This Lecture

- Signal Characteristics
 - Analog vs. Digital.
- Binary number system
Typical Instrumentation System

Data Acquisition and Control

- Computers are nearly always in the middle of any instrumentation system. They provide a complete interface between sensors and output devices.

Digital control system with analog I/O
Data Acquisition Systems

Analog Versus Digital

Analog
Continuous signal that can be quantized using an infinite number of amplitudes.

Digital
Discrete numbers that represent instantaneous amplitudes of an analog signal, generally measured at equally spaced points in time.
Analog Representation of Sound

Magnified vinyl phonograph record grooves viewed from above:

When viewed from the side, channel 1 goes up and down, and channel 2 goes side to side.

Analog to Digital Recording Chain

- **Microphone** converts acoustic to electrical energy. It’s a *transducer*.
- Continuously varying electrical energy is an analog representation of the sound pressure wave.
- An ADC (Analog to Digital Converter) converts an analog signal to an equivalent digital representation.
- A DAC (Digital to Analog Converter) converts a digital representation into an analog signal – like for your headphones.
Review - Properties of a Sinusoidal Waveform

The general form of sinusoidal wave is:

\[v(t) = V_m \sin(\omega t + \theta) \]

where:
- \(V_m \) is the amplitude (volts peak);
- \(\omega \) is the angular frequency (radian/sec), also \(2\pi f \);
- \(\theta \) is the phase shift in degrees or radians.

Frequency Review

\[T = \frac{1}{f} \]

Period \(\approx 6.28 \) seconds, Frequency \(= 0.1592 \) Hz
Amplitude Review

Peak: Blue 1 volt, Red 0.8 volts
Peak-to-Peak: Blue 2 volts, Red 1.6 volts
Average: 0 volts

Phase Shift Review

\[y_{\text{blue}} = \sin(t) \]
\[y_{\text{red}} = 0.8 \sin(t + 1) \]

Red leads Blue by 57.3 degrees (1 radian)

\[\phi = \frac{1}{6.28} \times 360^\circ = 57.3^\circ \]
Understanding “Digital” for Instrumentation

- I will keep the details to a minimum, but there is a need to understand some of the issues imposed on a measurement system by a computer in the control loop:
 - Binary number system.
 - Conversions between binary and decimal, decimal and binary.
 - Accuracy of conversions, what is gained and what is lost.

Numbers in Different Systems

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Octal</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0000</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>0001</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>0010</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>03</td>
<td>0011</td>
<td>03</td>
<td>03</td>
</tr>
<tr>
<td>04</td>
<td>0100</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>05</td>
<td>0101</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>06</td>
<td>0110</td>
<td>06</td>
<td>06</td>
</tr>
<tr>
<td>07</td>
<td>0111</td>
<td>07</td>
<td>07</td>
</tr>
<tr>
<td>08</td>
<td>1000</td>
<td>10</td>
<td>08</td>
</tr>
<tr>
<td>09</td>
<td>1001</td>
<td>11</td>
<td>09</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>12</td>
<td>0A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>13</td>
<td>0B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>14</td>
<td>0C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>15</td>
<td>0D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>16</td>
<td>0E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>17</td>
<td>0F</td>
</tr>
<tr>
<td>16</td>
<td>10000</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>10010</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>
Positional Number Representation

- **Decimal**
 - $D = d_n...d_2d_1d_0$
 - $V(D) = d_{n-1} \times 10^{n-1} + d_{n-2} \times 10^{n-2} + ... + d_1 \times 10^1 + d_0 \times 10^0$
 - Example: $432_{10} = (4x10^2 + 3x10^1 + 2x10^0)_{10}$

- **Binary**
 - $B = b_n...b_2b_1b_0$
 - $V(B) = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + ... + b_1 \times 2^1 + b_0 \times 2^0$
 - Example: $1101_2 = (1x2^3 + 1x2^2 + 0x2^1 + 1x2^0)_10$

- **Hexadecimal**
 - $H = h_n...h_2h_1h_0$
 - $V(H) = h_{n-1} \times 16^{n-1} + h_{n-2} \times 16^{n-2} + ... + h_1 \times 16^1 + h_0 \times 16^0$
 - Example: $6e2f_{16} = (6x16^3 + ex16^2 + 2x16^1 + fx16^0)_{10}$

Conversion: Binary to/from Decimal

- **Conversion of binary to decimal:**
 - $V = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + ... + b_1 \times 2^1 + b_0$
 - $(1101)_2 =$

- **Conversion of decimal to binary:**
 - Use power's of two table or repeated division method.
 - $(857)_{10} =$
Decimal to Binary Conversion Example

Convert \((857)_{10}\)

\[
\begin{array}{ccc}
\text{Remainder} & & \\
857 : 2 &=& 428 & 1 & \text{LSB} \\
428 : 2 &=& 214 & 0 \\
214 : 2 &=& 107 & 0 \\
107 : 2 &=& 53 & 1 \\
53 : 2 &=& 26 & 1 \\
26 : 2 &=& 13 & 0 \\
13 : 2 &=& 6 & 1 \\
6 : 2 &=& 3 & 0 \\
3 : 2 &=& 1 & 1 \\
1 : 2 &=& 0 & 1 & \text{MSB}
\end{array}
\]

Result is \((1101011001)_{2}\)