The exam will be comprehensive and closed book. No materials other than your pen or pencil may be used.
Study suggestions include:
 o Lecture material from class;
 o Lab material from lab, and lab handouts;
 o Homework specific issues;
 o Student presentation notes;
 o Student test questions from in-class project presentations.

Questions may come from topics covered in our reading, lecture, homework, or labs. Topics in **bold** have been covered since the first exam.

- **Lecture**
 - Course Introduction
 - Reference – Chapter 1
 - Typical instrumentation system components
 - Circuits review
 - Reference – Circuits text book
 - Ohm’s law, power, voltage dividers
 - Instrument loading, input and output impedance
 - AC Signals
 - Reference – Chapter 2.3
 - AC Measurement – True RMS, average values
 - Measurement Characteristics
 - Reference – Chapter 1, Lecture notes
 - Measurement terms – resolution, accuracy, precision, etc.
 - Measurement errors and sources
 - Systematic vs. random sources of error
 - Calibration
 - Sensor overview
 - Data Acquisition and Number Systems
 - Reference – Lecture notes
 - Analog vs. digital
 - Waveform characteristics
 - Binary number system
 - Number systems conversion
 - Digital sampling
 - Reference – Chapter 2.4-5
 - Analog-to-Digital conversion
 - Terms – Full scale range (span), sampling rate, resolution, etc.
 - Other terms – Quantization error, aliasing, Nyquist criteria
 - Data Integrity
 - Reference – Lecture notes
 - Single- vs. differential inputs
Fourier Series and Fourier Transforms
- Reference – Chapter 2.4-5
 - Sampling rate and number of samples in the time domain
 - Nyquist frequency and rate
 - Fourier Series
 - Symmetry – Odd, even
 - Frequency spacing in the frequency domain
Analog and Digital Filtering
- Reference – 6.8
 - Active vs. passive filters
 - Analog vs. digital filters
 - Filter types – low-pass, high-pass, band-pass, and band-stop
Sensor Overview
- Acceleration Sensors and Measurement
 - Reference – 12.2
 - Types and principles of operation
Strain Gauges and Strain Measurement
- Reference – 11.1-6
 - Types and principles of operation
Student Presentations
- Thermocouples
- Resistance Temperature Detectors
- Thermistors
- Pressure Measurement
- Piezo-electric and Piezo-resistive Transducers
- Distance Measurement
- Microelectromechanical Systems (MEMS)
- Force and Torque Measurement
- Acoustical Measurement
- Flow Measurement
- Ultrasonic Measurement
- Hall Effect and Magnetic Sensors

Lab
- Lab #1 – AC and DC Measurements
 - Ohm’s law
 - Voltage division
 - Loading effect
 - Sinusoidal and non-sinusoidal voltage measurement
- Lab #2 – Calibration
- Lab #3 – Data Acquisition
 - Sampling rate, number of samples, arbitrary waveform analysis
- Lab #4 – The Fourier Transform
 - Aliasing, sampling rate
- Lab #5 – Mobile Devices
- Lab #6 – Acceleration and Vibration Testing
 - Time domain and frequency domain (fft’s) analysis
- Lab #7 – Motion Analysis
 - Video analysis
 - Measurement of position, velocity, and acceleration
 - Filtering
• Fourier analysis and frequency components
 o Lab #8 – Strain Gauges and/or Force Measurement (Extra Credit)

• Homework
 o HW#1 – Basic concepts
 o HW#2 – Matlab and number systems
 o HW#3 – A/D Converter characteristics
 ▪ Sampling rate, bit-depth, full-scale range (span), resolution in terms of bits
 ▪ Terms related to ADC’s
 o HW#4 – Sampling and Fourier Series
 o HW#5 – Field trip
 o HW#6 – Matlab mobile app
 o HW#7 – Student presentations