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Chapter 6
RLC Circuits

Engr228 - Circuit Analysis

Spring 2020

Dr Curtis Nelson

Chapter 6 Objectives

• Be able to determine the natural and the step response of 
parallel RLC circuits;

• Be able to determine the natural and the step response of 
series RLC circuits.
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First-Order RL and RC Circuit Review

• Transient, natural, or homogeneous response:
– Fades over time;
– Resists change.

• Forced, steady-state, particular response:
– Follows the input;
– Independent of time passed.

• The total response will be:
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RLC Circuits

• RLC circuits contain both an inductor and a capacitor;
• These circuits have a wide range of applications including 

oscillators, frequency filters, flight simulation, modeling  
automobile suspensions, and more;

• The response of RLC circuits with DC sources and switches 
will consist of a natural response and a forced response:

v(t) = vf(t)+vn(t)

The complete response must satisfy both the initial 
conditions and the final conditions of the forced response.
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Source-Free Parallel RLC Circuits

We will first study the natural response of second-order circuit 
by looking at a source-free parallel RLC circuit:
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Second-order
Differential equation

This second-order differential equation can be solved by 
assuming the form of a solution:
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which means

Source-Free Parallel RLC Circuits

• This is known as the characteristic equation.
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Using the quadratic formula, we get

Source-Free Parallel RLC Circuits

Define resonant frequency:
LC
1

0 =w

Define damping factor:
(neper frequency) RC2

1
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Second-Order Differential Equation Solution
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We will now divide the circuit response into three cases 
according to the sign of the term under the radical.

α > ω0 (overdamped):  !(#) = &'()*+ + &-().+

α = ω0  (critically damped):

α < ω0 (underdamped):

stst eAteAtv 21)( +=

)sincos()( 21 tBtBetv dd
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Types of Circuit Responses

Solving an Overdamped RLC Circuit

!"($) = '()*+, + '.)*/,

• We need two equations to solve the second order circuit:
– Evaluate vC at t = 0+ !"(0+) = '( + '.
– Evaluate 121, at t = 0+ A1s1 + A2s2 = (3

456
7 − 9:

• Note the second equation is equivalent to writing a node 
equation and evaluating at t = 0+.
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Given initial conditions:
vc(0) = 0, iL(0) = -10A

Find v(t) in the circuit at the 
right. Ignore the current arrows.
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α > ω0   therefore this is an overdamped case
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Overdamped Example

The solution is of the form: tt eAeAtv 6
21)( -- +=

Use initial conditions to find A1 and A2

From vc(0) = 0 at t = 0:
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Overdamped Case - continued
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Solving the two equations we get A1 = 84 and A2 = -84
The solution is:

Veeeetv tttt )(848484)( 66 ---- -=-=

t

v(t)
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Overdamped Case - continued

Example: Overdamped RLC Circuit

vC(t) = 80e−50,000t − 20e−200,000t  V for t > 0

Find vC(t) for t > 0.
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Equations for Analysing the Natural Response of Parallel RLC Circuits
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-
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Given initial conditions:
vc(0) = 0, iL(0) = -10A

Find v(t) in the circuit
at the right.
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Critically damped when α = ω0 s1 = s2 = -2.45

The complete solution is of the form:

stst eAteAtv 21)( +=

Critically Damped Case (α = ω0)
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Use initial conditions to find A1 and A2

From vc(0) = 0 at t = 0:
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Find A1 from KCL at t = 0:
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Therefore A2 = 0 and the solution is reduced to tteAtv 45.2
1)( -=

Critically Damped Case - continued

Solving the equation:   A1 = 420
The solution is:

Vtetv t45.2420)( -=

t

v(t)

ttetv 45.2420)( -=

Critically Damped Case - continued
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Critically Damped Example

Find R1 such that the circuit is critically damped for t > 0 and R2
such that v(0)=2V.

Answer: R1 = 31.63 kΩ, R2=0.4Ω
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For the underdamped case, the term inside the bracket will be 
negative and s will be a complex number.
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Underdamped Case (α < ω0)
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Underdamped Case - continued

)

Looking at the magnitude:

A pendulum is an example of an underdamped second-order 
mechanical system.

t

displacement(t)

Mechanical Analogue
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7H10.5Ω
+
v(t)
-

iR(t)

1/42f

iC(t)
iL(t)

Given initial conditions:
vc(0) = 0, iL(0) = -10A

Find v(t) in the circuit
at the right.
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α < ω0   therefore, this is an underdamped case
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v(t) is of the form: )2sin2cos()( 21
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Underdamped Case - Example

Use initial conditions to find B1 and B2

From vc(0) = 0 at t = 0:

Find B2 from KCL at t = 0:
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Therefore B1 = 0 and the solution is reduced to
121
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Underdamped Case - continued
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29722102 ==B

The solution is: tVetv t 2sin297)( 2-=

t

v(t)

tVetv t 2sin297)( 2-=

Underdamped Case - continued
Solving:

Underdamped Example

Find iL for t > 0.

iL = e−1.2t (2.027 cos 4.75t + 2.561 sin 4.75t) A
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Summary of Transient Responses

Source - Free Series RLC Circuit
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Comparing Series and Parallel RLC Circuits
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Series RLC Circuit Solution

If:
α > ω0 (overdamped):

α = ω0  (critically damped):

α < ω0 (underdamped):
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Equations for Analysing the Step Response of Parallel RLC Circuits

Textbook Problem 8.50 (Nilsson 11th)

vo(t) = 16 - 16e−400tcos300t − 21.33e−400tsin300t V

The circuit contains no initial energy. Find vo(t) for t ≥ 0.
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Summary: Solving RLC Circuits

1. Identify the series or parallel RLC circuit;
2. Find α and ω0;
3. Determine whether the circuit is overdamped, critically 

damped, or underdamped;
4. Assume a solution (natural response + forced response):

f
stst VeAteA ++ 21

f
tsts VeAeA ++ 21

21

fdd
t VtBtBe ++- )sincos( 21 wwa

Overdamped

Critically damped

Underdamped

5. Find A, B, and Vf using initial and final conditions.

Chapter 8 Summary

• Showed how to determine the natural and the step 
response of parallel RLC circuits;

• Showed how to determine the natural and the step 
response of series RLC circuits.


