1. Logon to the Linux system. Open a terminal window and create a class directory, change to your new directory, and create another new directory entitled lab3. Cd into the lab3 directory.

 Useful commands: mkdir, cd

2. Start the Xilinx version 14.7 integrated software environment (ISE) software by entering ise at the command prompt and pressing enter (note the command is lower case). ISE may start up with a prior design loaded. If so, click File on the tool bar and select close. Click OK in the Tip-Of-The-Day window.

3. Four “buttons” are displayed in the upper left. Create a new project by clicking on the New Project... button:
 a) A New Project Wizard pop-up window will open. The path to a prior project may be shown. Before entering the name of a new project, select the directory where the new project will be created. Click the little box with dots (...) to the right of the Location field and navigate to the desired directory where you wish to place your design.
b) Type in a project name (it will show up in the Location field also as you type). I suggest using demo1circuit as shown above.

c) Select Schematic as the top-level source type for the project.

d) Click Next.

e) The Project Settings screen should appear. Set it up as follows:

 Evaluation Dev Board: None specified
 Product Category: General Purpose
 Family: Spartan6
 Device: XC6SLX16
 Package: FTG256
 Speed: -3

 Top-level Source Type: Schematic (this field may be grayed out. That’s ok.)
 Synthesis Tool: XST (VHDL/Verilog)
 Simulator: ISim (VHDL/Verilog)
 Preferred Language: VHDL
 Property specification: Store all values

f) Click Next.

g) The Project Summary screen should appear. Look over the information. If something is not as you desire then use the Back button to go back and make a correction. Otherwise click Finish.

h) In the upper left of the screen is a box with the word Hierarchy at the top. Just left of that
is a row of iconic buttons. The top icon is **New Source**. Click on it.

i) The **New Source** wizard window should appear. Click on **Schematic** and then type in a file name. I suggest using a descriptive name but for the purposes of this tutorial, use `top_schematic`. Since designs can be created hierarchically, this naming convention will make clear that this is the highest level of your design and is a schematic type design block. Click **Next**. The **New Source Wizard Summary** will be displayed. Click **Finish**.

j) You may be told that the directory `xxx/nnnnn` (xxx represents a path string) does not exist, would you like to create it? Answer **yes**.
4. A blank schematic sheet should appear in the right 2/3 of the ISE window. On the left you should see a sub-window with several tabs near the bottom. Tabs include Start, Design, Files, Library, Symbols, Options.

a) Right click on the schematic in the right window and then click Object Properties at the bottom of the pop-up menu. A sheet size of 22x17 (C size) will be shown. Click on C=22x17 which should open a list of sheet sizes. For your first design click on A=11x8.5 and then click OK. The screen will likely show a grid of dots. Note that for larger designs you will want to use a B or C size sheet.
5. The next task is to create a simple circuit. The circuit will be an external signal coming in to an inverter and then going out again. Three circuit components \((ibuf, inv, obuf)\) and two connectivity symbols for specifying connections to the outside world will be required.

 a) Click on the **Symbols** tab at the bottom of the left subwindow. Two smaller windows should open with the top labeled **Categories** and the lower **Symbols**.

 b) Click on category **General** and symbol **Title**. Move the cursor right and a title block will move over the schematic sheet. Move it towards the lower right corner of the sheet and left-click to place it. Hit the Escape key to un-connect the cursor from the symbol. Grab the top edge of the title block by positioning the cursor over it and holding down the left mouse button. Move the symbol tight into the lower right corner of the sheet and release.

 c) Next, you are going to place components on the schematic. In the **Categories** window click on **IO** (scroll if needed). Find **ibuf** (input buffer) in the **Symbols** window below and left-click. Move your cursor to a location toward the left of the schematic sheet and centered vertically above the title block. Left-lick once.

 d) Repeat for **obuf** and align it horizontally with **ibuf** but to the right with enough space in-between to place an inverter on the sheet.

 e) In the **Categories** window select **Logic** and in the **Symbols** window find **inv** and place it between **ibuf** and **obuf**.
f) Next, the inverter needs to be wired to the input and output buffers. Along the left edge of the schematic window is a Tool bar. Select the third icon down, the Add Wire tool. On the schematic, single left-click to start a wire and double left-click to end it.

