In this chapter you will learn about:
• Representation of numbers in computers;
• Circuits used to perform arithmetic operations;
• Performance issues in large circuits.
7-Bit ASCII Code

<table>
<thead>
<tr>
<th>Bit positions 000</th>
<th>Bit positions 004</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

NUL Space SI Shift in
SOH Start of header DEL Data link escape
STX Start of text DLE Device control
ETX End of text NAK Negative acknowledgment
EOT End of transmission SYN Synchronous idle
ENQ Enquiry ETB End of transmitted block
ACK Acknowledge CAN Cancel (error in data)
BEL Bell BS End of record
BS Back space SUB Special sequence
HT Horizontal tab ESC Escape
LF Line feed FF File separator
VT Vertical tab GS Group separator
FF Form feed RS Record separator
CR Carriage return US Tash separator
SO Shift out DEL Delete/Backspace

Bit positions of code format: 010111111111

Unsigned vs. Signed Numbers

(a) Unsigned number

\[b_{n-1} \ldots b_1 b_0 \]

MSB

Magnitude

(b) Signed number

\[b_{n-1} b_{n-2} \ldots b_1 b_0 \]

Sign

0 denotes +

1 denotes –

MSB

Magnitude
Interpretation of Four-Bit Signed Integers

<table>
<thead>
<tr>
<th>abcd</th>
<th>Sign and magnitude</th>
<th>1’s complement</th>
<th>2’s complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111</td>
<td>+7</td>
<td>+7</td>
<td>+7</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
<td>+6</td>
<td>+6</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>0000</td>
<td>+0</td>
<td>+0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>-0</td>
<td>-7</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>-1</td>
<td>-6</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>-2</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-5</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>-6</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>-7</td>
<td>-0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Sign and Magnitude

- Magnitude of positive and negative numbers represented in the same way;
- Sign used to distinguish them;
- Simple to understand;
- Complicates hardware design.
Sign and Magnitude: Add/Subtract

- If both operands have the same sign, then addition is simple
 - Add magnitudes and copy the sign.
- If they have opposite signs, then must subtract smaller from the larger.
- This is complicated, so sign and magnitude is not used in computers anymore.

1’s Complement

- n-bit negative number found by subtracting its positive form from $2^n - 1$
 - $K_t = (2^n - 1) - P$
- Found by just complementing each bit.
- Used in earlier computers (pre-1970) but made hardware difficult with two representations for 0.
2’s Complement

- n-bit negative number found by subtracting its positive form from 2^n
 - $K_2 = 2^n - P$
 - $K_2 = K_1 + 1$
- Complement each bit and add 1.
- Probably the only form for signed numbers used in computers today.

Graphical Interpretation of Four-bit 2’s Complement Numbers

![Graphical Interpretation of Four-bit 2’s Complement Numbers](image-url)
2’s Complement Addition Examples

\[
\begin{align*}
(+5) & \quad 0101 \\
+ (+2) & \quad +0010 \\
\hline
(+7) & \quad 0111 \\
\end{align*}
\]

\[
\begin{align*}
(-5) & \quad 1011 \\
+ (+2) & \quad +0010 \\
\hline
(-3) & \quad 1101 \\
\end{align*}
\]

\[
\begin{align*}
(+5) & \quad 0101 \\
+ (-2) & \quad +1110 \\
\hline
(+3) & \quad 10011 \\
\end{align*}
\]

\[
\begin{align*}
(-5) & \quad 1011 \\
+ (-2) & \quad +1110 \\
\hline
(-7) & \quad 11001 \\
\end{align*}
\]

ignore

ignore

2’s Complement Subtraction Examples

\[
\begin{align*}
(+5) & \quad 0101 \\
- (+2) & \quad -0010 \\
\hline
(+3) & \quad 0011 \\
\end{align*}
\]

\[
\begin{align*}
0101 & \quad 0101 \\
+1110 & \quad +1110 \\
\hline
10011 & \quad 10011 \\
\end{align*}
\]

ignore

\[
\begin{align*}
(-5) & \quad 1011 \\
- (+2) & \quad -0010 \\
\hline
(-7) & \quad 11001 \\
\end{align*}
\]

\[
\begin{align*}
1011 & \quad 1011 \\
+1110 & \quad +1110 \\
\hline
11001 & \quad 11001 \\
\end{align*}
\]

ignore

\[
\begin{align*}
(+5) & \quad 0101 \\
- (-2) & \quad -1110 \\
\hline
(+7) & \quad 0111 \\
\end{align*}
\]

\[
\begin{align*}
0101 & \quad 0101 \\
+0010 & \quad +0010 \\
\hline
0111 & \quad 0111 \\
\end{align*}
\]

\[
\begin{align*}
(-5) & \quad 1011 \\
- (-2) & \quad -1110 \\
\hline
(-3) & \quad 1101 \\
\end{align*}
\]

\[
\begin{align*}
1011 & \quad 1011 \\
+0010 & \quad +0010 \\
\hline
1101 & \quad 1101 \\
\end{align*}
\]
Adder Circuits – Half Adder

(a) The four possible cases

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>c</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Truth table

(c) Circuit

(d) Graphical symbol

Adder Circuits – Full Adder

(a) Truth table

<table>
<thead>
<tr>
<th>C_i</th>
<th>x_i</th>
<th>y_i</th>
<th>c_{i+1}</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) Karnaugh maps

(c) Circuit
Alternative Full Adder

(a) Block diagram

(b) Detailed diagram

N-bit Ripple Carry Adder

• Major issue – propagation delay.
Faster Adders – Carry Lookahead

Adder / Subtractor Circuit
Binary Coded Decimal (BCD) Digits

<table>
<thead>
<tr>
<th>Decimal digit</th>
<th>BCD code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
</tbody>
</table>

One Digit BCD Adder
Other Arithmetic Circuits

- Multipliers;
- Dividers;
- Floating-point Processors.

Summary

In this chapter you learned about:
- Representation of numbers in computers;
- Circuits used to perform arithmetic operations;
- Performance issues in large circuits.