Diagram showing current vs. output and input voltage](image)

$V_{\text{in}0}, V_{\text{in}1}, V_{\text{in}2}, V_{\text{in}3}, V_{\text{in}4}, V_{\text{in}5}$

$I_{\text{dsn}}, |I_{\text{dps}}|$
For a given V_{in}:

- Plot I_{dsn}, I_{dsp} vs. V_{out}
- V_{out} must be where $|\text{currents}|$ are equal
Load Line Analysis

Load Line Analysis

5: DC and Transient Response CMOS VLSI Design 4th Ed.
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot

![Graph showing DC Transfer Curve with transcribed points and labeling of V_{in0} to V_{in5} and V_{out}]
Operating Regions

- Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Key: A, B, C, D, E
- Labels: V_{DD}, V_{in}, V_{out}, $V_{DD}/2$, $V_{DD} + V_{tp}$
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called *skewed* gate

![Diagram showing the effect of beta ratio on the switching point of a gate](image-url)
How much noise can a gate input see before it does not recognize the input?

- **Noise Margins**
 - **Input Characteristics**
 - Logical High Input Range
 - Logical Low Input Range
 - **Output Characteristics**
 - Logical High Output Range
 - Logical Low Output Range

- **Indeterminate Region**
 - \(V_{IH} \)
 - \(V_{IL} \)
 - \(V_{OL} \)
 - \(V_{OH} \)
 - \(V_{DD} \)
 - \(GND \)
Logic Levels

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

\[V_{DD} \]
\[V_{in} \]
\[V_{out} \]
\[\beta_p/\beta_n > 1 \]
Transient Response

- **DC analysis** tells us V_{out} if V_{in} is constant
- **Transient analysis** tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa
Inverter Step Response

- Ex: find step response of inverter driving load cap

\[V_{in}(t) = \]

\[V_{out}(t < t_0) = \]

\[\frac{dV_{out}(t)}{dt} = \]

\[I_{dsn}(t) = \begin{cases}
\frac{V_{in}(t)}{C_{load}} & t \leq t_0 \\
\frac{V_{out}}{C_{load}} & V_{out} > V_{DD} - V_t \\
\frac{V_{out}}{C_{load}} & V_{out} < V_{DD} - V_t
\end{cases} \]
Delay Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing $V_{DD}/2$

- t_{pdf}: falling propagation delay
 - From input to falling output crossing $V_{DD}/2$

- t_{pd}: average propagation delay
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$

- t_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}

- t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
Delay Definitions

- $t_{c_{dr}}$: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- $t_{c_{df}}$: falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- $t_{c_{d}}$: average contamination delay
 - $t_{pd} = (t_{c_{dr}} + t_{c_{df}})/2$
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write, may hide insight

![Diagram of inverter delay with labels](image_url)

- V_{in}
- V_{out}
- t_{pd} = 66ps
- t_{pdr} = 83ps

5: DC and Transient Response CMOS VLSI Design 4th Ed.
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “What if?”
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance \(R \)
 - So that \(t_{pd} = RC \)
- Characterize transistors by finding their effective \(R \)
 - Depends on average current as gate switches
Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay
RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width
RC Values

- Capacitance
 - $C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width in 0.6 \(\mu\text{m}\)
 - Gradually decline to 1 fF/\(\mu\text{m}\) in 65 nm

- Resistance
 - $R \approx 10 \text{ K}\Omega \cdot \mu\text{m}$ in 0.6 \(\mu\text{m}\) process
 - Improves with shorter channel lengths
 - 1.25 K\Omega \cdot \mu\text{m}$ in 65 nm process

- Unit transistors
 - May refer to minimum contacted device (4/2 \(\lambda\))
 - Or maybe 1 \(\mu\text{m}\) wide device
 - Doesn’t matter as long as you are consistent
Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

\[d = 6RC \]
Delay Model Comparison

![Graph showing delay model comparison](image-url)
Example: 3-input NAND

Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
Annotate the 3-input NAND gate with gate and diffusion capacitance.
Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

\[t_{pd} \approx \sum_{\text{nodes } i} R_{i \rightarrow \text{source}} C_i \]

\[= R_1 C_1 + (R_1 + R_2) C_2 + \ldots + (R_1 + R_2 + \ldots + R_N) C_N \]
Example: 3-input NAND

- Estimate worst-case rising and falling delay of 3-input NAND driving \(h \) identical gates.

\[
t_{\text{pdr}} = (9 + 5h)RC
\]

\[
t_{\text{pdf}} = (3C)\left(\frac{R}{3}\right) + (3C)\left(\frac{R}{3} + \frac{R}{3}\right) + \left[(9 + 5h)C\right]\left(\frac{R}{3} + \frac{R}{3} + \frac{R}{3}\right)
\]

\[
= (12 + 5h)RC
\]
Delay Components

- Delay has two parts
 - *Parasitic delay*
 - 9 or 12 RC
 - Independent of load
 - *Effort delay*
 - 5h RC
 - Proportional to load capacitance
Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

\[t_{cdr} = \left[(9 + 5h)C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right) RC \]
Diffusion Capacitance

- We assumed contacted diffusion on every s/d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too
Which layout is better?
Summary

- Pass Transistors
- DC Response
- Logic Levels and Noise Margins
- Transient Response
- RC Delay Models
- Delay Estimation