g) Next, I/O markers must be added to the "ibuf" input and "obuf" output. On the tool bar at the left of the schematic, select Add I/O Marker (7th icon down). In the Add I/O Marker Options panel on the left, click the Add an Input Marker option. Then, left-click on the end of the wire going into the ibuf. Next, select the Add an Output Marker option from the panel at the left and left-click on the end of the wire coming out of the obuf.

h) Default net names start with "XLXN" which is cryptic. Change the value of the Name attribute to reflect the signal usage by double left-clicking on an I/O marker. When the I/O marker’s object properties dialog box appears, select the Nets category and enter a meaningful value in the Name field of the I/O marker. I suggest "in1" and "out1" for our example circuit. Then click OK.
i) Next, we need to map our input and output signals to actual physical pins on the FPGA where we will implement our design. Double-click on the in1 I/O marker and an Object Properties window will open. On the left under Category, click on Nets. Towards the right of the window click on the New button. A New Attribute window will open with the default attribute name of LOC. For Attribute value, type in a P9 (switch 0 on the FPGA board). Click OK.

![New Attribute window](image)

j) Repeat for the other I/O marker. Assign out1 the Attribute value of L14 (LED 0 on the FPGA board).

6. When all parts are added and wired up you can do what is called Design Rule Check (DRC) of the schematic. This check does not tell you that the circuit will work, only that signals are connected to component inputs, etc. Messages from the DRC check are displayed in the transcript window at the bottom of the screen. DRC knows nothing about what your circuit is supposed to do.

a) From the tool bar at the left of the schematic click on the check mark symbol, 6th up from the bottom. Fix any errors or warnings that it flags.

7. Next you will synthesize the FPGA configuration information from the schematic you have entered.

a) First, set up a display of useful information. Under the schematic, click the tab labeled Design Summary. Then from the lower left tabs click on Design.

b) Next, on the horizontal tool bar at the top is a green arrow symbol, the Implement Top Module button. Left-click the green arrow. It may ask if you wish to save changes. If you don’t save, it will use the design as it was prior to your last edit. This step will take some time. There can be several seconds delay from when you click and when new info appears on the screen while the program code is downloaded from the server and run. There are several different programs that run. Information will scroll by in the transcript window if it is open and the Design Summary window will update. Watch the sequence of results as synthesis, place, and route occur.

c) Finally, in the lower left window double-click Generate Programming File to generate the bit map file that will be downloaded to configure the FPGA.
8. **Downloading your design to the FPGA**

At this point, make sure that the programming cable is connected between computer and FPGA board and then apply power to the FPGA board. Double-click **Configure Target Device** to start the iMPACT program. A Project Navigator window may open warning that no iMPACT project file exists. Click **OK**. The initial screen may look like this:
Double-click on **Boundary Scan**. The larger area to the right should turn white with a message “Right click to add device”. Right-click and in the pop-up box that appears select **Cable Setup**… The cable setup box looks like this:

If not already selected, select **Digilent USB JTAG Cable** and then Click **OK**.
Again, right-click on the large white window to the right and select **Initialize Chain**. The right window should look something like this:

A pop box will ask this:

![Auto Assign Configuration Files Query Dialog](image)

Click Yes. Configuration filenames have a .bit extension. Navigate if needed to the correct directory where your `top_schematic.bit` file is located and double-click it.
Because there is a second part on the FPGA board a window like this may appear:

![Assign New Configuration File dialog box](image)

Click **No**. (you don’t want to down load to the PROM memory chip).

Even though you said **No** to attaching the SPI memory part, a window like this may open as if to allow selection of a data file to be downloaded to memory. **Click Bypass:**
The next window is titled **Device Programming Properties**. It may state that there are no applicable properties for this device. Just click **OK**.

You are now ready to download the `top_schematic.bit` file to the FPGA. In the lower left window double-click **Program**. Or right-click on the FPGA in the right window. The FPGA will now contain your design. Before exiting **iMPACT**, I recommend that you do a cable disconnect under *Output* on the tool bar. (Disconnect All Cables).